Up | ||
Reed-Frost Transition on Dense GraphsGuantao ChenDepartment of Mathematics and Statistics, Georgia State University Wednesday, May 22, 2013 15:00-16:00, The classic Reed-Frost stochastic epidemic process on a population of $n$ elements with probability p can be viewed as a percolation on a complete graph with a given number of initially infective vertices. At each step each infected vertex infects an undeleted and uninfected vertex independently with probability $p$, and all previously infected vertices are removed. The process stops if there is no new infected vertex. The percolation time is the time $t$ when all vertices have been infected or $+\infty$. In this talk, we extend the the Reed-Frost process from complete graphs to general graphs and obtain a few sufficient conditions on the density of graphs and probability such that with high probability that the percolation time is bounded above by a constant. We also notice that these conditions are best possible in some sense.
Contact: J. Shook Note: Visitors from outside NIST must contact Cathy Graham; (301) 975-3800; at least 24 hours in advance. |