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ABSTRACT

Many elliptic partial differential equations can be setinumerically with near optimalfef
cieng through the uses of adagirefinement and multigrid solution techniques. It is our goal to
develop a more unified approach to the combined process of adapfinement and multigrid
solution which can be used with high order finite elemehtse basic step of the refinement pro-
cess is the bisection of a pair of triangles, which corresponds to the addition of one or more basis
functions to the approximation spacgn approximation of the resulting change in the solution is
used as an error indicator to determine which trianglesvidedi Themultigrid iteration uses a
red-black Gauss-Seidel relaxation in which the black relaxations are used only. |dtaligrid
transfers use the change between the nodal and hierarchical Fdgesmultigrid iteration
requires only Q) operations, een for highly nonuniform grids, and is defined forydinite ele-
ment space. The full multigrid method is an optimal blending of the processes ofadzpie-
ment and multigrid iteration. So as to minimize the number of operations required, the duration
of the refinement phase is based on increasing the dimension of the approximation space by some
fixed factor which is determined to be thegkst possible for the \gn aror-reducing power of
the multigrid iteration.The result is an algorithm which (i) uses onlyNpPéperations with a rea-
sonable constant of proportionalitffi) solves the discrete system to the accyratthe dis-
cretization errar (jii) is able to achiee the optimal order of carergence of the discretization
error in the presence of singularities. Numericgberiments confirm this for lineaguadratic
and cubic elements. It is beli that the method can also be applied to more practical problems
involving systems of PDE’s, time dependence, and three spatial dimensions.
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CHAPTER 1
INTRODUCTION

The efficient numerical solution of elliptic partial féifential equations has been an impor
tant area of research in numerical analysis foers¢ decadesOver the years, mamew meth-
ods hae been discwered in the areas both of discretizing thdadigntial equation and of solving
the discrete problem. Whilerery method has restrictions on the subclass of problems to which it
is applicable, the &€iency of the methods has increased manyfold sinea ¢he best solvers of
25 years ago.A thorough presentation of most practical methods is provided byfBiskd
Lynch [8]. Additionally, the ELLFACK project [27] has praided us with robust software for
mary of these methods and a soundisasnment in which to perform numerical experiments to
determine the relatée merits of each method.

Today, we ae at a point where mgrproblems can be solved with near optimdicéEncy.
Many of the recent impreements hae accurred through the uses of adaptiefinement, multi-
grid solution techniques and parallelis/e will not consider parallelism hereubconcentrate
on adaptre refinement and full multigrid solution. At first glance, theotencepts seem almost
meant for each othefEach is a process that alternately performs phases of refinement and solu-
tion, with one concentrating on refinement and the other on soluYietn when examined more
deeply subtle dificulties arise in combining them. Most researchers whe la@empted to join
the two havemaintained the individual structures of theotphases and then ddoped stratgies
to overcome the problems that erger Itis our goal to deslop a more unified approach to the
combined process of adagirefinement and multigrid solution that is so natural that it becomes
obvious hav to extend these important techniques to more complicated situations, such as with
high order methods and for three dimensional problefitss unification and extendability is
achieved by interpreting the parts of the method from themgeint of the hierarchical basis, in
which successe mefficients represent a change in the solution rather thanaibe of the solu-
tion. Inparticular

(i) adaptie refinement is considered to be the selectrichment of the approximation space
by adding ne basis functions, rather than thevidion of triangles or rectangled.ocal
relaxations which are identical to those of the multigrid iteration are performed with the
addition of each v basis function. The choice of which basis functions to add is based on
how much each potential mebasis function will reduce the error and is determined by
approximating the hierarchical cdiefents. Thiscomputation uses the equations that will
be added to the linear system when the space is enriched by this basis function, and is the
same as the local relaxation.

(i) the multigrid iteration is defined strictly in terms of the hierarchical basis, and is not
restricted to the approximation spaces we consi@ed transfers are achied through the
change between nodal and hierarchical baBedaxations are performed in both the nodal
and hierarchical bases, essentially supersaturating the approximation space withssn e
of directions in which to minimize the error.

(i) the full multigrid method is a very natural, optimal blending of adaptefinement with
multigrid iterations. The approximation space is enriched with asymaw basis functions
as is possible with respect to the error-reducing power of the multigrid iteration. This mini-
mizes the number of operations used to obtain a solution whose acsu@enparable
with the discretization error.



We present our method in the context of the second order self-adjoint elliptic problem
Lu = (pux)x +(qQuy)y +ru=f inQ (1.1)

u=g onadQ

whereQ is a polygonal domain iR? andp, g, t f andg are functions of andy. We wse the
Galerkin finite element method to discretize the problesr a riangular mesh which egrs Q
exactly We sssume that the reader amnfiliar with the finite element method; a good presentation
can be found in books by Strang and Fix [35] and Becker [7]. At times we will use the usual
space of continuous piecewise linear functiomer the triangles, especially when relating our
work with that of other authors,ubthe method will be deloped for the higher order spaces of

c® p" degree piecewise polynomialgen triangles, wherep is ary given positive integer.

In all previous methods that combine adaptefinement with multigrid solution the indi-
vidual components of the method (trianglgisibn, error indication, error estimation, prol@ag
tion and restriction, relaxation) are not related to each otherare ngertheless combined to
form an efective dgorithm. Inour approach all the components are closely related resulting in a
more unified method in which maomputations h& mnultiple purposes. Thedy © recogniz-
ing the relationship is in the interpretation of the components from the viewpoint of hierarchical
bases. Whilsome of our components arevel) mary are similar to, equialent to, or in special
cases reduce to existing approaches. In these cases we provide an\vatéreafiretation in
terms of hierarchical bases which not onlypdes us with a ne combination of techniques
which are closely related, but also provides a deeper understanding @hthavhy the method
works. Wth this knowledge the techniques are easiiteeded to other finite element spaces,
although there is no existing theory to assure that reasonahlergemce rates will be obtained.
The method is, in fact, applicable toydimite element space with a hierarchical basie will
examine the application of the method to space3®p™" degree polynomials\er triangles, and
study the cowergence numerically Very little work has been done with either adaptiefine-
ment or multigrid solution for high order methods, and no high pedaptive refinement, multi-
grid method has been previously presented.

In Chapter 2 we present the adaptiefinement aspect of the method. As a whole, this is a
nev method of adaptie refinement. May of the individual parts are very closely related xse
ing approaches, but the slight variations on these approachesywth@yén which thg are com-
bined, the ne global structure of the refinement process and the interpretation of hierarchical
bases result in a simpJaenore unified and more efficient method which can easily be extended to
other finite element space¥/e mnsider four aspects of the adaptiefinement process:

(i) triangle division,

(ii) maintaining compatibility,

(iii) error indication,

(iv) the overall structure of adapte refinement.

For triangle division we use bisection. This is similar to the bisection methodrafaRR9,
30] and identical to that of &ell [32, 33], the difference between theotkeing in the method
for determining which side of the triangle is to be bisected, the longest edge or the side opposite
the newest ertex, respectiely. For mary triangle shapes, including the important case of isosce-
les right triangles, the longest edge and newedbvmethods are equilent. Whenthe methods
do not agree, the longest edge approach has better angle bounds and hence a smaller interpolation
error, but the newest artex approach does not require the computation of side lengths and



experimental results [24] indicate that the loss of acguisemall. Moreimportantly the nevest

vertex approach provides easily defined hierarchical bases with properties that are necessary for
the adaptie refinement and multigrid algorithms. In the longest edge approach the hierarchical
bases are not as easily defined and fail t@ tfreese necessary properties.

A triangulation used for a finite element mesh should be compatible,vieey, tedangle
should not hee nore than one neighboring triangle along afi its three sides, as in Fig. 1.1.
Maintaining compatibility is one of the challenges irvalieping an adaptie refinement algo-
rithm. Theapproach we use is undileny ather, and provides an interesting alternatiinterpreta-
tion of adaptre refinement on which we base our error indicator and the global structure of the
adaptve refinement process, which in turn allows avrierist on the full multigrid method to be
discussed laterSewell maintains compatibilitypeforethe refinement process by revivy from
consideration those triangles whosgiglbn would create an incompatibilityit is possible for
this to fail abysmally to refine the grid in the right place. Bank and Sherman [3, 4] @ad Ri
enforce compatibilityafter the refinement process. Onevides the desired triangles, and then
further divides triangles where incompatibilitesvbdaisen. Thisresults in a tw phase refine-
ment algorithm.Bank and Sherman, who use regular division for refinement and bisection for
maintaining compatibilityeven havea third phase at the beginning of the refinement algorithm
that reme@es the bisection refinements added for compatibility our approach we maintain
compatibility during the refinement proces& his is achiged by dviding pairs of triangles that
share a common edge rather thiagdividual triangles. Inthe terminology of Sewell, the west
vertex is called thepeak the side opposite the peak is calledhse and a triangle is said to be
compatibly divisibléf its base is also the base of the triangle opposite its p&dden we wish to
divide a triangle which is compatibly divisible, wevidie both the desired triangle and the trian-
gle opposite its peak as a pair by connecting their peaks through the midpoint of their common
base. Whemve wish to divide a triangle which is not compatibly divisible, we must fixstieli
the triangle opposite the peak (as a pair with the triangle opptsjieak) before dividing the
pair. This process is easily implemented with a simple and short recursion provided that the
assignment of the peaks in the initial triangulation is such that all the triangles are compatibly
divisible. We show that such an assignment isvays possible. Since we v introduce incom-
patibilities, we have eliminated the need for a second phasdiminate them, and the resulting
refinement algorithm is simpler.

(@) (b)

Fig. 1.1. Examples of (a) a compatible triangulation (b) an incompatible triangulation



By always dividing pairs of triangles we are pided with an alternate interpretation of
the process of adapé refinement. Unlik dviding a single triangledividing a pair of triangles
corresponds xactly to the addition of a mebasis function In the context of hierarchical bases,
the previously existing basis functions remain unchanged and the support oivtbasisefunc-
tion is the pair of triangles dided. Thuswe can consider the process of adaptefinement to
be one of enriching the finite element space with the right basis functions rather than one of refin-
ing the grid by driding the right triangles. This provides myaimteresting and useful interpreta-
tions of, not only the components of the adaptefinement, but also some aspects of the multi-
grid solution. An interesting, but not very useful, obsgion is that the restriction imposed on
the grid by the condition of compatibility is just a restriction on which basis functions are permit-
ted to be added to the finite element space in terms of which basis functions are already in the
space, and our process of maintaining compatibility is one of adding the necessary basis functions
before adding the desired basis function.

A more useful interpretation occurs with our error indicatén error indicator is ag value
which can be used to indicate which triangles should \idetl (in contrast to an err@stimate
which actually approximates the errorDur error indicator is similar to one proposed by
Zienkiewicz et al. [39] for bilinear elements and can be formulated in terms of a local problem
error estimate in the context of Baka and Rheinboldt [2]With the interpretation of adapé
refinement as a way of selecting which basis functions should be added to the space, it will
become clear o to define a reasonable error indicator &oryfinite element space. In the hier
archical basis, the coefficient of a basis function of the ledtddded represents, not thalueof
the solution at the central node as in the nodal basigsather hav much changein the solution
has occurred at that node by adding the basis functiowe can estimate the coefficients for
each of the basis functions that we are permitted to add to the space, then we can determine which
basis functions will create the largest change in the solution, ovantly, which basis func-
tions will provide the largest reduction of the energy norm of the discretization &ran an
estimate can be obtained by considering the equation that would be added to the linear system if
this basis function were added to the space. Solving this equation usingstireyecoeficients
for neighboring basis functions pfides us with the required estimate. The error indicator is then
the energy norm of the webasis function times its coefficient.

Not only does our error indicator point to the optimal basis function in terms of discretiza-
tion error reduction, Wt it is closely related to other aspects of the global algorithm and its com-
putation provides seral other useful values, including

(i) the values for the stiffness matrix,
(ii) the first solution value for the menode (equialent to Gauss-Seidel relaxation),
(i) values from which a global error estimate can be cheaply computed.

Typically, other error indicators found in the literature are based on a bound on some norm of the
error over a friangle, and bear no relationship to the rest of the global algoriffiva. computa-

tions performed in those error indicators ®no dher purpose, except possibly providing a
global error estimateWhile such error estimate based error indicators provide error estimates
over each triangle which asymptotically approach the true ethere is no reason to bele that

it is better to diide triangles with the largest error than to add the basis functions that reduce the
error the most. In numericakperiments, which approach is better is found to be problem depen-
dent, and there is wer a large difference between them.

To se hov to extend our error indicator to other finite element spaces, considexdahgpte
of C° quadratic basis functions/er triangles. Herehe division of a pair of triangles adétsur



nev nodes and basis functions. Thusyamrichment of the space will be done by four basis
functions at a time.So the error indicator will be for the group of four basis functions, and is
computed as alve kut by solving the system of four equations for the four hierarchicaficoef
cients. Theerror indicator is the energy norm of the function obtained from the fourbasis
functions and their cof€ients. Unlike aher error indicators, we ka an aror indicator which

falls naturally out of the finite element space in use. This allows us to define an appropriate error
indicator foranyfinite element space.

We row consider the global structure of the adeptiefinement process andwadt fits in
with the solution process. In the usual approach, illustrated by Alg. 1.1, the refinement phase is
the dvision of a set of triangles to obtain aangrid in which each triangle has been divided at
most once. This is typically done in four steps -- compute error indicators for each triangle,
determine which triangles are to be divided, divide triangles and enforce compatifditpted
earlier Bank and Sherman @ an additional step at the beginning whereytliemove te bisec-
tion refinements used to enforce compatihilitfyhe determination of which triangles are to be
divided is usually done by the approach outlined byusab and Rheinboldt [2] where one
searches the triangles for those whose error indicators are larger than some threshold value which
depends on the Igest error indicator For an efficient full multigrid method, it is necessary that
the dimensions of the successfifinite element spaces gvoexponentially To achieve tis, the
solution phase is performed only if the number of vertices has grown by actoe tipically 4
which is the growth one would get with uniform refinemeRtr highly nonuniform grids, the
number of refinement phases between solution phases maegronentially When a solution
phase is not performed, it may be possible to omit some of the steps of the refinement phase.
Certainly mary of the error indicators may remain unchanged, but then one must decide which
triangles need a meerror indicator It is dso possible that some of the refinements to enforce
compatibility can be postponedlVe rote that, with highly nonuniform gridgjst seaching every
triangle during eah refinement phasesquitres an unacceptably lge rumber of opeations So
ary agorithm of this type must not compute the error indicator f@ryetriangle, or gen exam-
ine every triangle to determine which onesviealarge error indicators. As none of the authors
address this problem, it is unknownvh(or if !) this problem is dealt with.

Algorithm 1.1. The usual global structure

repeat
remove bsection refinements (Bank and Sherman only)
compute error indicators
S < set of triangles with large error indicators
divide the triangles s
divide triangles for compatibility
if the number of vertices has been increased by the factor 4 then
apply multigrid iteration(s)
endif
until done
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We take a dfferent approach to the global structure of the refinement phase anitfite
into the full multigrid method. Our approach is illustrated in Alg. 1.2. Because we interpret
adaptve refinement as the addition ofwméasis functions, we are freed from the bonds associated
with dividing a predetermined set of triangles to obtainva gréd in which each triangle has been
divided at most once. Instead, we can add basis functions to the finite elemerfibspadeng
as we lile, provided we maintain the solution values and error indicators aveldaay of deter
mining which basis functions e the largest error indicators. The purpose of the solution phase
in the full multigrid algorithm is to &ep the error in the approximate solution of the discrete sys-
tem less than the discretization erréke will consider this in more depth lafdwt for nov we
state that this can be ached by performing a solution phasevery time the dimension of the
space is increased by some factor (but not necessarily 4 as is typically $seth).our approach
we continue to enrich the space witlwrigasis functions until the dimension of the space reaches
a predetermined &lue. Contrasthis to the usual approach where, if that predetermined dimen-
sion is not met, another complete refinement phase is performed which could exceed the predeter
mined dimension considerably.

It is necessary in our approach to maintain the solutadnes and error indicators during
the refinement procesfReasonable solution values are necessary to obtain reasonable error indi-
cators, and without reasonable error indicators the refinement magtaeled. © maintain our
solution, with the addition of each webasis function we perform a relaxation at each of the
nodes which are most stronglyfeafted by the addition of that basis function, i.e., those nodes
associated with basis functions which are not orthogonal to thdamss function. (Recall that
the coefficient for the me basis function itself comes directly from the error indicatdrhisis
sufficient to obtain reasonable error indicators, but does notverthe need for the solution
phase. Hwever, as will be seen laterthese relaxations are very closely related to the multigrid
iteration and can actually be considered to be part of the solution phasedamonstrating the
strong relationship of all components of this methdtie addition of a ne basis function and
the local relaxations that folloit affect only a fev neighboring error indicators, which are easily
updated at this time.

Algorithm 1.2. Our global structure

repeat
repeat
pick a basis function to add
add that basis functioh
until the number of vertices has been increased by sorae fgictor
apply multigrid iteration(s)
until done

T the addition of a basis function includes adding other basis functions first (if necessary),
local relaxations and updating affected error indicators
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This leaves us mly with the problem of knowing which potentialwmdasis functions hae
the largest error indicators. Ideally we would want townehich one has the Igest, but we
cannot search them all in an acceptable number of operatidasmight create a linkd list
ordered by the size of the error indicatart here, too, we cannot makn nsertion in O(1) oper
ations. Insteadwe will be satisfied to add a basis function whose error indicatdosgto the
largest. Dwad this end we construct a set of linked lists each of which contains those potential
new basis functions whose error indicators fall in &egirange of values with the ranges deter
mined so as to guarantee that by the end of the refinement phase all the basis functions with the
largest error indicators lra keen addedThe maintenance of these lists can be performed in O(1)
operations.

In Chapter 3 we present and analyze the multigrid iteration used ®mtselinear system
of equations. This multigrid uses acycle, a restricted form of red-black Gauss-Seidel relax-
ation, and restriction and proloatjon operators which arise naturally from the hierarchical basis.
In the case of uniform grids the method is ggeint to that studied by Braess [10, 11, 12] and is
related to the MGR methods [22, 281 is also very closely related to the hierarchical basis
multigrid method recently deloped by Bank, Dupont and Yserentant [6].

The main dificulty with multigrid iterations for nonuniform grids is in producing a method
for which the number of operations for one cycle is proportional,tine number of nodes, while
obtaining an error reduction factor which is boundedyafrom 1 independent oN. Seveal
approaches to this problemvealeen taken. Bankand Sherman [3] use a form of/écompres-
sion where seeral levels are treated as one to obtain a geometrizvtjran the number of nodes
in each lgel. The problem with this is that the number ob/és compressed into onevig may
grow exponentially This means that the relaxation must damp more than just the high frgquenc
components of the errdnenceeither the number of relaxationsquired is not independent of
or there is ro guarantee of an adequate error reduction factdo overcome this problem, Rara
[31] uses a local (rather than global) transfer and relaxation process foveisenbere the num-
ber of nodes has not grown geometricaler description of this process is vague, making it dif-
ficult to tell, not only ha to do tis process, but also whether or not it withnk. Inthe method
of Bank, Dupont and Yserentant [6], the number of operations for aiyel® is guaranteed to be
O(N) for nonuniform grids by performing only the red part of a red-black Gauss-Seidel relax-
ation, the red nodes being those that are inlghdt not gridk — 1. However, the error reduction
factor is not independent of, l[dnd the number of Mycles required grows proportional to the
number of lgels. For a uniform grid this is O(loy) and for nonuniform grids it can be as bad as
O(N). Inthe method of Braess the relaxation uses only the red nodes before coarse grid correc-
tion and red followed by black aftefhis reduces the error sigiently, but for nonuniform grids
could require as much as KX) operations for one Mycle. We wse an intermediate approach
which uses only red relaxation before coarse grid correction and both red and bladiuitter
black relaxation is performed only at blacodes that a& reighbos of red nodes As with the
relaxations performed during the refinement, these are the nodes that are most stiectgly af
by the change of the values at the red nodes. This guarantbig¢o@Xrations for one ycle
and appears to be sufficient to maintain an error reduction factor which is indepenieni\ef
have o mathematical proof of this,ub we present supporting numericaldence. Thusve hare
apparently achieed bothO(N) operations per cycle and &fhindependent error reductioadtor.

The multigrid method presented is easiktemded to higher order finite element spaces.
Little has been achied in the multigrid solution of linear systems that arise when using high
order methods. One of the biggesffidiilties is in determining appropriate restriction and pro-
longation operatorsOur transfer operators fall naturally out of the wasion of the nodal basis
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to the hierarchical basis, making it easy to determine appropriate operatany fmite element

space. Br some lav order spaces tlyedegenerate to commonly used transfers. Thus we lza

way of defining, for a finite element space, multigrid transfer operators which are of the correct
order of accurag natural to the space in question, and degenerate to the usual operators for some
spaces previously considered.

The multigrid iteration is used periodically in a full multigrid algorithm to keep the error in
the approximate solution smaller than the discretization.etnoour full multigrid, the multigrid
iteration is used wherer the number of nodes has been multiplied by somengionstant. The
frequeny at which multigrid iterations must occur depends on the error reducictorf of one
V-cycle. Thusit is important to hee a @od bound on that factor to determinenhoften to
switch between refinement and solutidn.the case of the usual model problem (Poissaqia-
tion, linear elements and uniform grids) our methodetherates to that anayzed by Braess [10,
11, 12]. Braess showed that the error reduction factor for trogdle is bounded by: for certain
polygonal domains.In our analysis, we use some results from linear algebra i@ bbw one
can compute the error reduction factor fol gnoblem, not just the model problenWith the
model problem on the unit square we find that the error reduction factor forayeVis appar
ently bounded by 1/8, the samawe found for the 2-grid iteration by Fourier analysis. It will be
showvn that this means one-dycle reduces the error digiently to increase the number of nodes
by the factor 32.5 between multigrid iterations, in contrast to the usctalrf4. We dso examine

the error reduction factor for®3and 4" order finite elements with the model problem and finally
considerthrough examples, the effects of nonuniform grids and reentrant corners.

In Chapter 4 we present the full multigrid which combines the agapfinement proce-
dure with the multigrid iteration into a very efficient unified solution method that is easily
extended to high order finite element spacé&be full multigrid method consists of alternately
performing refinement and solution phas€sr the usual full multigrid method for uniform grids
the multigrid iteration (solution phase) is performed after each refinement toxthiewek grid.

But with nonuniform grids this can result in more tharN®@perations, as much as K%). The

usual extensions to nonuniform grids maintain the concept of one refinement phase resulting in a
grid in which each triangle has been refined at most once, and skip some of the grids for solution
phases, possibly performing some local solution process, to obtain fjeopHration full multi-

grid. In contrast, we use the properties of theveogence of the discretization error to justify
basing the frequegf solution phasesyot on the levels of refinement, but on the increase in the
number of nodesThus, as earlier noted, the refinement phase continues until the number of
nodes has been increased by somengiactor We derive a brmula to determine holarge this

factor can be in terms of the error reduction factor of the multigrid iteration and thiergemce

rate of the discretization error for the finite element space being used.

We dso present a meerror estimate in Chapter 4This error estimate is not as accurate as
some aailable estimates, such as that of Bank and Weiser [5]. Mergid may not satisfy some
of the requirements of a "good" error estimate as outlined by De et al. [16], in particular that the
effectivity index (the ratio of the error estimate to the actual error) be greater than 1 and approach
1 as N approaches infinityBut, from the alues of the error indicator we use, the estimaterg v
cheap to compute, requiring less thax Gultiplications, and appears to be reasonably accurate
in practice with dectivity indices typically between .9 and 1.Rlore importantly the estimate
can be extended to high order finite elementsigihog a reasonable error estimate for arbitrarily
high order finite element spaces.

The full multigrid method presented is an optimal combination of adamgfinement with
multigrid iterations. The hierarchical basis multigrid iteration is guaranteed to use oNly O(
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operations, and the adamirefinement procedure produces a gnigronvhich the optimal order
of corvergence of the discretization error is acle@. Thefrequeng at which multigrid itera-
tions occur guarantees that the entire algorithm requires omll) Qerations. Allcomponents
of the method are closely related to each oftveriding a unified ON) algorithm with adaptie
refinement and multigrid solution for high order finite element spaces.
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CHAPTER 2
ADAPTIVE REFINEMENT

The use of adapte refinement to obtain a grid for the discretization of a partifédintial
equation has been the subject of much research in the past decade [2, 3, 16, 24, 25, 30, 32, 39].
The idea is to automatically construct a grid which is coarse where the solution is weddyeha
fine near singularities, boundary layers, etc., and has a smooth transition between the coarse and
fine parts. Such a grid can dramatically reduce the number of nodes needed to obtain an accurate
solution for maginally smooth problems, and can reeothe optimal order of carergence for
nonsmooth problems.

Central to ap adaptive refinement algorithm for a finite element grid is a method faddi
ing (refining) the elements, triangles in our cashere are tw major methods for dividing trian-
gles in adaptie refinement algorithmsRegular dvision divides a triangle into four similar trian-
gles by connecting the midpoints of the sides. Bank and Sherman [3wtheWwdo use rgular
division in an adapie refinement algorithm. Bisection division connects one of the vertices of
the triangle to the midpoint of the opposite sidevo approaches are in usegeeding the selec-
tion of the \ertex to be dvided. Rvara [29, 30] chooses theestex opposite the longest edge.
Sewell [32, 33] chooses the "newestérnex. Thisis the method we use, and it will be fully
explained in 82.1.

Another critical element of gredaptive refinement algorithm is the error indicatahich is
used to determine which triangles should béaddid. Seeral good error indicators ka been
proposed [2, 3, 5, 39]. Most of these are based on estimating the discretizatiorveresch
triangle. Ourapproach is slightly diérent. We dtempt to determine which basis functions that
can be added would reduce the discretization error the most. This becomes a type of error indica-
tor for pairs of triangles. Mitchell [24] suneyed seeral error indicators and trianglevigion
methods and compared them in a numerigpeément. Hedound that, among the methods con-
sidered, there is no wwrsally "best" adaptie refinement method, and that most of the methods
performed approximately the same. The methods we use performed well in that experiment.

We kegn the presentation of our adapirefinement algorithm by describing the process of
bisecting a triangle by the newestriex, and giving some properties of the resulting triangles.
We then shav how to use this bisection in an adamirefinement algorithm. This is folleed by
the definition of our error indicatpand finally we present the adapirefinement algorithmFor
the most part, adap®e refinement is independent of the space of functions to be defieethe
triangulation. Theexception to this is in the error indicatavhich we define first for pievgse

linear functions, and then for piecewig® p" degree polynomials.

2.1 Newest vertex bisection of a triangle

The basic building block of an adamirefinement algorithm is a method for dividing a tri-
angle. Theamethod we use, which we calawvest verte bisection is nearly identical to a method
presented by Sewell [32]. Much of the terminology of this section is due to Sewell.

In bisection division a triangle is divided to formawew triangles by connecting one of the
vertices, called thepeak to the midpoint of the opposite side called Hase as in Fg. 2.1. The
original triangle is called thparent and the tvo new triangles are called thehildren. The chil-
dren are said to lva generation i+1 wherei is the generation of the parerthe initial triangle is
assigned generation 1. The assignment of the peak for the initial triangle witbbéned in
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eak

bas base

base peak peak

Fig. 2.1. Propagation of the peak with newest node bisection

82.2. Thenew vertex created at the midpoint of the base is assigned to be the peak of the chil-
dren, hence the name newest velisection.

It is important that the angles be boundadyafrom 0 andrz[1, 18]. Notice that by assign-
ing the peak this ay, no angle is divided more than oncéntuitively, this should preent the
angles from getting too small. Indeed, it is shown byede32] that there are only four similar
ity classes of triangles created by this method, as in Fig. 2.2, and hence the angles are bounded.

In the future it may be useful to kmpnot only that the angles are boundedyafrom 0 and
7t but also exactly what the angles are. It is easily seen that only eight angles arise, as illustrated
in Fig. 2.3. If a, Bandyare the angles of the initial triangle apé the angle at the peak, the
other angles aregn by

Fig. 2.2. Four similarity classes of triangles generated by newestwhbidection

y (6}
4
a B a L) ﬂa

Fig. 2.3 Angles that arise during bisection
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The only angle which is not obviousas, which we dere tere. Inthe original triangle, let
b andc be the lengths of the sides opposite the angkesd y; respectiely. Then by the I of
sines
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siny ¢ siné;  ¢/2
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Sincey=rEa-p,
2 d9na sin 2 d9na sin
tanfl = ﬁ = ’B

sing cospB +cosa sin—2 €n B cosa sinfa — B)
2.2 Adaptive refinement using newest vertex bisection

Dividing an individual triangle is only one aspect of refining a triangulafidre process of
adaptve refinement is one of dividing triangles such that

(i) the angles are boundeday from 0 andrz,
(i) the grid is fine in the right places,
(iii) the triangulation is compatible (defined below),

(iv) the process requires only O(number of triangles) operations.
In the pre@ious section we showed that the angles will be boundegl tom 0 andz To make
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certain that the grid is fine in the right places, one uses an error indicator which specifies which
triangles should be dded. We present our error indicator in §2.3, and fomnassume the»as-

tence of such an error indicatoin this section we delop an approach to adayi refinement

using newest verxebisection such that the third and fourth requirements are also satisfied.

One of the difficulties in adap® refinement is that of maintaining compatibility of the tri-
angulation. Atriangulation is said to beompatibleif for any two trianglest; andt;, tjnt; is
either emptya cmmon \ertex, or a common sideOther authors, most notablyvaia [30] and
Bank et al. (e.g. [4]), he taken the approach of dividing some set of triangles with large error
indicators, producing an incompatible triangulation, and then performing a second process to
regain compatibility by dividing more triangles. The approach of Bavdneéncludes a third pro-
cess of remaing some of the extra divisions before the next refinement phase because he uses
bisection for triangles divided to maintain compatibility anduter division for the triangles
divided because of a large error indicator our approach we ner havean incompatible trian-
gulation. Compatibilityis maintainedluring the refinement process, rather than aftgdviding
pairs of triangles rather than individual triangles. Thus weehdiminated the need for a sepa-
rate follow-up process to reeer compatibility.

A triangle is said to beompatibly divisibldf its base is either the base of the triangle that
shares that side or part of the boundary of the dom&ia.triangle is compatibly divisible, then
we divide the triangle and the neighbor opposite the peak (if such a neigligisj simultane-
ously as a pairlf a triangle is not compatibly disible, then after a single bisection of the neigh-
bor opposite the peak, it will be. So in this case, we first divide the neighbor by the same process,
and then divide the triangle and neighbor opposite the peak simultane®hisys illustrated in
Fig. 2.4. We rote that this processvedys divides a pair of compatibly divisible triangles, or a tri-
angle whose base is part of the boundamy that the triangulation is wer incompatible. This
leads to the recurst Algorithm 2.1, which is easily implemented in FORTRAN by constructing
a dack of the triangles that need to be divided.

N

Fig. 2.4. Maintaining compatibility during refinement

Algorithm 2.1 divide_triangle()

if tis not compatibly divisible then
divide_triangle(neighbor dfopposite peak)
endif
divide the triangle pairand the neighbor opposite the peak of
return
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It is important that this recursion be finite and netylage. We will show that the length
of the recursion is bounded by the generation of the triarigledo this we must assume that in
the initial triangulation eery triangle is compatibly disible. Theorem2.1 shows that this
assumption is reasonable.

Theorem 2.1. Given any triangulation, theresasts a choice of peaks such thaerg triangle is
compatibly divisible.

We postpone the proof of this theorem until the end of this section, where the theorem is
restated as Theorem 2.9e dso need the following lemma which relates the generations of
neighboring triangles.

Lemma 2.2. Let Ty be an initial triangulation in whichvery triangle is compatibly disible, T
be a refinement ofy andty O T have generationg. Lett; be the triangle opposite the peakgf
(if it exists) and, andt; be the other neighbors tf (if they exist). Then

(i) if tg is compatibly divisible, the generationtgfis g,

(i) if tg is not compatibly divisible, the generationtpfs g-1,

(iii) if tgis the triangle opposite the peaktgfi=2 or 3, the generation ¢fis g+1,
(iv) if tg is not the triangle opposite the peakltjpf=2 or 3, the generation gfis g.

Proof. We grove this by induction. The conclusion holds foF, since &ery triangle is compati-
bly divisible and has generatigx1l. Suppos¢he conclusion holds foF a refinement ofl, and
consider the triangulatioh obtained by diiding one pair of compatibly divisible triangles as in
Fig. 2.5 (the case ofwding a single boundary triangle is nearly identicadlgt g be the genera-
tion of ty andt; in T. Then the triangleky;, toy, t;; andt;, all have generationg+1 inT. It suf-
fices to examine the generations of the three neighbdgg if T. to; is not opposite the peak of
to2 (andtq;) and the generation df; is the same as the generatiorigf(andty,), so the conclu-
sion holds for the triangles that are not opposite the peakthe triangle opposite the peak there
are two cases. Suppodbatt, is opposite the peak ¢f in T. Then by the inducte hypothesis

t, has generatiog+1, we see tha, is compatibly divisible inl, and so the conclusion holdsf

Fig. 2.5 Triangles for Lemma 2.2
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to is not opposite the peak tfin T, thent, has generatiog andtg, is not compatibly diisible,
so a@in the conclusion holdsa

Theorem 2.3. The length of the recursion in Alg. 2.1 is bounded by the generation of the triangle
t.

Proof. The recursie all occurs as long as the triangle passed in is not compatiibibdt.

From Lemma 2.2 we see that the triangle opposite the peak of a triangle which is not compatibly
divisible has one less generatiofhus the generation of the triangle decreases with each recur
sive all, and since the minimum generation is 1, the number of reeumis is bounded by the
generation of the first trianglex

Since some extrafefit is required to divide triangles which are not compatibly divisible, it
is not unreasonable to ask whether or not we e@idasuch triangles.Since we can alays
assign the peaks in such aythat all triangles are compatibly divisible, we could change the
peaks to achie tis. Hovever, we would no longer be performing newesdrtex bisection and
this would surely result in angles which are unacceptably large or sWvihout changing the
peaks, the only ay to eliminate triangles which are not compatibly divisible is to perform some
extra refinements. The folleing corollary of Lemma 2.2 asserts thayaach attempt wuld
result in a uniform refinement, and hence for adapkfinement we necessarily veatiangles
that are not compatibly divisible.

Corollary 2.4. If every triangle in the initial triangulation is compatiblyvdiible, then for ap
refinement either thereists a triangle which is not compatibly divisible, @esy triangle has the
same generation.

The remainder of this section isvibéed to the proof of Theorem 2.MVe all an assign-
ment of peaks for a triangulation such thadrg triangle is compatibly divisible perfect math-
ing of the triangles. This is related to perfect matching in graph theodyin fact we will use
graph theory to pnee that every triangulation has a perfect matching.

We kegn with some definitions from graph theonj graph G, is a ronempty sety, of
verticesand a setE, of edgeswhich are unordered pairs oértices. ® avoid confusion between
the vertices of a triangle and the vertices of a graph, we use th&teartexto refer to a ertex
of a graph.If e=(u,v) O E, then the G-grticesu andv are said to badjacentand are called the
endpointsof e. The degreeof a G-\ertexv is the number of edges b containingv. A graph is
k-reqular if all vertices hae cegee k. A walk is a nonempty sequenegv,V, - - -V, such that
(i, vi+1) O E. Acycleis a walk in whichvg = v, andv; # v; for all otheri#j. A graph is said to
be connectedf for every u,v OV there exists a alk with vy = u andv, = v. An edgee of a con-
nected graph is eut ede@ if the remwal of e from G results in a graph which is not connectéd.
perfect mathingin G is a setM O E such that each Gevtex inV is an endpoint of&ctly one
edge inM.

We ae naw ready to defin&(T), the graph of a triangulatioh. The G-\ertex set consists
of two parts. Wth each triangle of we associate ainterior G-vertex. With each side of a trian-
gle which is part of the boundary of the domain (boundary side) we assodatmdary G-
vertex V consists of all interior and boundary @+tices. Theedges of5(T) are of three forms.

If uv OV are both interior G-vertices, then,() O E iff the corresponding triangles share a
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common side.These edges correspond to interior sides of triangles. If one@rmwf is an interior
G-vert and the other is a boundary @tex, then (1,V) 0 E iff the corresponding boundary side
is a side of the corresponding triangle. These edges correspond to boundarysidig. if u
andv are both boundary G-vertices, thanyj [ E iff the corresponding boundary sides share a
common ertex. Theseedges correspond to boundamrtices. Fig2.6 illustrates a simple trian-
gulation and its graphWe wse squares for boundary G-vertices and circles for intericer@ices.

For simplicity, we assume that the boundary of the domain is a continuous simple closed
curve. Thenit is easily seen that the graph has a cycle containiactly the boundary Gertices
and the edges that correspond to boundaryioes of the triangulation. This cycle is found by
traversing the boundary of the domaifhe results that follw hold also for more complicated
domains, but this complicates the proofs. If the boundary is not continuous, then there is more
than one ycle of boundary G-ertices. Ifthe boundary is not a simple curve, then the edge set
between boundary Gevtices must be modified slightly so that each boundarg@vis adja-
cent to exactly tw ather boundary G-ertices. Fromnthe definition of the graph of a triangulation,
the next lemma is obvious.

Lemma 2.5. The graph of a triangulation is 3-regular.

Theorem 2.6. An edge of a connected graph is a cut edgeif contained in no cycles.

This is a well known theorem from graph theo8ge, for example, Bondy and Murty [9] p. 27.

Lemma 2.7. The graph of a triangulation contains no cut edges.

Proof. Letebe aty edge inG(T). We will show thate is contained in aycle. If e connects tw
boundary G-vertices, themis contained in the cycle of boundary @rices found by trgersing

the boundary of the domain. Otherwise,déte the triangle side correspondingetand letv be a

vertex of T that is an endpoint o Let {s;} be the set of all triangle sides thatear as an end-

point, and g} be the corresponding edges@{(T) plus also the edge correspondingvtif v is a
boundary ertex. It is easily seen that, when properly ordered, the edgesm a cycle inG(T)

since their endpoints correspond to triangles, boundary sides and boundary vertices that are adja-
centinT. Sinceeis one of theg's, we havea gycle containinge. O

Fig. 2.6 A simple triangulation and its graph
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Theorem 2.8. Every 3-regular graph without cut edges has a perfect matching.

For a proof of this see, for example, Bondy and Murty [9] p. 79.

Theorem 2.9. Every triangulation has a perfect matching.

Proof. From Lemma 2.5, Lemma 2.7 and Theorem %8l) has a perfect matchiniyl. We

define a perfect matching faras follovs. For eache [0 M for which both endpoints are interior
G-vertices, select the peaks of the corresponding triangles so that the bases ofdhaisegies

are their common sideThen both of these triangles are compatibljisilble. For eache 0 M

for which one endpoint is an interior @nex and the other endpoint is a boundary &tex

select the peak of the corresponding triangle so that the base is the corresponding boundary side
of the triangle. Then this triangle is compatiblyidible. Since(i) every triangle corresponds to

an interior G-ertex, (ii) M is a perfect matching, and (iii) wevemnsidered eery interior G-

vertex that is an endpoint of an edge M), we haveassigned a peak fowery triangle and eery

triangle is compatibly disible. O

Theorem 2.9 says thatvgn any triangulation we can find a way to assign the initial peaks
such that eery triangle is compatibly disible. Itwould be nice to deslop an algorithm which
automatically assigns the peaks such that we lea grfect matching. However, the perfect
matching problem is known to be NP-Complete [20]. It is possible that it can be solved in poly-
nomial time for the special case of yudar graphs, but we kia been unable to find grdgo-
rithm for this. In aiy case, it is probably not a good idea towelep such an algorithm, at least
not without incorporating further guidelines. The perfect matching is not unique, and a poor
choice can result in angles which are unnecessarily sméilenerer possible, it is best to use the
largest angle as the peakinding the optimal perfect matching in terms of angle conditions is
nontrivial. Usually though, the initial triangulation contains a small number of triangles and it is
easy for the user to find a good perfect matching.

2.3 Error indicator

To guide the adapte refinement, it is necessary tovieasome sort of error indicator which
determines which triangles should be refinéthny error indicators hae keen proposed [2, 3, 5,
39]. Mitchell [24] performed a numerical experiment to compare tliecefeness of seeral
indicators. Themethod we describe here performed well in thogeeements. Thisnethod is
similar to that proposed by Zienkiewicz et al. [39] for bilinear rectangular elem@uisinterpre-
tation of the indicator mas it possible to define an error indicator foy &inite element space.
We will concentrate on the spaces@t p" degree polynomialser hisected trianglesWe @n-
sider first linear elements, and thenwhwow to extend to arbitrary degree.

At this point we must makthe distinction between an error indicator and an error estimate.
By anerror indicator we mean a nonigetive real number assigned to each triangle, or small
groups of triangles, which has its largest values in the triangles whose refinement would be most
beneficial for reducing the discretization errdkn error estimate on the other hand, can be
defined either locally or globally and should be a good approximation of the discretization error
in some norm.An error indicator is used to guide adaptirefinement; an error estimate can be
used as a termination criterion for a program, or justve giie user some idea of Wwaeccurate
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the solution is.Usually, if an eror estimate is defined locally it can be used as an error indicator
but it is not clear that error estimates neatke best error indicators.

Our error indicator is not an error estimate (although we present an error estimate based on
this error indicator in 84.2). Instead of attempting taid# the triangles\er which the error is
the largest (which is what an error estimate based error indicator does), we attemiotetohei
triangles for which the division thereof makes the greatest change in the solftime this
change in the solution reduces the envar ae attempting to divide the triangles which redke
greatest reduction in the erram other words, reduce the error the fastest for the numbenf di
sions performed. If these numbers were knowacty this would provide the optimal choice of
which triangles to dide. Ofcourse, we are approximating these values so we do not claim this
to be the optimal method.

To gpproximate hav much of a change in the solution will occure wse the hierarchical
basis, which we define in 83.For what follows it suffices to kne that when a function is
expanded using the hierarchical basis, the fawehts represent displacements rather than nodal
vaues as with the usual nodal basis. Fig. 2.7 illustrates this for a simple case in one dimension.
We mnsider the interpolation of a functidn defined aer the unit interval, by piecewise linear
functions f, and f3 which hare 2 aad 3 nodes, respeedly. Let f3=a,¢ + a,p + azgs for
some basig ={ ¢, @, @3}. If @is the usual nodal basig; = f(%). But, if ¢is the hierarchical
basis,a, = f(%) - fz(%), i.e.,a, represents he much change occurs in the approximating func-
tion when we refine the grid by adding thevi@de. Then Da,¢, [Ttells us the norm of the
change in the approximation. This is the basis of our error indicdtoese principles can be
extended not only to linear basegep bisected triangles, but to wrdinite element spaceyen
rectangles, 3-D, etcWe will consider in detail the spaces 6f p" degree polynomials er
bisected triangles, starting with the linear case.

The dvision of a pair of triangles as in Fig. 2.8 by newexstex bisection corresponds to
the addition of one nebasis function.We letv; andg, i=1,2,3 and 4, be the vertices of the tri-
angles and corresponding hierarchical basis functionsygadd g5 be the ne vertex and basis
function. W wish to approximate o much change would occur if this division were to be per
formed.  do his, we approximate the coefficient@f, as, by assuming thatr;, the coeficients
of ¢, remain unchanged fo=1,2,3 and 4. Then

Fig. 2.7. A smooth function and its 2-node and 3-node linear interpolants
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Fig. 2.8 Triangle pair for error indicator

4
a5=((f,¢s)—_Zlai<<0.,<o5>)/<<05,¢5> (2.1)
1=
where <.,-> and (,-) are the usual inner products used to obtain the stiffness matrix and load
vector, respectiely, and f is the right hand side of the differential equation. This corresponds to
one step of a Gauss-Seidel iteration for the linear systemowel mave if we divided this pair of

triangles. If{1J- [(Dis the energy norm defined bjlu [If = < u,u >, [(Hasgs [LF is the amount
by which the square of the energy norm of the error is reduced by adgditp the approximate
solution, so we uselJasgs [1las the error indicator for this pair of triangles.

We mmment that one should not be concerned about the number of operations required to
compute these inner products since these are preciselaltieswe need to define theanmw
of the stifness matrix and load vector if this pair of triangles is actualliddd. Thesevalues
can be stored and later copied into the matrix and right hand side when the triaigite di
occurs. V& can also storers to be used for the first approximation of the solutiomsat

We assumed abee that we are computing an error indicator for a compatibly divisible pair
of triangles. We nmust also hee eror indicators for triangles whose base is on the boundary and
triangles that are not compatiblyiiible. Boundarytriangles are treated conceptually the same:
as is determined by a Gauss-Seidel relaxation of the (boundary condition) equation that would be
added to the linear system if this triangle wened#id. Inthe case of Dirichlet boundary condi-
tions, as is simply the difference between the boundary condition and approximate solution at the
prospectre rew \ertex. Whenone has a triangle that is not compatibly divisible, such as triangle
V1Vovs in Fig. 2.9, we introduce theewtexV, (the \ertex which must be added beforwg) with
corresponding basis functign and codicientd, = (a1 + a4)/2 and replacer, andg, by 4, and
@, in Egn. 2.1.

The extension of this error indicator @ p" degree polynomials is straight foesd. The
only difference is that nothere arep? new basis functions rather than just one, so the amount of
change depends on more than one basis function. But we stllehierarchical basis whose
coeficients represent change, and in principle the error indicator is computed the aaniow
Eqgn. 2.1 is replaced by a linear systempdfequations inp? unknavns. Thissystem can be
solved by Cholesk decomposition in an acceptable number of operations, and we can compute
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Fig. 2.9 Triangle pair for error indicator when not compatibly divisible

(DX a;¢ [MDwhere the sum isver the p? new nodes associated with the prospestiew \ertex.
It can be seen that this error indicator can be further extended fonée element space with a
hierarchical basis.

The way in which we compute our error indicator presentsra mteresting interpretation
of the role of the error indicatoe muld imagine a situation in which weJsaan infinitely
refined uniform grid with the hierarchical basRecall that, with the hierarchical basis, the coef-
ficients represent o much changein the solution occurs by including the corresponding basis
functions. Theprocess of adapie refinement is n@ one of discarding, from our infinite number
of basis functions, those whose coefficients &ny ¢lose to zero, i.e., those basis functions that
do not mak a sgnificant contribution to the solution. The computation of our error indicator is a
form of relaxation for some of the basis functions thatehet yet been added to the finite
dimensional subspace. Thus, in effect, we are using a larger approximation space, and-are ignor
ing those basis functions which do not maksgnificant contribution to the solution.

2.4 Selection of next triangle to divide

Given the error indicators forvery triangle (or pairs of compatibly dgible triangles) we
would ideally want to select the next triangle to divide by choosing the triangle with tpestar
error indicator Howeva, for our algorithm to use only ®) operations it is imperate that the
selection of the next triangle to divide requires only O(1) operatidhss means that we do not
have ime to searchwery triangle to find one with the largest error indicat8o instead we will
be satisfied to find a triangle whose error indicator is close to the largest.

Let e be the lagest error indicator at the beginning of the refinement ph@fe partition
the triangles (only including one triangle from each pair of compatibly divisible trianglegpinto
sets such that each set contains all the triangles whose error indicators fall in a certain range.
Specifically for a given O<c<1, a triangle is in the|th set if its error indicator is betweerf e
andcYefori<g<Q-1andisin theQ™ set if its error indicator is less thafite. The first set
contains all the triangles whose error indicator is larger twrnd we will select ay one of
these triangles as the next triangle to be divided.
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To represent the sets, we use a doubly linked list for each set. It is then easyyofithan
following processes in O(1) operation&fter a solution phase, the error indicator is computed
for every triangle. At this timee is determined. The lists are then set to be empty and each trian-
gle is inserted at either the head or tail (see below) of the appropriate list. During refinement, the
head of the first list is selected as the next triangleviolali If the first list is emptythene is
replaced byce and all the lists are "shifted to the left" by shifting the head and the tail pointers,

for example, head(1)}- head(2). TheQ™ list is left empty When a triangle is divided it is
removed from the list. After division, error indicators are computed for thevrtdangles and
these triangles are added to the appropriate list. It is possible thatwtheeroeindicators could
be larger thare. In this cases is replaced bye/c and the lists are "shifted to the right" with the
Q- 1%t andQ™ lists merged into one. If necessathyis is repeated, but it is highly unlikely that
more than one shift to the right would occur for reasonable choicesTfe error indicators for
neighboring triangles are also updated, and these triangles areedefroon the lists and added
back to the lists.

By allowing insertion to occur at either the head or tail, we can ivgpfee resolution of the
partition, essentially doubling the number of séfis.do this, insert at the head if the error indica-
tor is larger than the midpoint of the range and at the tail if it is smaller than the midpoint.

Note When the discretization error camges likk QN~“) and the number of nodes (or tri-
angles) is increased by thecfor f, we would expect the Igest error indicator to be reduced by
approximately the dctor 97”2, To see this, we use the result from §4.2 which says that
e?=y S 2 wheree is the discretization errpg; are the error indicatorsyis some constant
which depends only on the glee of the approximating polynomials, and the summatiores o
all error indicators.From this and the order of ceargence of the discretization error wevka
£2,1 + 2., = (1/12¥° ¢ wheres, is the largest error indicatdF is the number of triangles, and
£7+1 and e7,, are the "children" ofs;. We dso expect e,y = e742, hencee?,; = (11272,
With f=2, e74,; has approximately the Igest value after refinement, and we see the claimed
reduction. Br f=4, there wuld be another refinement associated withy which, by the same
argument, gies 31,4 = (1/2/*e2,, = (114772, A similar argument holds whef is ary
power of 2. Interpolating between powers of Zeagi he desired result for gnf. Numerical
computations support this omngence of the maximum error indicator.

The selection ot depends on he close to the largest error indicator you want to bée
following should sufce. If the discretization error cearges like QN™) and the refinement
phase increases the number of nodes taceof f, then, as noted, weauld expect the lgest
error indicator to be reduced by a factorfof 2. By usingc = f ™7, the first list should, wer
the course of the refinement phase, contain approximately the triangles that wiiidiee .dilf it
is not completely emptied, we will at leastvbBaefined the most important triangles since we
insert at both the head and talf.it is emptied before refinement is complete, we will start the
second list but probably will not get very far into With this \alue ofc, Q=4 should be enough
lists. Thesecond list may be used, but it is highly unlikely we would get to the thirdTirss.
reason for having four lists rather than three is so that the second list remains undisturbed if we
should need to shift to the right.

2.5 Adaptive refinement algorithm

Combining the material presented in this chapter into an adagtiinement algorithm
results in the rather simple looking Alg. 2.2vhat we mean by "enough refinement" will be



26

discussed in Chapter 4. Determining which triangle to divide was considered in §2.4 and the pro-
cess of dividing a triangle is\gin by Alg. 2.1 in §2.2. However, we were perhaps a bit under
detailed in Alg. 2.1 when we said "divide the triangle pair". Much happens when a triangle pair is
divided. We present the process ofvilling a triangle pair in Alg. 2.3 and date the rest of this
section to a discussion of each of the stepaved.

The details of changing the grid specification depend on the particular data structures used
to represent the grid, so we will not go into this in def@hsically one has to indicate that there

is another ertex, p> more nodes and that owriangles hae been replaced by four metriangles.

The size of the linear system is increased by the additig? oéw equations. Theoeffi-
cients and right side for these equations are actually alreailgbde from the error indicator
computation. Seéhe addition of the ve equations is just a matter of cgpg the values into the
data structures used to represent the linear systam. may also need to do a basis change if the
hierarchical basis representation was used. The process of changing bases is detailed in 83.1.

During the refinement, the discrete problem is represented with the nodal basis. Thus when
a pair of triangles is divided, some of the neighboring basis functions change, and thus the equa-
tions associated with those basis functions also change. The coefficients and right side that we
have kefore dviding the pair of triangles are actually those that come from the hierarchical basis
after dividing the pair of triangles. Thus, tedp these equations in the nodal basis we need only
perform a basis change as described in §3.1. Therevigvap one complication that pvents it
from being this simple. If we just did this from the beginning of the program until the end, the
equations associated with the initial basis functions would st lppadrature errors with the
order of accurac of the initial grid, which would totally destyothe accurag of the solution.
Thus we must replace the integration for these inner products, whglpevformed\er the two
triangles divided, by a quadratureeo the four nev triangles. V@ can then perform the basis
change to get the corrected old equations with a quadrature error of the correct order.

Algorithm 2.2. Adaptive refinement

repeat
determine which triangle to divide
divide the triangle

until enough refinement has occured

Algorithm 2.3. Divide triangle pair

change grid specification

add ne&v equation(s) to the linear system

change other affected equations

block relaxation for n& nodes

Gauss-Seidel point relaxation for neighboring old nodes
compute error indicators for netriangles and neighboring triangles
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With the na&v linear system defined, we need a first approximation to the solution atthe ne

nodes. Therare p? new nodes, forp!" degree polynomials, with an associatgtix p> symmet-

ric positive definite submatrix (or block) on the diagonal of the matrix representing the linear sys-
tem. To obtain our first solution for these waunknowns we perform a block relaxation, i.e., one
step of a block Gauss-Seidel iteratiofsctually, this need not be computed here. Theakias

were computed in determining the error indicatod could be stored then and just copied at

this time. This is the same as one step of the relaxation at the red nodes in the multigrid iteration
of §3.2.

Since it is possible for geral generations of triangle \dsions to occur in the same area
before the refinement phase is complete, it may also be necessary teeirhprgolution at the
old nodes that neighbor thew@odes to obtain a sufficiently accurate error indicafdrus we
extend the partial Gauss-Seidel iteration to include point relaxations at the old nodes whose asso-

ciated basis functions are not orthogonal to the bbesis functions. There are ¢ 1) of these,
so this process uses only O(1) operatiomkis is the same as the local black relaxation in the
multigrid iteration of §3.2.

Finally, we must compute the first error indicators for thevrigangles. Morewer, we nmust
recompute the error indicators for the neighboring triangles whose error indicataveihe old
nodes whose solution values were changed during the point relaxation. There are O(1) of these.
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CHAPTER 3
MULTIGRID SOLUTION

The multigrid method has recently established itself as perhaps the fimishemethod
for solving the linear systems that arise from the discretization of differential equations. The pop-
ularity of this method can be attributed to thetfthat it is optimal in the sense that one multigrid
iteration can reduce the norm of the error of the approximate solution of the linear system by a
factor that is boundedvwaay from 1 independent dfl, the size of the linear system, while using
only O(N) operations. Thenultigrid method was popularized by Brandt in the lates TI8, 14]
and has since been studied by ynegsearchers. Ithis chapter we present and analyze a multi-
grid iteration suitable for the linear systems that arise from using the finite element method with
low or high order bases on the triangulations generated by the e@lagfinement algorithm of
Chapter 2.In the special case of linear elements, uniform grids and certain domains, our multi-
grid iteration is equiaent to that studied by Braess [10, 11, 12] and the MGR methods [22, 28].
In this special case it can also be presented in terms of standard relaxation and transfer operators.
However, we will develop the method in terms of hierarchical bases. From this approach it will
be easy for us toxéend the method to nonuniform grids, more general domains and high order
bases.

Bank, Dupont and Yserentant [6]Mearecently presented a hierarchical basis multigrid
method that is similar to ourspubwith two major differences. Inorder to guarantee that the
multigrid iteration uses only @{) operations for nonuniform grids it it necessary to restrict the
amount of relaxation that is performed on each grid. Bank et al. restrict this so far treattdine f
by which the error is reduced is no longer independeit,@hd O(logN) iterations are required,
hence their method is suboptimaMe wse a weadr restriction on hw much relaxation occurs so
that we obtain both @{) operations and an apparentlitindependent error reductiorsecondly,
Bank et al. use galar refinement, where we use bisection refinem@ith regular refinement,
the hierarchical basis functions of the sanwellare not orthogonal, which means that the princi-
ple submatrix corresponding to the basis functions of oretienot diagonal. This necessitates
the use of what tlyecall "inner iterations" during the relaxation process to edhe principle
subsystem. Essentialljhis means that relaxation consists ofesal red phases of a red-black
Gauss-Seidel iteration with no black phas@éth newest ertex bisection refinement and linear
elements, the hierarchical basis functions of the samebdee orthogonal, hence the red phase of
red-black Gauss-Seidel selv this subsystenxactly, and we hae diminated the need for inner
iterations. Br high order elements the principle submatrix is block diagonal and can also be
solved exactly.

We kegn our presentation of the multigrid iteration by defining the hierarchical basis and
examining some properties of the hierarchical matkde then present the relaxation and transfer
operators, and finally the multigrid iteration algorithim most cases we will first present the
method for linear finite elements, and thenvethow this can be x@ended to higher order finite
elements. Irthe last section of this chapter we examine they@gence properties of the multi-
grid iteration using a e approach which uses a combination of theoretical results and numerical
computations. \ith this approach we are able twaenine the corergence rate with high order
finite elements and other situations that the current theories dowvent co
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3.1 Hierarchical bases

Our multigrid iteration will mak wse of the hierarchical basis, so wegibeby defining the
hierarchical basis.The use of hierarchical bases for finite elements has been considered by
Zienkeiwicz et al. [39], Yserentant [37, 38], and more recently by Bank, Dupont and Yserentant

[6].
The usual nodal basngo,{}i'il, for a space of piecewise polynomials can be defined on a
given grid by

_ 0 anodei

@ a al other nodes

In contrast, the hierarchical basis is defined using ahsly of nested grids, §;} L;, from the
refinement process. The hierarchical basis begins with the nodal basis on the initigj.gAd,
refinement proceeds, with each division one or move noeles are added, and for each node we
add a ne basis function defined so that it has the value 1 at thhenoele and 0 at all other
nodesbut the existing basis functionemain unbanged Fig. 3.1 illustrates the nodal and hier
archical basis for the simple case of pigise linear elements in one dimension with a\&lle

grid. Thelevelof a basis function is the same as the generation of the elements created when the
basis function is added, so higher level basis functiongse mean those that are associated with
smaller elements.

We an also define hierarchical bases which do not usevalslef the grid. Such a basis is
defined by starting with the nodal basis for the gridlor some 1< i < L and defining the higher
level basis functions as akwe. If there arek = L —i + 1 levds of the grid used in this definition,
we call this thek-level hiemrchical basis(or justk-level basi3. In this context the hierarchical
basis is the_-level basis and the nodal basis is the deldasis. V¢ will be concerned mainly
with the nodal, hierarchical and 2+ bases, and will use the superscripts (N), (H) and (2) to

indicate which basis is in us@.hus,(p,('\‘), qo,(H) and(p,(z) represent basiginctions from the nodal,
hierarchical and 2-l&l bases, respewitily.

Any function, f, which lies in our space of piecewise polynomial functionsTprhas an
expansion in terms of gnof the bases.We wse forms ofa to denote the coefficients in this
expansion. Thusve hae

I T T T 1 I T T T 1

Fig. 3.1. Nodal and hierarchical bases for piecewise linear functions in one dimension
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fo Z MOpON Z o gf) = Z a@gf

Corversion between bases is a linear proceéske wse S to denote the matrix that cesrts the
coeficient vector of the hierarchical basis to the nodal basis, th{l =Sa™ and

a®™ =3519MN 5 denotes the caersion from the 2-leel basis to the nodal basis on htevel

grid. If we order the rows and columns §f so that rows corresponding to nodes of the same
level are grouped together and the lowerderows come first, and partitiols into two parts cor
responding to kels 1 through-1 and leel |, then§ has the form

O oO
=0 O
= g
and
0 0D
Sl = s |
o D

wheres; = qoﬁz)(xi, y,) and x; andy; are the coordinates of th# node. V¢ e that the corer-

sion between bases, i.e., multiplying a vectoShgr S‘l, is an asy processlf N,_; is the num-
ber of nodes in the fir$t- 1 levds, we hae

EFY.(Z) if nodei does not have levél
(N) _
ap’ =0
(2) (2)
D + Z i (X0, ¥i) a if nodei has level

Most of the(p(jz) are zero at node so he sum is very short. In fact, with newesttex bisection
refinement andp™ degree piecewise polynomials, there are at mgst {)? nonzeroes in the

sum. Morewer, the value of(pgz)(xi, y;) depends only ormp and the relatie dacements of nodds

and j in the same triangle, and is independent of the triangle shapes and sizes, problem being

solved, etc. Thus one can construct a smallg#1)? x p? ) table of these values to be used
wheneer a basis change is desired.

We will also need to multiply a vector B§ andS . This is similar except nov we ds-
tribute the alue ofai(z) over neighboring nodes when nodéas led | rather than collectingal-
ues from the neighboring node®/e simmarize the process of multiplying 8y andS' in Alg.
3.1 and Alg. 3.2.Heres; representso(jz)(xi, yi). Multiplication by S|'1 and S‘T are the sameub
with +s; changed tos;.

As with S, the rows and columns of the stiffness matéx,ae ordered so that rows corre-
sponding to nodes of the samedeare grouped togetheand smaller lgels come first. The sfif

ness matrix will be called theodal matrixor hierarchical matrixwhen we need to indicate which
basis is in useBasis changes for the matrix are possible u§ingYserentant [38] showed that

we can get the hierarchical matrix from the nodal matrixahy = STAN'S. Alg. 3.3 shows he
to change the basis of the matrix from nodal tovatle
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Algorithm 3.1. Multiply aby §

for each nodé with level |
for each neighboy of i with level < |
aj < aj t 550
next j
nexti

Algorithm 3.2. Multiply a by '

for each nodé with level |
for each neighboy of i with level < |
aj < ajts§a;
next j
nexti

Algorithm 3.3. ReplaceA by ST AS

for each node with level |
for each neighboy of i with level <
rOW j « row j +sj *rowi
columnj «— columnj +s; * columni
next j
nexti

3.2 Relaxation operator

We ae nav ready to deelop the components of the multigrid iteratioWe begn with the
relaxation, or smoothing, operatofhis is first presented for linear elements and uniform grids,
then extended to nonuniform grids and finally to higher order elements.

The basis of our relaxation operator is the red-black Gauss-Seidel iter@tignis among
the simplest and most commonly used relaxation operaWes.dways do the red phase first,
where the red nodes are those that are in the current grid, but not in the next coarser grid. As is
common in multigrid methods, we perfonm iterations of the relaxation operator before coarse
grid correction and, iterations after We dlow v, andv, to be multiples o2 where by half an
iteration we mean only the red phase. Bank, Dupont and Yserentant [6] sse =%, i.e.,
they perform relaxations at the red nodes orhis \-cycle is equident to a symmetric Gauss-
Seidel iteration using the hierarchical matrikhe condition number of the hierarchical matrix is
O(L?) whereL is the number of refinementvigs [37, 38]. Sincel = logN and the number of
Gauss-Seidel iterations depends on the condition number we see that their method requires at
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least O(lodN) iterations to reduce the error by aeyi factor To overcome this difficulty we use

vy =¥ andv, =1 which adds in relaxation at the black nodes after the coarse grid correction.
This is a special case of the valuespandv, considered by Braess [12He uses/; = v, — ¥,

but performs the black phase firstuf is an intger Braess shows that by using =% and

v, =1, the Vcycle reduces the error by at leastatbr of .5 independent ®f for certain comex
polygonal domains.n 83.4 we provide strong evidence that for a square domain and uniform
grid, the error is reduced by a factor of at least .125.

While the use of red-black Gauss-Seidel with= %2 andv, = 1 is an & ective relaxation
operator for uniform grids, it presents a problem with nonuniform grids, because the number of
nodes might not g exponentially with the number ofvels. Supposé¢hat the number of me
nodes in each Ve, n;, grows polynomiallyi.e.,n; = O(IP™%) for some pwerp=1. Thenthe total
number of nodes in eachvi#, N;, satisfiesN, = O(IP). Thenumber of operations used for relax-

L L
ation withv; =% andv, =1 is 3 O(IP™Y) + 3 O(IP) = O(LP*Y) = O(N*P). Thiscan be as
1=1 1=1

bad asO(N?), which is unacceptableTo overcome this problem we must restrict the amount of
relaxation performed so that the number of operations used for the relaxation on one grid is pro-
portional to the number of red nodes in that grid, not the total number of nbdeshieve this,

Bank et al. perform the relaxation only at the red nodsiever, as roted earlierthis restriction

is too strong and destroys thi-independence of the comigence. V& propose the weak
restriction of performing the black phase only at black nodes that are immediate neighbors of red
nodes. W& all thislocal blak relaxation Since each red node has at most four black neighbors,

the number of operations in the relaxation is proportional to the number of red Mbolesver,

the black nodes at which we correct the solution value »aetlg those that are most strongly
affected by the change at the red nodes. The basis functions at the other black nodes are orthogo-
nal to the basis functions at the red nodes, and hence the change there is only a second order
effect through the black nodes that neighbor the red nolégitively, this may be sufficient to
maintain theN-independent carergence rate. We examine this numerically in §5.3.

In order to perform the local black relaxation we mustvkmehich black nodes are neigh-
bors of red nodesTo sarch all the black nodes to determine this would require more thdj O(
operations. @ avoid this search, we could perform the relaxation at the black neighbors of a red
node immediately after the relaxation at each red nodlethiis would result in relaxations at
mary of the black nodes more than ondestead, we construct a linked list of the black neigh-
bors during the red relaxation. Also, teoal duplication of the black relaxations we need a logi-
cal vector to indicate which black nodes are already on the list. Thiklviee set to .true. during
the red relaxation and set talde. duringhe black relaxation so as tecdd initializing the entire
vector every time. The construction of the "black list" is included in the algorithm for red relax-
ation.

The relaxation operator is easily extended to higher order finite elements with only one
minor change.To be pecific, we will consider the spaces@t p" degree polynomials er tri-
angles. Thalifference for the higher order spaces is that the basis functions of the sdmarele
not mutually orthogonal, as with the linear basis, so a simple red phase of red-black Gauss-Seidel
does not sok the subsystemxactly. Howevae, for the spaces we consider the submatrix is block
diagonal with blocks of size?, so we @n still sohe the subsystem exactly if we are willing to
solve mary small systems.For high order finite elements the bisection of a pair of triangles adds
one n&v vertex, p°> new nodes andp? new basis functions. These wenodes are the red nodes in

the relaxation.The p? basis functions associated with thevneertex are not orthogonal to each
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other but are orthogonal to all other basis functions of the sawet lgence the block diagonal
structure of the submatrix. Since the size of the symmetric y®gifinite diagonal blocks
depends only op, these small subsystems can be solved using Clyallesiomposition in a con-
stant (wr.t N) number of operations and we maintain theNQpperation count for relaxation.
The use of an iterate lver for these small systems would provide little, if,aeduction in the
operation count, and could damage thevemgence properties if not used carefullgll other
aspects of the relaxation operator remain the same for these spaces of high order finite elements.
We sould emphasize, gever, that for the local black relaxation, relaxation occurs at all black
nodes for which the associated basis function is not orthogonay tof #me red basis functions.
There are p + 1)? of these associated with each grouppdfred basis functions, as illustrated in
Fig. 3.2, where we shwothe red and black nodes associated withvavestex in the case of cubic
elements. Alg3.4 and Alg. 3.5 g the red and black relaxation algorithms, respelsti

3.3 Transfer operators

Fig. 3.2. Red nodesq and black nodes®] associated with a mevertex (cubic elements)

Algorithm 3.4. Red relaxation

black list — empty
for each verte of levd |
set up and sobss/stem forp? associated red nodes
if black relaxation will follav then
for each associated black node
if black node is not on the black list then
add to black list
endif
next black node
endif
next vertex
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Algorithm 3.5. Black relaxation

for each black node on the black list of Algorithm 3.4
point Gauss-Seidel relaxation at this node
next node

The other main parts of a multigrid algorithm are the mansfer operators which are used
to move ketween fine grids and coarse grids. The restriction opergtdransfers the problem

from the fine grid to the coarse grid and the prolongation opetgumransfers the problem from
the coarse grid to the fine grid. The transfer operators we use turn out to be those of the Galerkin
approach [36]. In this approach the restriction and pratog operators are adjoint and the
coarse grid operatpA, is related to the fine grid operato¥k by A; = If A If:. We will use the
change between the nodal and ldierarchical bases to describe the transfer processem
this it is not clear what the transfer operators areyven tnat our methods a nultigrid method,

so we also present a second ¢aion in terms of the usual multigrid approach towshbat our
method fits into the ceentional multigrid framevork. Sincewe depend only upon the basis
change to define the transfers, this method appliesyt@irdte element space with a hierarchical
basis. Theresulting operators areew natural and of the correct order of accyrémr the
approximation space being usedle immediately present this for arbitrary spaces without first
considering linear elements.

Let the nodal matrix for the linear system be

_Oay ALO

A=
Pz A

and the nodal solutioneetor and right side be =[x; X,]" andb = [b; b,]" where the partition

is such that the second part contains values corresponding to basis functions of the kighest le
Let A, etc., be the corresponding entities using thev@leasis, and le§ be the matrix that con-
verts from the 2-lgel basis to the nodal basis. As in 83dlis the lower left submatrix o8.

From A= STAS and the equilence of Ax=b and STASS'x = STb, we have & = S*x and

b= S"h. Since the lower leel of the 2-level basis is the nodal basis of the coarse ghid,is the
nodal matrix for the coarse grid. It turns out that to obtain the problem we wikk solvhe
coarse grid we use thewer level part of the 2-lgel basis fine grid problem, i.e., we extract the
equations corresponding to the coarse grid nodes. This is

O
x AT
%“11 Alzglﬂz %518
20
So the problem we satvon he coarse grid is
Yoo o Rl
A11%1 = by = Agp%o

We summarize this process in Alg. 3.6. Recall that the algorithms for the basis changes were
givenin 8§3.1.



35

Algorithm 3.6. Restriction

A — STAS
X « Sx
b Sb
by — by = AlX,
coarse grid problem i841x; = by

From this dewation, it is not clear that the problem we s®lon te coarse grid is equi
alent to the standard multigrid coarse grid probléyor is it clear what the transfer operators are.
To darify these points, we provide a second d&ion. Inthe usual multigrid methods, the fine
grid residualis restricted to the coarse grid to be used as the right hand side of the linear system.
The solution of this system then approximatesettier at the coarse grid nodes and is used as a
correction. V¢ havea marse grid problem which approximates swution at the coarse grid
nodes, making our methodfall approximation skeme[36], but we will shav the equralence.
In the Galerkin approach, the coarse grid matrix i@giby I As If:, so he usual coarse grid
problem is

(IF A 1E)(R1™" = %2 = 1 (b = Ax°) (3.1)

We will begin with this and devie aur coarse grid problemFirst note the following rela-
tionships between the nodal and 2dematrices and vectors:

Aip = A+ A+ ADs+sTAys
Ay = App+ Ags

X1 =X

X5 = X9 —SX

by = by +s'b,

b, = b,

We e that
Ao = SBATE
so we hge the transfer operatorsvgn by

1€ =a STB and 1/ ZSE

Then
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- A X0|d _ AT O|d|:|
IC b — AXOId - ST 1 1171 l |:|
£ ( ) S ) = A2 — AZZXOIdD

= bl - A11X1 AlZXgId +S b2 - S Al Old - S A2 OId

Since we are solving for the solution, rather than the correction, we Aqqx 9d to the right
hand side of Eqgn. 3.1 to obtain the coarse grid problem

All)??ew = bl - Allxl - A12X2|d +S b2 - S Al Old - S AZ Old
+ A]_]_XOId + STA12X AT '*Old + S A S"Old
= by +5'by — (Al + 5T A (X8 - 8

=b, - A12XOId
which is the same as the problem we sain he coarse grid.

The prolongation process is simply to add back in the part of the solution due to the high
level basis functions and return the system back to the nodal bHséschanges made iy by
solving the coarse grid problem are carried inp as corrections during the basis change
X « SX. We rote, havever, that in our case this step is unneccess@nly x, is affected by this
change, and the restep will be a red relaxation which redefineswithout usingx,. We
include this step in the algorithm because these algorithms can also be used with approximation
spaces in which the red relaxation doesxseWe summarize the prolongation processes in Alg.
3.7.

As with the restriction process, we ghthat this gves the same result as a standard multi-
grid approach. There, the error computed on the coarse grid is patdointp the fine grid and
added as a correction, i.e.,

xnew — XoId + IL(iTeW_ )'Z(l)ld)

We have

Id
xNew — %ZMB*— Ij 3 ghew _ Xold)

Algorithm 3.7. Prolongation

by « by + AlX,
b-STb

X « SX

A - STAS?
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old ghew _ gold ghew new|

O e+ - B_ 0 57 B_ Sl:kl B
- old ~old ~new ~oldL™ old ~new™ cold
%2 + SXl + SXl - SXl D SZZ + SXl |:| %(2 D

Sox = SX provides the desired prolongation of the correction.

Notice that in our restriction and prolongation algorithms we actually perform the basis
changes for the matrix. This could be of some concern fordasons: (i) it requires eeral
operations, indct, it is the dominant part of the operation count for high order elements, and (ii)
it could introduce xcessve roundof errors, although we nver experience this in the numerical
computations of Chapter &Jnfortunatelyit is necessary to perform these basis changes. First, if
we hae a highly nonuniform grid, then we cannot store all the representations of theessif
matrix in O(N) space. Ofcourse, we are only using B of those walues, and it may be possible
to find a (probably complicated) scheme to store only the useliués. Secondven if we can
store all the necessary values inN)(space, we hae a poblem with quadrature errors. If we
were to leep the originally computed inner products of the llevd basis functions, thesealues
would contain quadrature errors on the order of tbe/\coarsest grid, which would destrihe
accuray of the solution on the finest gride would hare © correct these quadrature errors at
the time we refine an element, just as we do with our nodal basis matrix. But to do this with
evey representation would require the correction of at least Q{)Jogalues with the addition of
each nes basis function. So wenustperform these basis changes in the restriction and praiong
tion algorithms. One @&y to reduce the accumulation of rourfdmfors (at the expense of essen-
tially doubling the amount of storage) would be to keep tapies of the stiffness matrix: a
working copy in which the basis changes are performed, and a backypatoph is copied into
the working cog before each V-cycle.

For some approximation spaces our transfer operators reduce to commonly used transfer
operators when we i@ a uniform grid on a square domain. Thus we could consider our opera-
tors to be a generalization of those operators to other spaces, other domains, and nonuniform
grids. Sincethe prolongtion operator is the adjoint of the restriction operaterwill consider
only the restriction operatorThe commonly used operators we consider are all described in
Stlben and Tottenbeg [36]. We havetwo cases where, with the proper approximation space, our
restriction operator is the same as a commonly used restriction opdfai@r space of pievdse
linear functions wer triangles which were refined lsggular division is used, the restriction oper
ator is the same as tffepoint operator of [36]; if the space of piegise bilinear functionsar
rectangles is used, the restriction operator is the same &glltheighting operator Howeve,
another important restriction operattire half weightingoperatoris not produced by anapprox-
imation space And, the restriction operators from piecewise polynomial functioes toangles
which were refined bbisectionare not the same asyaof the restriction operators in [36].

We row haveall the necessary components for a multigrid iteration. Alg. 3.8 performs one
V-cycle usingvq = % andv, = 1. L is the number of l&ls in the grid. The exact sokw on kevd 1
can be performed by Cholgslecompaosition or a sufficient number of Gauss-Seidel iterations.

It is not sufficient to just kne that a method requires only B operations; if the constant
of proportionality is extremely large, say on the order of 10000, the method is practically useless.
We provide in Table 3.1 the asymptotic constants of proportionality for our multigrid iteration.
We provide the constants for each of the parts of the method, and for the comyoletie Ve
male the following comments:
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Algorithm 3.8. V-cycle

for level = L downto 2
red relaxation
restriction

next level

exact sole on kevd 1

forlevel=2to L
prolongation
red relaxation
black relaxation

next level

Table 3.1. Number of multiplications per node for the multigrid iteration
Poisson linear quadratic cubic
mults adds elements elements elements
red relaxation 1 4 5 18 375/9
local black relaxation | 1-4 4-16 9-36 14 - 37 14 192/3 - 43 1/9
right side basis change 1 2 2 4 62/9
solution basis change 1 2 2 4 62/9
matrix basis change 0 0 © 56 167 5/9
V-cycle total 6-9 18-30 49 - 76 174 - 197 1/4| 448 5/9 - 472

(i)

(ii)

(iii)

(iv)

(V)

In addition to the general problem using linearadratic and cubic elements, we consider
Poissors equation on a square domain with linear elemehite. aan tale alvantage of the
fact that eery relaxation is an\araging of four neighbors to reduce the operation count
considerably.

Red relaxation, right hand side basis change, and matrix basis change are each performed
twice in one Vcycle; solution basis change and local black relaxation are performed once in
one V-cycle.

For the general cases, thevgi value is the number of multiplications for each node; the
number of additions is approximately the sarker the special Poisson case, the number of
additions and multiplications diffeso we povide both.

The number of operations for local black relaxation depends enrhany red neighbors

each black node hasVe povide lover and upper bounds. The best case is when all black
nodes are completely surrounded by red nodes, i.e., a uniform grid. The worst case is when
each black node that has a red neighbor has only one neighboringrted ive., when the

red vertices are all widely separated. Since adaptifinement usually occurs in areas, not
widely separated points, we would expect to be closer to the lower bound in practice.

Althoughthere are p + 1)? black nodes ang? red nodes associated with each redex,

so that there is at mogf x (p + 1) nonzeroes ir§ for each red ertex, mary of the black
basis functions are zero at nyaof the red nodes. In fact, there are 2, 16 and 58 nonzeroes
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in S for each red srtex for linear quadratic and cubic elements, respestyi. We take
advantage of this in our operation count.

(vi) For red relaxation, we include the operations for factoring the principle submatrix by
Cholesly decomposition. Onenay think that this need only be done onad, liecause of
guadrature errors it must be done duringrg solution phaselt need only be done on the
"downward" pass of the first ¢ycle, but we hee included it for gery red relaxation.
When omitted, the operation count for red relaxation is reduced by 4 and 12 1/9 for
guadratic and cubic elements, respestyi

(vii) The special Poisson case with a uniform grid is very fast ind®églwill show in Chapter 4
that the entire solution process can be done in a number of operatiovaestuo 65/63
V-cycles. W\ rote that we can sodvthe system with B nonzeroes in the matrix with only
about 6.1% multiplications. Asa further indication of hw fast this is, we compare our
operation count with that of FFT (see, e.g. [8f)one operation is a multiplication and an
addition, FFT can sob/the linear system withRlog N operations. live assume that mul-
tiplication and addition are eq@ent, then oneyle of our method uses Woperations.
The entire solution process uses about 18.8perations. Thigneans that our method is
faster than FFT when there are more than 74 nodes. It may also be worth noting that all of
these multiplications are divisions by 2 or 4.

3.4 Corvergence of the multigrid iteration

In order to determine momary V-cycles are required toglep thesolution eror (the difer-
ence between our current solution and the exact solution of the discrete problem) of the same
order as theliscretization eror (the difference between the exact solution of the discrete problem
and the true solution of the continuous problem), it is necessary votkedactor by which one
iteration reduces the erron particular we ae interested in the worst case reduction of the error
in the energy norm. By using the energy norm we will be able to relate theedtming paver
of the multigrid iteration to the coargence of the discretization error through the orthogonality
of the discretization error to the approximation spadée will use this in Chapter 4Many
researchers use the spectral radiigf the iteration operator as the measure of thevegance
of the multigrid iteration.This is not of interest to us because we do only cegclé and so the
limiting behavior is not gry relevant. Theerror reduction depends on nyafactors (elliptic oper
ator, domain, grid, etc.); so as is typical of ergence analysis, we will determine the rate of
corvergence for the model problem of Poissogjuation on the unit square with a uniform grid.
Proposition 3.1 shows towe can numerically compute the rate of gergence of the multigrid
iteration. Thisholds for ay self-adjoint elliptic operatgrdomain, grid and approximation space.
In this section we perform the numerical computation for the model problem using, linear
guadratic and cubic element8Ve will consider some other cases in ChapterPor linear ele-
ments and the model problem, it is known that the rate ofengence for the 2-grid iteration is
1/8 for square domains, and Braess [12] showed that for certain polygonal domains the rate of
corvergence for the Mycle is bounded by 1/2We determine that for linear elements and the
model problem, the rate of casigence of the Wycle appears to be 1/8, the same as the 2-grid
iteration. Thecorvergence rate for higher order elements is slower.

Let V be the iteration operator for arevel V-cycle, i.e.,e ew = V€ Whereeyq and e en
are the solution errors before and after theyde, respectiely. Let [TJ- [T1be the engy norm

defined by(TIx [T = x" Ax where A is the stiffness matrix. Also I¢f- [(LJdenote the subordi-
nate matrix norm.We cefine g; to be [IWV[I] and g, the rate of conemgence of the multigrid
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. _ su _ .
iteration, to be g = > 20" ois a bound on the amount by which the energy norm of the error

will be reduced by one V-cycle.

Proposition 3.1. Let xq not be orthogonal to the dominant eigenspaceV/bAVA™, and
Xisg = VT AVA X fori = 0. Then
T
X X
lim 222 = v 0f

i -0 XiTXi

Proof. We recognize the limit in the conclusion as thewpo method for computing
p(VTAVAY), so we need only sho that the power method ceerges and that
DV I = p(VTAVA™Y). SinceVTAVAT is similar to A72VT AVA™” = (APVA™)T(AVAT?)
which is symmetric and posi# midefinite, VT AVA® has a complete set of eigentors and,
since all the eigeralues are real and noryetive, even if the dominant eigemlue is a multiple
eigervalue, no other eigemlues hae the same modulus. It is known (see, e.g.wate[34]) that

under these conditions, the power method willveoge © the spectral radiusThat (OV [If =

p(VT AVA™?) follows immediately from the definition &IV [and the fact thaA has a sym-
metric positve definite square root as follows:

sup x'VTAVx _ sup x" A7VTAVA™x
X220 XTAx  x%0 XT X

Using a similarity transform, we geblV [I? = p(VT AVAY). o

vV If = = p(A”7VTAVA™)

As a consequence of this proposition weehthat oy can be computed by using thewsy
method, provided that we can multiply a vectonByAVA™. It is dear hav one would multiply
by A1, V, and A, but since we do not ka the matrixV available it is not obious hav to multi-
ply a vector byvT. Howeva, it is possible to compute this product in Y operations, een for
high order elements, nonuniform grids, eWe autline the process here.

A V-cycle consists of a sequence o¥esal linear operations, thus we kmd/ as the prod-
uct of seeral matrices. If we leR;, B;, §, and §* denote the matrices that represent the opera-

tions of red relaxation, black relaxation, gersion from the 2-leel hierarchical basis to the
nodal basis and cwarsion from the nodal basis to the 2dEhierarchical basis on thielevel
grid, respectiely, and E; denote the matrix representing exact solution on the coarsest grid, then
V =B_R.S B3R -1Si1 " BoRSE1 S RS Rs - - SR,
Thus
VT = RIS RISE[SIRIE] - STRTB]

and we can multiply a vector By' if we can multiply a vector by each &', B, ST, S and
E;. Multiplication by ST andS™ were explained in §3.1We mnsider the multiplication biR!
here. B[ andE] are similar. R, is given by a matrix of the form
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R O ol

=0 - O

gAML 0
so

- A

0

We e that to compute
[, U
Rr% 0
20
we must set
X1 — X1 =~ AlpAz5Xp
Xy « 0

With a procedure to multiply by, we @n use the result of Proposition 3.1 to compute the
rate of comergenceog;. The matrixV in Proposition 3.1 can be watinear operatqrso we @n
also use this procedure to compute the rate ofecgence of the 2-grid iteration, which can be
compared to the known theoretical 2-grid error reduction.

We determine the rate of ceergence here for the usual model problem: Poissanlation
on the unit square with Dirichlet boundary conditioNge use a uniform refinement of the initial
triangulation of Fig. 3.3.

For the model problem, the error reduction in the energy norm for the 2-grid iteration is
known to be bounded by 1/8 independenhpthe grid spacing, ok, the number of leels in the
grid. Moreprecisely for anL-level refinement of the initial triangulation in Fig. 3.3,

Fig. 3.3. Initial triangulation (1-le=l grid) and first refinement (2+el grid)
used for the model problem
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if L is even

if Lis odd

In Table 3.2 we present the theoretical and computed 2-grid iteration error reductions and
the computed \¢ycle error reductionWe e that the computed 2-grid values agree with the the-
oretical \alues. Br odd numbers of \&ls, the Vfcycle does not reduce the error by as much as
the 2-grid iteration, but is still bounded by 1/8 and, in fact, the sequencesesgiog to 1/8.

Proposition 3.1 applies, not only to linear elements,tb high order elements as welh
Table 3.3 we she the reduction of the energy norm of the error by oneydle for linear
guadratic and cubic elementé/e e that the rate of ceergence slows as the order of the ele-
ments is increased. It is fidult to determine, from the number ollés used, the precisealue
of o for quadratic and cubic elementslowever, we @an be quite confident thatis approxi-

mately .31 for quadratics and .38 for cubics.

Table 3.2. Reduction of energy norm of error by one cy
for the model problem using linear elements.
level 2-grid 2-grid V-cycle
of grid theoretical computed
2 12500 .12500 .12500
3 04419 .04419 .07329
4 12500 .12500 .12500
5 09857 .09857 .10297
6 12500 .12500 .12500
7 11793 11793 .11823
8 12500 .12500 .12500
9 12320 .12320 .12330
10 .12500 .12500 .12500
11 .12455 .12455 12463
Table 3.3. Reduction of energy norm of error by one V-cy
for the model problem using higher order elements.
level linear quadratic cubic
of grid elements elements elements
2 125 .289 .333
3 073 291 .349
4 125 297 .363
5 103 .301 371
6 125 .302 .375
7 118 .303 377

cle

cle
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CHAPTER 4
FULL MULTIGRID WITH ADAPTIVE REFINEMENT

The multigrid iteration provides a method for reducing the error between our approximate
solution and thexact solution of the discrete problem by a factor which is boundeg fiom 1
independent oN using O\) operations. Fronan arbitrary initial guess, aver, it would tale
O(logN) iterations to reduce this error to the order of the discretization efnafull multigrid
methodis a way of obtaining a more accurate initial guess for the final grid so thabthton
error (the difference between our approximate solution andxhetesolution of the discrete sys-
tem) is of the same order as tiscretization eror (the difference between thaaet solution of
the discrete problem and the true solution of the continuous problem) and the total number of
operations is {). The basic idea of the full multigrid method [36] is to begin with exyv
coarse grid and alternately perform refinement and solution phases. At the end of each solution
phase the solution error should be less than the discretization error.

For uniform grids, full multigrid is nev a well established method. The refinement phase
consists of one uniform refinement of the gridr/i@ie each triangle once) to obtain a grid of one

level higher This reduces the grid spacitgby a factor ofV2 or 2, cepending on the type of
refinement used, and increases the number of nodes by about a factor of 2 or 4yelyspecti
Using linear elements and a refinement which buits half as an example, we see that the dis-
cretization error is cut in half and so the solution phase must perform engtigh t cut the
solution error in half (this is not quite true, as we will see in th s®ction) which is done by a
fixed number of ycles of the multigrid iterations. Since the number of nodes growsiluvhere

| is the number of Mels, the total amount of work for this is about 4/3 the amount of work done
on the final grid. Thus we hae used O() operations and k& the solution error less than the
discretization error.

For adaptive gids, the full multigrid method is not that well establishdthe problem is
that the number of nodes need notvggeometrically with the number ofuels. If one used the
method the way it is used for uniform grids, the number of operations can be larger tiin O(
In the worst case where the number of nodes is proportional to the numbeelsf tee operation
count is ON?). The usual approach used twescome this [4, 31] folles the uniform grid
approach closelyThe grid is refined to get onevi higher, but if the number of nodes has not
been increased by a factor of 2 or 4 (depending on the type of refinement used) the refinement is
repeated rather than moving on to the solution phase. This approach is probably necessary
because the refinement phase follows the usual approach toradeirtement. Irthat approach
one determines which triangles should be refined, refines them, and enforces compatibility to
obtain a grid of one & higher While this approach does result in anN)@gorithm, it does
not flov smoothly has unnecessarywerhead in starting and ending refinements and nvay o
shoot the target increase factor of 2 or 4.

Since the basic step of our refinement is thesidin of one pair of triangles and compatibil-
ity is aways present, we can taka nore elgant approach to the full multigrid method’he
refinement phase proceeds until the number of nodes(ticas or triangles) has been increased
by exactly some gen factor f. Moreover, there is no reason foi to be the factor 2 or 4 from
uniform refinement, so we allof to be agy real number larger than 1. The solution phase con-
sists of performing/ V-cycles (multigrid iterations) where is large enough to keep the solution
error smaller than the discretization errd¥e summarize this in Alg. 4.1.



44

Algorithm 4.1. Full multigrid

initializations

repeat
refine until the number of nodes has been increased lwrafgctor f
applyv V-cycles

until some termination criterion is met

In the na&t section we consider loone determines when to switch between refinement and
solution phases, i.e., what are good valuesffmndv. In 8.2 we present an error estimate
which approximates the energy norm of the discretization.eBah an estimate could be used
as the termination criterion in Alg. 4.1.

4.1 Switching between refinement and solution

Since the full multigrid method is just a process of alternating refinement and solution
phases, the crucial missing element of the algorithm is a method for determining when to switch
from one phase to the othehs explained earligrwe refine until the number of vertices or nodes
has been increased by sonaetbr, f, and then performv multigrid iterations (VWcycles) for the
solution phase. What we need is a way of determining reasorabésyforf andv. In this sec-
tion we will determine the most efficient valuesfoindv in terms ofa, the rate of covergence
of the discretization errpend g, the rate of covergence of the multigrid iterationWe kegn by
finding out hav much reduction in error must be obtained by the solution phase, and from this
determine the most efficient value bin terms ofa, candv. We then give the number of opera-
tions used by the full multigrid method, and from thisvglow to determinev.

For uniform grids, the rate of caergence of the discretization error is usuallyeni in
terms ofh, a measure of the size of the triangles.method is said to va ader 2 if the enegy
norm of the error decreasesdilOh??) as h gets small. For adaptively refined grids,h is not
such a meaningful entitput we can usé to measure the rate of cangence of the discretiza-
tion errot For a uniform grid,N = O(h™®) so the error decreases §kOQN™) as N gets lage.
The beauty of adap# refinement is that for mamproblems we can maintain the (%) rate of
corvergence gen when the uniform grid does not pide the Oh?*) corvergence of "nice" prob-
lems. Thuswe say that is therate of cowergence of the discretization arif a is the lagest
vaue such that the discretization error isNO{), i.e., [TJu—uy [IJOcN™ for some constant
whereu is the true solution of the differential equatiar, is the &act solution of the discrete
problem with N nodes, andT}[1Jis the energy normNormally, o=%2, 1 and 3/2 for linear
guadratic and cubic elements, respatyi As in Chapter 3,0 is therate of conemgence of the
multigrid iteration defined to be a bound on the factor by which theggneorm of the solution
error is reduced in one-®ycle of the multigrid iteration, where the solution errofijs— uy and
Gy is our approximate solution.

Theorem 4.1. Let a be the rate of carergence of the discretization error adoe the factor by
which the refinement phase increases the number of nddes, asymptoticallythe solution
error will remain less than the discretization error if the solution phase reduces the solution error



45

by a factor of at least (27 - 1),

Proof. The true solution of the partial differential equatianlies in a Hilbert spacel endowed
with the energy inner product,< and the subordinate energy noffi(11 LetSy O H be the
space ofc® piecewisep degree polynomials \eer the triangulation withN nodes, andg be
the space associated with the refined triangulation ¥itmodes. V& have Sy [ Sgy since the
triangulation with fN nodes is a refinement of the triangulation withnodes. Letuy be the
exact solution of the discrete problem 8, i.e., uy is the unique function irgy such that
<u-upn,Ww>=0V¥ w OSy, and letug be the exact solution of the discrete problen$ig. Let

n be our approximate solution By. We assume thatll(y —uy (< [Mu-uy O We then
wish to find alisy OSqy such thatdTigy — ugy (O< [(u-ugy [ Thus the solution phase is
designed to keep the solution error smaller than the discretization error.

From the definition ofr
[Du - ugy [ 0 c(fN)™
[(Du-uy O  cN™@

Thus[u -uy DO f9[0u—-ugyy [
Sinceliy OSy and(y OS¢y we have the Pythagorean identities

=f7

(Mg — uy [P + [Mu - uy [OCF = My —u [P
and
M0y — Uy D:?l'+|j:|U—UfN Dj:EDGN—UD:?F
and thus, usingL Gy — uy < u —uy
EDCIN_UfN DjZ:EDGN_UN D:F"“:DU_UN DjZ_[DU_UfN D:F
< 2[0u - uy [(IF - Mu - ugy (7
022 [Mu - ugpy (F - [Mu-ugy [P

=(2f% - 1)[Mu - uy [IF

Therefore, to insure thattDlgy —ugy (< [Mu-ug O we must reduce the error
My - up [Oby a factor of (227 - 1)™2. o

Corollary 4.2. For given a, o and number of V-cycleg, f must be bounded by

f<b—5— 0
O O

Proof. Since one Ycycle reduces the solution error by a factowp¥ iterations reduce the error
by a factor ofo”. To keep the solution error smaller than the discretization es®mnust hae
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O'V < (2f2a _ l)—l/Z

Rearranging this inequality\gs the desired resulta

Let N, = ¢, f" be the number of nodes in the triangulation afteefinement phases;N;
be the (asymptotic) number of operations used by eogchk on a triangulation witiN, nodes
and the final triangulation be the result®fefinement phases. Then, the number of operations
used by the full multigrid solution is
f(fR-1) f

R R
S VeN, = 5 veycy £ = vepcg Ov c,c fR=v
r=1 r=1 f-1 f-1

N
f—1C2 R

We e that for gien v, the operation count is minimized by using theyéet possiblef.
Thus we should choose= ((c™2" + 1)/2)"%. The most efficient choice ofis then gven by the

f
v which minimizesv :

with this choice off. Clearly, this is an increasing function of

. - . f
whenv is sufficiently lage. Thusfor given a and g, one can computtﬁv?_—1 for a fev small

positive integer values of/ to determine the most efficient choice foandv. Usually,v =1 is
best. InTable 4.1 we gie these values for lineaguadratic and cubic elements using the multi-
grid rate of couergence for the model problem as determined in 83.4. In the last columwveve gi

f : . ,
the value ofv o1 This represents the amount obrk required with respect to onecycle on

the finest grid, e.g., with quadratic elements the full multigrid is slightly faster than 2 V-cycles.

One final note.One can use the number of vertices or number of triangles as the quantity to
be increased by thadtor f. If V andT are the number of vertices and triangles, respagti
and we are using™ degree piecewise polynomials, each division of a pair of triangles adds one
vertex, two triangles andp? nodes, thuy/ OT/2 ON/p?. SoV, T andN are asymptotically lin-
early related and increasingyaone of them by adctor f increases the others by (approximately)
the same factor.

4.2 An error estimate

With ary software package for the solution of partial differential equations it is desirable,
though not necessarp havea reasonable error estimat&he distinction between an error indi-
cator and an error estimate is made by Ziemiie et al. [39]. An error indicator is used to deter
mine where the grid should be refined and need not necessarily be an accurate estimate of the
error. An @ror estimate, on the other hand, should be a good approximation of the error in some

Table 4.1. Optimal choices farandf for the model problen
type of elements| « o % f Vi/(f-1)
linear S5 125 1 32.5 1.03
guadratic 10| .31 1 2.39 1.72
cubic 15| .38 1 1.58 2.72
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norm and may be used as a termination criterion for the program, or jusett@iuser an idea

of how accurate the solution is. Most of thealable error estimates, including the one presented
here, estimate the error in the energy norm. The acgwfan eror estimate is measured by the
effectivity inde, defined to be the ratio of the error estimate to the norm of the actual error
Zienkiewicz et al. present a set of requirements for a good error estimate, the most important of
which are:

(i) it should be easy to compute,
(ii) the effectivity index should be greater than 1,
(iii) the effectivity index should asymptotically approach 1 Bs— co.

There is no guarantee that our error estimate will satisfy these msbiditions, and, indct, we
do not claim that this estimate is compeétiin terms of accuracy) with the bestadable error
estimates, such as that of Bank and Weiser lHgjwever, in our numerical examples of Chapter 5
we find that the ébctivity index for linear elements is typically between .9 and 1&yv
respectable indeedt is also reasonably accurate for highder elements, whereas otherarr
estimates a& anly defined for linear elementdhe most attracte feature of our error estimate is
the speed with which it can be computed when used in conjunction with thevadefiiement
algorithm of Chapter 2Given the error indicators, it requires onN/p? to 2N/p? operations,
depending on h@ mary triangles are not compatibly divisible.

The dernvation of our error estimate containsveral crude approximations and should be
considered to be somewhat heuristic. This results in the inability te mgldaims on the accu-
racy of this estimate.We mce again point out that the error estimate is not a crucial part of the
algorithm and that our objewt is just to find a reasonable estimate of the error thatng @asy
to compute.

Let uy be our approximation ofi using N nodes and suppose we refined the gridNo
nodes to get a meapproximate solutionugy. Since the erroesy = u— Uy is orthogonal to the
approximation space,

[Tey Dfr:EDefN D:?F"'EDUfN — Uy [
Also, sincellley (= O(N™) we have[Men [IF = f 2[Mey [IF, hence
(1- 27 ey [OIf = Mugy — uy L7

or

2a

f
D:leN [D?: -—f2a_

1 EDUfN - UNDj

If we were to perform a uniform refinement of our adaptyid (divide each triangle once)
then the number of nodes is approximately doubled, so wé=x&e Thenif we can estimate o
much change occurs in the norm of the solution, we laa eror estimate. Such an estimate can
be obtained from the error indicator&ach error indicator is an estimate of the change in the
enegy norm of the solution if the pair of triangles izided. For triangles that are not compati-
bly divisible, we only count one of the triangles in the jaid so divide the error indicator by 2.
Thus, ifS, is the set of compatibly divisible pairs of triangles &adbs the set of triangles that are
not compatibly divisible ang; are the error indicators



Sincea = p/2, we then hae

as our error estimate.

EDUfN — UyN D:F:'—Zfiz'l'%ZEiz
S $

2 O
D:’eN Dj: 2

1 2
2%1%5i +§§£i
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CHAPTER 5
NUMERICAL RESULTS

The method described in this thesis has been implemented in BRADRorogram to solg
Egn. 1.1. In this chapter we use this program testigate humerically some of the questions
which are too difficult to answer mathematica#lyd to verify some of the mathematical results.

These computations were performed on a Pyramid 90x with floating point accelerator oper
ating under the Pyramid Technology OSx 3.1 Operating System which is a dual pd&Df A
Bell Laboratories’ System V Release 2.0 and thev&¥sity of California, Berkley’s 42BSD.

The Pyramid Technology Optimizing FORTRAN 77 compileaswused with single precision,
which has about 7 decimal digits.

For these computations, we use the following problems:
Problem 1. Laplaces equation on the L-shaped domain of Fig. 5.1(a) with the Dirichlet bound-

ary conditions chosen so that the true solutior?’?sin(ZHIS). Bothx andy range from -1 to 1

and the reentrant corner is located at the origin. Fig. 5.1(a) shows a sampleehdegfined

grid with the initial 6 triangles in bold. The solutiorhébits the leading term of the singularity
due to the 270° reentrant corner.

Problem 2. Laplaces equation on the hexagonal domain of Fig. 5.1(b). The domain has a slit

along the positie x axis. x ranges from -1 to 1 angfrom —v3/2 toV3/2. TheDirichlet bound-

ary conditions are chosen so that the true solutiof4sin(6/2). Thereentrant corner is located
at the origin. Fig. 5.1(b) shows a sample adaftirefined grid with the initial 6 triangles in
bold. Thesolution exhibits the leading term of the singularity due to the 360° reentrant corner.
Problem 3. This is Problem 54 in the elliptic PDE population of Rice, et al. [26, 2§ difer-
ential equation is

(1 +x%)uy)y + (L + ADuy)y - (1+ By -x-4)P)u = f

on the unit square, where= 4y?+.9. The right hand side and Dirichlet boundary conditions are
chosen so that the exact solution is

2.25¢(x — A)>(1 - D)/A% + 1/(1+ (8y — x — 4)?)
where
B = max{0, (3—- x/A)%}

C =max{0, x — A}

D_EO if C<.02
TP ifcx.

Fig. 5.1(c) shows a sample adagly refined grid with the initial 8 triangles in boldA contour
plot of the solution can be found in [26] or [27]. The solution has a ridge in the vicinity of
y=.6-.7.

5.1 Corvergence of the discretization error

With uniform refinement, the rate of a@mngence of the discretization error depends on the
smoothness of the solutiodror Problems 1 and 2, the best one can hope fa=&3 and 1/4,
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(@) (b)

(©)

Fig. 5.1. Domains and sample grids for (a) Problem 1
(b) Problem 2 (c) Problem 3

respectrely, no matter what degree polynomials are used. It is possible for adaptinement to
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recover the optimal rate of carergence. Vé lve Roblems 1 and 2 using lineajuadratic and
cubic elements with both uniform and adegii refined grids. For these solutions, we use one
V-cycle for the solution phase, and increase the number of vertices bgctbe ff=4, 2.39 and
1.58 for lineay quadratic and cubic elements, respetyi, except for Problem 2 where we use
f=2 for quadratics We wse f=4 instead of 32.5 for linear elements teegis a sifficient number

of data points for our graphs. The results are presented in Figs. 5.2, 5.3 and 5.4 for Problems 1, 2
and 3, respeately. The data points on the graphs are labeled with A, B and C for linear
guadratic and cubic elements, respetyi for the uniform grids, and 1, 2 and 3 for linear
guadratic and cubic elements, respetyi for the adaptie gids. Theobsened rate of cover-
gence is gien by the slope of a linear least squares fit of the d#éthen appropriate, we discard
some of the first data points in determining the slope. These slopevarengiables 5.1 and
5.2.

Most of the results are agpected. Br uniform grids, the rate of ceergence is about 1/3
and 1/4 for Problems 1 and 2, respadlyi, for all three polynomial dgrees. Br adaptie gids,
the rate of covergence is about 1/2, 1 and 3/2 for lineqwadratic and cubic elements, respec-
tively, for both problems.For Problem 3 the rate of cemrgence is slightly larger than 1/2, 1 and
3/2 for linear quadratic and cubic elements, respedyi, for both uniform and adapt gids.
Although the uniform grids achie the optimal order of carergence, the adape gids hae a
smaller constant of proportionalitye rote that for the uniform grid and linear elements for
Problem 3, the orientation of the grid affects the eremulting in a bumypgraph.

In numerical gperiments that comparevioand high order methods with uniform grids for
problems with well behaed solutions (e.g. [27]) it is usually observed that for veny lcuracy
it is more efficient to use linear elementsf bor moderate and high accuyabe high order ele-
ments are more fifient. We dosene the same result when using adegili refined grids for
Problems 1 and 2.

We dso see that the ceergence of the error with CPU time is of optimal order for the
adaptve gids. Asexpected from the operation counts of §3.3, the ralalacements of the
graphs of linearquadratic and cubic elements are shifted in the time vs. error graph from what
their relative gdacements were in the nodes vs. error graph.

5.2 Effectivity index

The efectivity index of an eror estimate is defined to be the ratio of the error estimate to
the norm of the errorThis is used as a measure of the acguohthe error estimatelt is desir
able to hae an dfectvity index near 1. When solving the problems in 85.1 we compute the error
estimate of 84.2 after each solution phase and measureféictvigy index. We present the
effectiity indices for the adapte gids in Tables 5.3, 5.4 and 5.&ach value corresponds to one
of the data points in the graphs of Figs. 5.2, 5.3 and \B/d.dsene that the error estimate is
very good, not only for linear elementyjtifor quadratics and cubics, too. The only deficyesc
with quadratics and cubic for Problem 2, where the error is underestimated. This is easily
explained. Theerror estimate is designed to estimatediseretizationerror, but not thesolution
error. For Problem 2 with quadratics and cubics, the solution error is almost as big as the dis-
cretization errarso he total error is underestimatedo verify this, we solved Problem 2 with
guadratic and cubic elementsa@y this time using 2 ¢ycles so that the solution error is much
smaller than the discretization errofhe efectivity indices for this are presented in Table 5.6.
Here we see the more desirable situation of slightgrastimating the errorWe dso note that
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Table 5.1. Observed order of cangence

with uniform grids

problem linear quadratic  cubic
elements| elements elements

1 355 .355 .349

2 284 .273 .264

3 697 1.131 1.555

Table 5.2. Observed order of camgence

with adaptve gids

nts

problem linear quadratic  cubic
elements| elements elemer

1 540 1.011 1.633

2 542 .967 1.496

3 616 1.159 1.680

4
10



Table 5.3. Effectivity ind& for Problem 1

linear quadratic cubic
elements elements| elements

1.178 .800 .748
1.129 919 729
1.161 .968 .783
1.122 1.000 .801
1.115 1.061 1.040
1.069 1.091

1.198

Table 5.4. Effectivity ind& for Problem

linear guadratic cubic
elements elements| elements

.836 723 .704
1.030 .748 .629
.999 .944 .672
997 .853 .685
1.000 .852 .749
.856 .822

.863 .790

.818

.856

Table 5.5. Effectivity ind& for Problem 3

linear guadratic cubic
elements elements| elements
711 732 .704
1.069 .922 .760
1.263 1.065 716
1.355 1.197 .833
1.501 1.400 1.037
1.586 .975
.896

929
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Table 5.6. Effectivity inde for
Problem 2 withv=2
quadratic cubic

elements elements

737 .710
.793 .636
1.083 .697
1.078 744
1.106 .881
1.194 .966
1.182 1.054
1.123
1.055

the error is werestimated in Problem 3This is probably due to the order of eergence being
slightly larger than optimal.

5.3 Corvergence of the multigrid iteration

In this section we consider the effect ofeyal factors on the rate of ceergence of the
multigrid iteration. We wse the techniques of §3.4 to determine the rate ofeogence for the L-
shaped domain of Problem 1 with linear elemenithis is computed using a uniform grid and
also with an adaptély refined grid. For the adaptie gid we consider three forms of relaxation:

() full black, in which we relax at all the black nodes after solving the coarse grid prob-
lem (Vl =Y, Vo = 1)
(i) local black, in which we relax at the black nodes that are neighbors of red nodes as
discussed in 8§3.2
(i) no black relaxationi; = %2, v, = ¥2)
The results of these computations are presented in Table 5.7.

We first note that the reentrant corner has a pronounced effect on the rateesgeoce.
The only difference between the uniform grid here and togclé in Table 3.2 is the shape of the
domain, yet the rate of ceergence has slowed from .125 to about .2. The use of a nonuniform
grid has almost no fdct on the asymptotic rate of a@ngence. Usingocal black relaxation
slows the rate of corergence very slightly The difference is small enough to ignore, especially
when one considers that the full black relaxation requires more tHdpdpérations for a highly
nonuniform grid. When no black relaxation is performed, the rate ofveence deteriorates
rapidly. We e from the data that the rate of eengence behaes like 1-O(1/logN), so it is not

bounded way from 1, and, indct, O(logN) iterations are required to reduce the error byvargi
constant.

5.4 Effect of f on the error

In this section we consider Wwof, the factor by which the number of nodes is increased
during the refinement phase, affects the acguohthe solution. We examine this for each part
of the error -- the solution error and the discretization error.
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Table 5.7. Rate of carergence of the multigrid iteration
with the L shaped domain and linear elements.
uniform grid adaptie gid
levels
nodes g nodes| full black| localblack nolack
3 21 081 13 .081 .081 .188
4 33 127 18 .070 .075 217
5 65 | 137 20 .081 .093 .256
6 113 .154 25 .084 .097 273
7 225 .165 27 .090 .103 .289
8 47 177 40 .086 .109 .347
9 833 .187 53 .105 129 419
10 1601 | .196 78 .118 .143 .498
11 3201 | .205 82 .120 .146 .498
12 114 141 .162 .544
13 116 135 .163 .544
14 155 .139 .168 .580
15 159 .136 .169 .580
16 312 .178 .200 .645
17 316 173 .201 .645
18 443 192 212 .679
19 459 .186 212 .679
20 606 .194 .217 .705

The selection off must be such that the solution error is of the same order as the discretiza-
tion error given the error-reducing power of the solution phase. Our approach is to chodse an
such that the solution error is no larger than the discretization ddgnater this condition, a fer
mula for an upper bound oh was cerived in 8.1. Onemay choose a different bound ormho
large the solution error can be, such as half the discretization butan ary case the crucial
guantity is the ratio of the solution error to the discretization eNdr examine haev this ratio
behaes as afinction of f for Problem 1 using quadratic elements], and an adap® gid with
at most 2000 nodes. In Fig. 5.5 we whihis ratio for \alues of f between 1.5 and 4We ae

lim [Msoln. err 1
N - o [Tidisc. err[1]
limit may be infinite, but we behe it is finite for f < 4. Inorder to hae N be a power off
times the initial number of nodes, we must use a different valikefof each value off . This is
probably the cause of the irregularities in the graph, and indicates thaveeohauite reached
the limit. However, we expect that the correct relationship is close to this eute e that the
relationship is slightly conea ypward and that the ratio is 1 at approximately 2.8. This is rea-
sonably close to the value 2.4 determined in 84.1. In fact, it is remarkable that it is this close
since we do not lva a uniform grid or the unit square, and the error reduction of the solution
phase does not include the reduction made by the local relaxations during the refinement phase.

attempting to xamine as a function off. For f sufficiently large, this

The second consideration is théeef on the discretization erroWe may expect the choice
of f to affect the discretization error becausé ifs large we are not improving the solutioery
often. Thismay affect the error indicators enough that the adaptrefined grid is no longer
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Fig. 5.5. Solution error as a functionfof

optimal. We agan solve Roblem 1 with quadratic elements aralues off between 1.5 and 4,
this time with exactly 2000 nodes. Extracytles are emplged at the end to determine the dis-
cretization errar We present these results in Table 5\8e ®e that there are small fluctuations in
the discretization errptut there is no discernible patteriVe wnclude that the solution error
must be much larger than the discretization error before the adaptivity is seriously affected.



Table 5.8. Discretization error as a functionfd

f

error

f

error

15
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

1.46e-3
1.46e-3
1.49e-3
1.49e-3
1.51e-3
1.50e-3
1.58e-3
1.50e-3
1.50e-3
1.51e-3
1.47e-3
1.66e-3
1.49e-3

2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

1.47e-3
1.48e-3
1.50e-3
1.64e-3
1.72e-3
1.72e-3
1.65e-3
1.67e-3
1.59e-3
1.51e-3
1.49e-3
1.52e-3
1.52e-3
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CHAPTER 6
POSSIBLE FUTURE DIRECTIONS

To present our high order finite element, adeptiefinement, multigrid method we V&
concentrated on the solution of self-adjoint second order elliptic partial differential equations with
Dirichlet boundary conditions on polygonal domains iro tdmensions usingz® p™ degree
pieceavise polynomials wer triangles. Clearlythe method also applies to curved domains, more
general boundary conditions, and probably approximation spaces with more continwéye
the definition of the hierarchical basis for ceeivdomains is not obvious (here we are not consid-
ering the use of isoparametric elements). When a triangle with adsigte is divided, the union
of the two new tiangles is not necessarily the old triangle. this case, the domain of the old
basis functions must be extended teecdhe nev triangles. Thepolynomial does not change,
only the domain of definitionNow the value of the old basis function can be determined at the
new nodes to define the matri® used for basis changes, and the extension of the algorithm is
clear.

The principles on which our method is based can also be used similarly fgrmoas
classes of problems and types of underlying methéshis chapter we present some prelimi-
nary thoughts on possible directions in which future research on this approach may go.

6.1 Three dimensional problems

The first possible extension we consider is to three dimensional elliptic problnyslit-
tle seems to he keen done in either of the areas of adepiefinement or multigrid solution for
three dimensional problems. All of the aspects of our method are edsihded to more dimen-
sions, preiding the possibility of high order methods for three dimensional elliptic problems
using adaptie refinement and a multigrid solution with ) operations. Ofcourse, we do not
actually knav that the multigrid iteration will reduce the error byaator which is independent of
the number of nodes, but there is no indication that it will not.

Since the relaxation, restriction and prolongation operators are defined in terms of-the hier
archical basis on)yt is obvious hav to define a multigrid iteration for these problems once we
understand what the hierarchical basis Moreover, once we knw the hierarchical basis, it is
easy to define an error indicator for the adaptefinement, which laas us aly with the ques-
tion of how to divide tetrahedra. Once we kmdow to divide tetrahedra, the definition of the
hierarchical basis is obvious.

The only dificulty in bisecting tetrahedra is in determining what is meant by "neveest v
tex" bisection. For bisection a n& vertex is added at the midpoint of one of the edges, but one
vertex does not uniquely determine the edge as it does with triangles. Instead, wévoeed
newest \ertices. er this we use the newest and secondas¢ \ertices. Themwve bisect the tetra-
hedra by passing a plane through the newedby second neest \ertex and midpoint of the
edge that is oppositeoth of these ertices. Thenewest vertices propagate in a natural manner
This is illustrated in Fig. 6.1 where we label the newest and second newest vertices with "1" and
"2", respectiely. In this figure (and Fig. 6.2) we use dashes for hidden lines and dots for the lines
added by the bisection.
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Fig. 6.1. Newest verkebisection of tetrahedra

The edge on which the wevertex is placed is common to either four or eight tetrahedra.
Thus the addition of oneevtex (or basis function(s) associated with ometex) involves simulta-
neously dviding four or eighttetrahedra, analogous toviling two triangles. Thedivision of
four tetrahedra is illustrated in Fig. 6.8Ve telieve the other processes and properties of triangles
presented in Chapter 2\eatheir analogues in three dimensions. One obvious property is that the
number of tetrahedra shapes is finitée e that the faces are bisected bwest \ertex bisec-
tion, hence there is a finite number of face shapes. This implies that there is a finite number of
tetrahedra shapes. One property that is not s@ob is the bound on the length of the recursion

Fig. 6.2. Four tetrahedra bisected simultaneously
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for maintaining compatibilityln three dimensions one must chekof the other tetrahedra that
share the edge to bevitled. Also,it may requiretwo divisions of neighboring tetrahedra before
the tetrahedra are compatiblyidible. Thiscomplicates the recursion somewhat in a nonrecur
sive language lik FORTRAN. A bound on the number of tetrahedra that must be divided for
compatibility remains an open question.

6.2 Time dependent problems

It should be obvious o our approach to solving elliptic problems can be used toesolv
parabolic problems of the form

U = Lu
and hyperbolic problems of the form

Uz = Lu
wherelL is an elliptic operator.

For either of these problems, one can usg @ number of standard methods to handle the
time direction. Such methods discretize the problem in time and require the solution of an elliptic
PDE at each time ste@One could use our multigrid method to soltre discrete systems that
arise. Haovever, we expect that due to the high accuyaaf the "initial guess" provided by the
solution at the previous time step, it will probably be mofeieht to use a simpler solution
method lilke ADI, SOR or conjugate gradient. The more interesting questionwstiaet the
adaptve refinement to follav the behavior of the solution with time. What we propose as a possi-
bility is similar to an approach suggested by Gannon [19].

The nature of our refinement isry local in the sense that the basic step is one of dividing a
pair of triangles by connecting their opposing vertices through the midpoint of their common
side. Itis just as easy to verse this process and "de-refine" four triangles into tiangles. In
fact, we essentially do this during the multigrid iteratidvioreover, Snce our error indicator for
potential dvisions is an approximation of the coefficient of the&lldierarchical basis function
at the n& node, we can use the actual dméénts of the 2-leel hierarchical basis functions of
existing nodes as an indication of which nodes are not neefleeh, the process for one time
step may be

set equations for this time step

solution phase

compute error indicators and determine coefficients for
existing 2-level basis functions

refine grid where error indicators are large and de-refine grid where
2-level basis coefficients are small

solution phase

It may be necessary to repeat this process more than once, and of course we need to maintain
compatibility during the de-refinement just as we do during refineniérs just means that we

would not remee refinements that are needed for compatibilityitially, we sould adapt a grid

to the gven initial conditions of the problem using the hierarchical coefficients of the interpola-
tion of the initial condition as the error indicatdrhis process should result in grids whiclolge

with the solution so that the fine areas of the gridenaith the "difficult" areas of the solution.
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6.3 Rectangular elements

Throughout this thesis, we V& mncentrated on triangular elements. In principle, all
aspects of our method apply to rectangular elements as well, oncesevecfined the hierarchi-
cal basis. The definition weageof hierarchical bases in 83.1 applies not only to triangular ele-
ments but also to grspace of functions\er rectangular elements such as bilinear functions or
C! Hermite bicubics. Gannon [19] considered the adapfinement of rectangular elements
using a hierarch of grids, but did not consider the hierarchical basis. Except for special situa-
tions, a locally refined rectangular grid necessarily contains incompatibilities, as in Fighe.3.
vertices at the incompatibilities are calledhctiveby Gannon. The inaste vetices donot have
basis functions associated with them, whereas theeaatitices do. Under the interpretation of
refinement as the addition of hierarchical basis functions to the approximation space, it is clear
how to perform adaptie refinement for rectanglesive smply add to the approximation space
those basis functions (or groups of basis functions associated wihter) wwhich hae the
largest hierarchical coefficients, but three points must be kept in mind ® sirakthat the result-
ing grid makes sense.

(i) You can add the basis function(s) associated wittri@wvat the centerof a rectanglavith-
out adding the basis functions associated with the vertices at the centersafebef the
rectangle. Thigreates inacte vetices.

(i) If you add the basis functions associated with #réces at the center of tvadjacentrect-
angles, then yomustalso add the basis function(s) associated with ¢nwvat the center
of the common side, since this vert®w becomes acte.

(i) If you add the basis function(s) associated with #resvat the center of aideof a rectan-
gle, then younustalso add the basis functions associated with vertices at the certteth of
neighboring rectangles, since both rectangles must be refined to create\thiseietx.

[ ]
1
|
|
|

[
e ____®__ _ _4

Fig. 6.3. Actve (®) and inactve () vertices
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The rest of the x@ension of our method to these spaces is straightforward since our method is
defined in terms of the hierarchical basis only.

6.4 Collocation

Another method for determining a finite element approximation is the mettumdl@dation
(see, e.g., [8], [21], or [35])Far second order elliptic partial ddrential equations, the space of
C! Hermite bicubics wer rectangular elements is usually used. The method of collocation
requires fever operations than the Galerkin method to generate the discretization matrix and can
be applied to elliptic problems not having a minimum principle. Other advantages anddisadv
tages of the collocation method are discussed by Dyksen, et al.Qhé].of the main disadwn-
tages of collocation is that the resulting linear system is not symmetric anggdsiinite. Asa
result, the only reliable method of solution is banded Gauss elimination which cannot compete
with the iteratve lvers used for the linear system that the Galerkin method prodAdettion-
ally, it has not been known toto do alaptive refinement for collocation with hermite bicubics
because of the tensor product nature of the nodal bHsi.possible that our approach can be
used for collocation tov@rcome these problems.

The discussion of rectangular elements in 86.3 shoule&malear hav one can do adap-
tive refinement for collocation with ‘CHermite bicubics, except for the placement of collocation
points and thewaluation of the error indicatorWith the distinction between ae#i and inactve
vertices, the placement of collocation points becomes.chéth a uniform grid, there are four
collocation points surrounding eackrtex, placed at the "Gauss points” in the four rectangles
surrounding the ertex (see, e.g. [8]).These points correspond to the four basis functions associ-
ated with eachertex. With an adaptie gid, we hae lasis functions associated with the aeti
vertices only so we surround e#&cactive verte with four collocation points, but do not place col-
location points around the inactive vertice®/e illustrate this through an example in Fig. 6.4.
How to compute the error indicator is an open question, but some approximation of the

Fig. 6.4. Placement of collocation points for a nonuniform grid
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hierarchical coefficient could be used.

It is also possible that the multigrid iteration can be modified for collocatigith the
Galerkin method, thé" equation in the coarse grid problem is basically

(Luiow @) = (f, @) = (LUnigh, @)

whereuy,, is the part olu that comes from the Yo leve hierarchical basis functionsi,gy is the
part ofu that comes from the highvd hierarchical basis functions and-J is the L, inner prod-
uct. Byanalogywe suggest that thé" equation of the coarse grid problem for collocation be

Luiow(Xi, ¥i) = f(Xi, ¥i) = Lunign(Xi, i)

where ., y;) is thei' collocation point of theoarsegrid. Thiscorresponds to the interpretation

of collocation as a finite element method in which the test functions are Dirac delta functions.
Unfortunately the coarse grid collocation points are not a subset of the fine grid collocation
points and we would va © evaluate the hierarchical basis functions wéry higher level at the
coarse grid collocation points. But each collocation point lies in only one rectangle ofweich le

so for each collocation point there is at most 16 basis functions that musiluetexi on each

higher level. Moreover, on thel™ level there are O(3 collocation points and. - | higher levels.
Consequently the number of basis functionvauations for one cycle onL levels is

L
o 4'(L -1)) = O(4") = O(N). Thusit is possible to define a collocation multigrid that is anal-
I=1

ogous to our Galerkin multigrid and requiresN)(operations for one ¥ycle. Whetheror not
this multigrid iteration has aN-independent error reduction factor is an open question.

6.5 Parallelism

With the n& architectures that ha keen deeloped for computing machingnit has
become more important to consider the parallelism present in humerical methods. The method
we hae cevdoped has a high deee of natural parallelism, at least in principle. Perhaps the
most obvious is in the relaxatiorsince the submatrix for greve is diagonal (or block diago-
nal) the red nodes can all be raddxin parallel (or the blocks can be done in parallélg dso
note that the transfer operationsddhke form vector = vector + matrix&ctor which is an opera-
tion with a high degree of parallelism. The same is true of basis changes. The error indicators
are completely independent of each otlserhey can be computed in parallekinally, one can
perform the division of seral pairs of triangles in parallel provided that one is carefulvtida
pairs that are too close togethétoweva, it is not known hev easily this algorithm maps onto
ary given architecture.

6.6 Other possibilities

We havepresented some preliminary thoughts owltloe approach we ka taken to adap-
tive refinement and multigrid solution can be extended to other situations. There grethean
worthy problems and solution methods to which the underlying principles may also @pebse
include, but are not limited to, nonlinear problems, systems of D&irth order dierential
equations, the p version of the finite element method, and the combineersign\of the finite
element method.
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