OOMMF Home next up previous contents index
Next: Quick Start: Example OOMMF Up: Installation Previous: Advanced Installation


Platform Specific Installation Issues

The installation procedure discussed in the previous sections applies to all platforms (Unix, Windows, macOS). There are, however, some details which pertain only to a particular platform. These issues are discussed below.

Unix Configuration

Missing Tcl/Tk files

The basic installation procedure should be sufficient to install OOMMF on most Unix systems. Sometimes, however, the build will fail due to missing Tcl header files (tcl.h, tk.h) or libraries (e.g., libtcl.so, libtk.so). This problem can usually be solved by installing a ``development'' version of Tcl/Tk, which may be found on the operating system installation disks, or may be available from the system vendor. There are also binary releases of Tcl/Tk for a number of systems available from ActiveState, under the name ActiveTcl. Alternatively, one may download the sources for Tcl and Tk from the Tcl Developer Xchange, and build and install Tcl/Tk from source. The Tcl/Tk build follows the usual Unix configure, make, make install build convention.

Compiler Optimization Options

On most systems, OOMMF builds by default with relatively unaggressive compiler optimization options. As discussed earlier (under Optimization), you may edit the appropriate oommf/config/platforms/ file to change the default compilation options. However, on some common systems (e.g., Linux, some BSD variants) OOMMF will try to deduce the hardware architecture (i.e., the CPU subtype, such as Pentium 3 vs. Pentium 4) and apply architecture-specific options to the compile commands. This is probably what you want if OOMMF is to be run only on the system on which it was built, or if it is run on a homogeneous cluster. If, instead, you intend to run OOMMF on a heterogeneous cluster you may need to restrict the compiler options to those supported across your target machines. In that case, open the appropriate configuration file in the oommf/config/platforms/ directory, and look for the lines
    # You can override the GuessCPU results by directly setting or
    # unsetting the cpuopts variable, e.g.,
    #    set cpuopts [list -march=skylake]
    # or
    #    unset cpuopts
Uncomment either the ``unset cpuopts'' line to make a generic build, or else edit the ``set cpuopts'' line to an appropriate common-denominator architecture and uncomment that line.

In a similar vein, some compilers support a ``-fast'' switch, which usually creates an architecture-specific executable. The same considerations apply in this case.

An advanced alternative would be to define separate OOMMF ``platforms'' for each CPU subtype in your cluster. At a minimum, this would involve creating separate platform name files in oommf/config/names/ for each subtype, and then making copies of the appropriate oommf/config/platforms file for each new platform. The platform name files would have to be written so as to reliably detect the CPU subtype on each machine. See ``Managing OOMMF platform names'' for details on creating platform name files.

Portland Group pgCC compiler on Linux

The platform build scripts for Linux, oommf/config/platforms/lintel.tcl (32-bit) and oommf/config/platforms/linux-x86_64.tcl (64-bit) contain sections supporting the Portland Group pgCC compiler. Non-threaded builds of OOMMF using this compiler run fine, but threaded builds segfault when running Oxsii/Boxsi. The source of this problem is not known at this time.

macOS Configuration

The build procedure for macOS is the same as for Unix. The platform name is ``darwin''. If the platform configuration check does not find a C++ compiler, then you will have to install one. One option is the Xcode command line developer tools provided by Apple. You can install these from a Terminal window via the command
xcode-select --install
You should run this command even if you install the full Xcode IDE. Refer to your system documentation for details.

Microsoft Windows Options

This section lists installation options for Microsoft Windows.

Using Microsoft Visual C++

If you are building OOMMF software from source using the Microsoft Visual C++ command line compiler, cl.exe, it is necessary to set up the path and some environment variables before running the compiler. There is a batch file distributed with Visual C++ that you can run to do this. The name of the file varies between Visual C++ releases, but for example may be vcvarsall.bat or setenv.cmd. For 64-bit builds you may need to include the ``amd64'' option on the batch file command line. You may want to set up your system so this batch file gets run automatically when you open a command window. See your compiler and system documentation for details.

Using MinGW g++

Both 32-bit and 64-bit builds are supported using the MinGW ports of g++. (The 32-bit and 64-bit versions of g++ are separate downloads.) Use a standard Windows Tcl/Tk, such as the ActiveTcl release from ActiveState. You will also need to edit the appropriate platform file to select g++ as the compiler. If you are using a 32-bit Tcl/Tk and g++, then the platform file is oommf\config\platforms\wintel.tcl. For 64-bit Tcl/Tk and g++ the platform file is oommf\config\platforms\windows-x86_64.tcl.

Using the Cygwin toolkit

The Cygwin Project is a free port of the GNU development environment to Windows, which includes the GNU C++ compiler g++ and X11. To build OOMMF within the Cygwin environment, start up a Cygwin or Cygwin64 shell and follow the usual Unix build procedure. The platform name will be cygtel or cygwin-x86_64, according to whether you are running a 32- or 64-bit Cygwin tclsh, respectively. The resulting OOMMF build requires the Cygwin environment to run, so it will need to be launched from a Cygwin shell. Moreover, OOMMF on Cygwin uses X11 as the windowing interface, so you will need to have the Cygwin port of X11 installed; typically OOMMF will be started from an X11 xterm or equivalent. Of course, you will also need the Tcl and Tk packages installed (called tcl and tcl-tk, respectively, by the Cygwin package manager). To build OOMMF from source you will need the gcc-g++, tcl-devel, and tcl-tk-devel packages and dependencies.

If you get errors saying a child process couldn't be forked (typically with either ``resource temporarily unavailable'' or ``Loaded to different address'' error messages), then follow this procedure:

  1. Exit all Cygwin processes
  2. Use Windows Explorer or a Windows command shell to launch c:\cygwin\bin\ash.exe
  3. Run /bin/rebaseall inside the ash shell.
Additional information on this problem can be found in the Cygwin documentation.

The Cygwin versions of Tcl/Tk prior to 8.6 were not threaded, so OOMMF built with Tcl/Tk 8.5 and older will likewise not be threaded. This limitation is removed with the Cygwin Tcl/Tk 8.6 release.

Setting the TCL_LIBRARY environment variable

If you encounter difficulties during OOMMF start up, you may need to set the environment variable TCL_LIBRARY. (NOTE: This is almost never necessary!)

Bring up the Control Panel (e.g., by selecting Settings|Control Panel off the Start menu), and select System. Go to the Environment tab, and enter TCL_LIBRARY as the Variable, and the name of the directory containing init.tcl for the Value, e.g.,

%SystemDrive%\Program Files\Tcl\lib\tcl8.0
Click Set and OK to finish.

OOMMF Home next up previous Contents index

OOMMF Documentation Team
September 29, 2021