ITLApplied  Computational Mathematics Division
ACMD Seminar Series
Attractive Image NIST

Approximation and Convergence of the First Intrinsic Volume

Herbert Edelsbrunner
IST Austria

Friday, September 5, 2014 11:00-12:00,
Building 101, Lecture Room C
Friday, September 5, 2014 09:00-10:00,
Room 1-4058


The Steiner polynomial of a solid body in $R^n$ is of degree $n$ and describes the volume as a function of the thickening parameter (parallel body). The coefficient of the degree-$i$ term is used to define the $(n-i)$-th intrinsic volume. Using an integral geometric approach, we modify the Crofton formula using persistent moments to get a measure for approximating bodies that converges to the intrinsic volume of the solid body. We have a proof of convergence for $n-i = 1$.

Work with Florian Pausinger.

Presentation Slides: PDF

Contact: B. Cloteaux

Note: Visitors from outside NIST must contact Cathy Graham; (301) 975-3800; at least 24 hours in advance.

Privacy Policy | Disclaimer | FOIA
NIST is an agency of the U.S. Commerce Department.
Last updated: 2014-09-05.