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ABSTRACT

Many elliptic partial differential equations can be solved numerically with near optimal effi-
ciency through the uses of adaptive refinement and multigrid solution techniques. It is our goal to
develop a more unified approach to the combined process of adaptive refinement and multigrid
solution which can be used with high order finite elements.The basic step of the refinement pro-
cess is the bisection of a pair of triangles, which corresponds to the addition of one or more basis
functions to the approximation space.An approximation of the resulting change in the solution is
used as an error indicator to determine which triangles to divide. Themultigrid iteration uses a
red-black Gauss-Seidel relaxation in which the black relaxations are used only locally. The grid
transfers use the change between the nodal and hierarchical bases.This multigrid iteration
requires only O(N) operations, even for highly nonuniform grids, and is defined for any finite ele-
ment space. The full multigrid method is an optimal blending of the processes of adaptive refine-
ment and multigrid iteration. So as to minimize the number of operations required, the duration
of the refinement phase is based on increasing the dimension of the approximation space by some
fixed factor which is determined to be the largest possible for the given error-reducing power of
the multigrid iteration.The result is an algorithm which (i) uses only O(N) operations with a rea-
sonable constant of proportionality, (ii) solves the discrete system to the accuracy of the dis-
cretization error, (iii) is able to achieve the optimal order of convergence of the discretization
error in the presence of singularities. Numerical experiments confirm this for linear, quadratic
and cubic elements. It is believed that the method can also be applied to more practical problems
involving systems of PDE’s, time dependence, and three spatial dimensions.
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CHAPTER 1
INTRODUCTION

The efficient numerical solution of elliptic partial differential equations has been an impor-
tant area of research in numerical analysis for several decades.Over the years, many new meth-
ods have been discovered in the areas both of discretizing the differential equation and of solving
the discrete problem. While every method has restrictions on the subclass of problems to which it
is applicable, the efficiency of the methods has increased manyfold since even the best solvers of
25 years ago.A thorough presentation of most practical methods is provided by Birkoff and
Lynch [8]. Additionally, the ELLPACK project [27] has provided us with robust software for
many of these methods and a sound environment in which to perform numerical experiments to
determine the relative merits of each method.

Today, we are at a point where many problems can be solved with near optimal efficiency.
Many of the recent improvements have occurred through the uses of adaptive refinement, multi-
grid solution techniques and parallelism.We will not consider parallelism here but concentrate
on adaptive refinement and full multigrid solution. At first glance, the two concepts seem almost
meant for each other. Each is a process that alternately performs phases of refinement and solu-
tion, with one concentrating on refinement and the other on solution.Yet, when examined more
deeply, subtle difficulties arise in combining them. Most researchers who have attempted to join
the two hav emaintained the individual structures of the two phases and then developed strategies
to overcome the problems that emerge. It is our goal to develop a more unified approach to the
combined process of adaptive refinement and multigrid solution that is so natural that it becomes
obvious how to extend these important techniques to more complicated situations, such as with
high order methods and for three dimensional problems.This unification and extendability is
achieved by interpreting the parts of the method from the viewpoint of the hierarchical basis, in
which successive coefficients represent a change in the solution rather than the value of the solu-
tion. Inparticular

(i) adaptive refinement is considered to be the selective enrichment of the approximation space
by adding new basis functions, rather than the division of triangles or rectangles.Local
relaxations which are identical to those of the multigrid iteration are performed with the
addition of each new basis function. The choice of which basis functions to add is based on
how much each potential new basis function will reduce the error and is determined by
approximating the hierarchical coefficients. Thiscomputation uses the equations that will
be added to the linear system when the space is enriched by this basis function, and is the
same as the local relaxation.

(ii) the multigrid iteration is defined strictly in terms of the hierarchical basis, and is not
restricted to the approximation spaces we consider. Grid transfers are achieved through the
change between nodal and hierarchical bases.Relaxations are performed in both the nodal
and hierarchical bases, essentially supersaturating the approximation space with an excess
of directions in which to minimize the error.

(iii) the full multigrid method is a very natural, optimal blending of adaptive refinement with
multigrid iterations.The approximation space is enriched with as many new basis functions
as is possible with respect to the error-reducing power of the multigrid iteration. This mini-
mizes the number of operations used to obtain a solution whose accuracy is comparable
with the discretization error.
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We present our method in the context of the second order self-adjoint elliptic problem

(1.1)Lu = (pux)x + (quy)y + ru = f in Ω

u = g on ∂Ω

whereΩ is a polygonal domain inR2 andp, q, r, f andg are functions ofx and y. We use the
Galerkin finite element method to discretize the problem over a triangular mesh which covers Ω
exactly. We assume that the reader is familiar with the finite element method; a good presentation
can be found in books by Strang and Fix [35] and Becker [7]. At times we will use the usual
space of continuous piecewise linear functions over the triangles, especially when relating our
work with that of other authors, but the method will be developed for the higher order spaces of
C0 pth degree piecewise polynomials over triangles, wherep is any giv en positive integer.

In all previous methods that combine adaptive refinement with multigrid solution the indi-
vidual components of the method (triangle division, error indication, error estimation, prolonga-
tion and restriction, relaxation) are not related to each other, but are nevertheless combined to
form an effective algorithm. Inour approach all the components are closely related resulting in a
more unified method in which many computations have multiple purposes. The key to recogniz-
ing the relationship is in the interpretation of the components from the viewpoint of hierarchical
bases. Whilesome of our components are novel, many are similar to, equivalent to, or in special
cases reduce to existing approaches. In these cases we provide an alternative interpretation in
terms of hierarchical bases which not only provides us with a new combination of techniques
which are closely related, but also provides a deeper understanding of how and why the method
works. With this knowledge the techniques are easily extended to other finite element spaces,
although there is no existing theory to assure that reasonable convergence rates will be obtained.
The method is, in fact, applicable to any finite element space with a hierarchical basis.We will
examine the application of the method to spaces ofC0 pth degree polynomials over triangles, and
study the convergence numerically. Very little work has been done with either adaptive refine-
ment or multigrid solution for high order methods, and no high order, adaptive refinement, multi-
grid method has been previously presented.

In Chapter 2 we present the adaptive refinement aspect of the method. As a whole, this is a
new method of adaptive refinement. Many of the individual parts are very closely related to exist-
ing approaches, but the slight variations on these approaches, the new way in which they are com-
bined, the new global structure of the refinement process and the interpretation of hierarchical
bases result in a simpler, more unified and more efficient method which can easily be extended to
other finite element spaces.We consider four aspects of the adaptive refinement process:

(i) triangle division,
(ii) maintaining compatibility,
(iii) error indication,
(iv) the overall structure of adaptive refinement.

For triangle division we use bisection. This is similar to the bisection method of Rivara [29,
30] and identical to that of Sewell [32, 33], the difference between the two being in the method
for determining which side of the triangle is to be bisected, the longest edge or the side opposite
the newest vertex, respectively. For many triangle shapes, including the important case of isosce-
les right triangles, the longest edge and newest vertex methods are equivalent. Whenthe methods
do not agree, the longest edge approach has better angle bounds and hence a smaller interpolation
error, but the newest vertex approach does not require the computation of side lengths and
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experimental results [24] indicate that the loss of accuracy is small. Moreimportantly, the newest
vertex approach provides easily defined hierarchical bases with properties that are necessary for
the adaptive refinement and multigrid algorithms. In the longest edge approach the hierarchical
bases are not as easily defined and fail to have these necessary properties.

A triangulation used for a finite element mesh should be compatible, i.e., every triangle
should not have more than one neighboring triangle along any of its three sides, as in Fig. 1.1.
Maintaining compatibility is one of the challenges in developing an adaptive refinement algo-
rithm. Theapproach we use is unlike any other, and provides an interesting alternative interpreta-
tion of adaptive refinement on which we base our error indicator and the global structure of the
adaptive refinement process, which in turn allows a new twist on the full multigrid method to be
discussed later. Sewell maintains compatibilitybeforethe refinement process by removing from
consideration those triangles whose division would create an incompatibility. It is possible for
this to fail abysmally to refine the grid in the right place. Bank and Sherman [3, 4] and Rivara
enforce compatibilityafter the refinement process. One divides the desired triangles, and then
further divides triangles where incompatibilites have arisen. Thisresults in a two phase refine-
ment algorithm.Bank and Sherman, who use regular division for refinement and bisection for
maintaining compatibility, even hav ea third phase at the beginning of the refinement algorithm
that removes the bisection refinements added for compatibility. In our approach we maintain
compatibility during the refinement process.This is achieved by dividing pairs of triangles that
share a common edge rather thanindividual triangles. Inthe terminology of Sewell, the newest
vertex is called thepeak, the side opposite the peak is called thebase, and a triangle is said to be
compatibly divisibleif its base is also the base of the triangle opposite its peak.When we wish to
divide a triangle which is compatibly divisible, we divide both the desired triangle and the trian-
gle opposite its peak as a pair by connecting their peaks through the midpoint of their common
base. Whenwe wish to divide a triangle which is not compatibly divisible, we must first divide
the triangle opposite the peak (as a pair with the triangle oppositeits peak) before dividing the
pair. This process is easily implemented with a simple and short recursion provided that the
assignment of the peaks in the initial triangulation is such that all the triangles are compatibly
divisible. We show that such an assignment is always possible. Since we never introduce incom-
patibilities,we have eliminated the need for a second phaseto eliminate them, and the resulting
refinement algorithm is simpler.

(a) (b)

Fig. 1.1. Examples of (a) a compatible triangulation (b) an incompatible triangulation



8

By always dividing pairs of triangles we are provided with an alternative interpretation of
the process of adaptive refinement. Unlike dividing a single triangle,dividing a pair of triangles
corresponds exactly to the addition of a new basis function. In the context of hierarchical bases,
the previously existing basis functions remain unchanged and the support of the new basis func-
tion is the pair of triangles divided. Thuswe can consider the process of adaptive refinement to
be one of enriching the finite element space with the right basis functions rather than one of refin-
ing the grid by dividing the right triangles. This provides many interesting and useful interpreta-
tions of, not only the components of the adaptive refinement, but also some aspects of the multi-
grid solution. An interesting, but not very useful, observation is that the restriction imposed on
the grid by the condition of compatibility is just a restriction on which basis functions are permit-
ted to be added to the finite element space in terms of which basis functions are already in the
space, and our process of maintaining compatibility is one of adding the necessary basis functions
before adding the desired basis function.

A more useful interpretation occurs with our error indicator. An error indicator is any value
which can be used to indicate which triangles should be divided (in contrast to an errorestimate
which actually approximates the error).Our error indicator is similar to one proposed by
Zienkiewicz et al. [39] for bilinear elements and can be formulated in terms of a local problem
error estimate in the context of Babus

v
ka and Rheinboldt [2].With the interpretation of adaptive

refinement as a way of selecting which basis functions should be added to the space, it will
become clear how to define a reasonable error indicator foranyfinite element space. In the hier-
archical basis, the coefficient of a basis function of the last level added represents, not thevalueof
the solution at the central node as in the nodal basis, but rather how muchchangein the solution
has occurred at that node by adding the basis function.If we can estimate the coefficients for
each of the basis functions that we are permitted to add to the space, then we can determine which
basis functions will create the largest change in the solution, or equivalently, which basis func-
tions will provide the largest reduction of the energy norm of the discretization error. Such an
estimate can be obtained by considering the equation that would be added to the linear system if
this basis function were added to the space. Solving this equation using the existing coefficients
for neighboring basis functions provides us with the required estimate. The error indicator is then
the energy norm of the new basis function times its coefficient.

Not only does our error indicator point to the optimal basis function in terms of discretiza-
tion error reduction, but it is closely related to other aspects of the global algorithm and its com-
putation provides several other useful values, including

(i) the values for the stiffness matrix,
(ii) the first solution value for the new node (equivalent to Gauss-Seidel relaxation),
(iii) values from which a global error estimate can be cheaply computed.

Typically, other error indicators found in the literature are based on a bound on some norm of the
error over a triangle, and bear no relationship to the rest of the global algorithm.The computa-
tions performed in those error indicators serve no other purpose, except possibly providing a
global error estimate.While such error estimate based error indicators provide error estimates
over each triangle which asymptotically approach the true error, there is no reason to believe that
it is better to divide triangles with the largest error than to add the basis functions that reduce the
error the most. In numerical experiments, which approach is better is found to be problem depen-
dent, and there is never a large difference between them.

To see how to extend our error indicator to other finite element spaces, consider the example
of C0 quadratic basis functions over triangles. Herethe division of a pair of triangles addsfour



9

new nodes and basis functions. Thus any enrichment of the space will be done by four basis
functions at a time.So the error indicator will be for the group of four basis functions, and is
computed as above but by solving the system of four equations for the four hierarchical coeffi-
cients. Theerror indicator is the energy norm of the function obtained from the four new basis
functions and their coefficients. Unlike other error indicators, we have an error indicator which
falls naturally out of the finite element space in use. This allows us to define an appropriate error
indicator foranyfinite element space.

We now consider the global structure of the adaptive refinement process and how it fi ts in
with the solution process. In the usual approach, illustrated by Alg. 1.1, the refinement phase is
the division of a set of triangles to obtain a new grid in which each triangle has been divided at
most once. This is typically done in four steps -- compute error indicators for each triangle,
determine which triangles are to be divided, divide triangles and enforce compatibility. As noted
earlier, Bank and Sherman have an additional step at the beginning where they remove the bisec-
tion refinements used to enforce compatibility. The determination of which triangles are to be
divided is usually done by the approach outlined by Babus

v
ka and Rheinboldt [2] where one

searches the triangles for those whose error indicators are larger than some threshold value which
depends on the largest error indicator. For an efficient full multigrid method, it is necessary that
the dimensions of the successive finite element spaces grow exponentially. To achieve this, the
solution phase is performed only if the number of vertices has grown by some factor, typically 4
which is the growth one would get with uniform refinement.For highly nonuniform grids, the
number of refinement phases between solution phases may grow exponentially. When a solution
phase is not performed, it may be possible to omit some of the steps of the refinement phase.
Certainly, many of the error indicators may remain unchanged, but then one must decide which
triangles need a new error indicator. It is also possible that some of the refinements to enforce
compatibility can be postponed.We note that, with highly nonuniform grids,just searching every
triangle during each refinement phase requires an unacceptably large number of operations. So
any algorithm of this type must not compute the error indicator for every triangle, or even exam-
ine every triangle to determine which ones have large error indicators. As none of the authors
address this problem, it is unknown how (or if !) this problem is dealt with.

Algorithm 1.1. The usual global structure

repeat
remove bisection refinements (Bank and Sherman only)
compute error indicators
S ← set of triangles with large error indicators
divide the triangles inS
divide triangles for compatibility
if the number of vertices has been increased by the factor 4 then

apply multigrid iteration(s)
endif

until done
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We take a different approach to the global structure of the refinement phase and how it fi ts
into the full multigrid method. Our approach is illustrated in Alg. 1.2. Because we interpret
adaptive refinement as the addition of new basis functions, we are freed from the bonds associated
with dividing a predetermined set of triangles to obtain a new grid in which each triangle has been
divided at most once. Instead, we can add basis functions to the finite element spacefor as long
as we like, provided we maintain the solution values and error indicators and have a way of deter-
mining which basis functions have the largest error indicators. The purpose of the solution phase
in the full multigrid algorithm is to keep the error in the approximate solution of the discrete sys-
tem less than the discretization error. We will consider this in more depth later, but for now we
state that this can be achieved by performing a solution phase every time the dimension of the
space is increased by some factor (but not necessarily 4 as is typically used).So, in our approach
we continue to enrich the space with new basis functions until the dimension of the space reaches
a predetermined value. Contrastthis to the usual approach where, if that predetermined dimen-
sion is not met, another complete refinement phase is performed which could exceed the predeter-
mined dimension considerably.

It is necessary in our approach to maintain the solution values and error indicators during
the refinement process.Reasonable solution values are necessary to obtain reasonable error indi-
cators, and without reasonable error indicators the refinement may be degraded. To maintain our
solution, with the addition of each new basis function we perform a relaxation at each of the
nodes which are most strongly affected by the addition of that basis function, i.e., those nodes
associated with basis functions which are not orthogonal to the new basis function.(Recall that
the coefficient for the new basis function itself comes directly from the error indicator.) This is
sufficient to obtain reasonable error indicators, but does not remove the need for the solution
phase. However, as will be seen later, these relaxations are very closely related to the multigrid
iteration and can actually be considered to be part of the solution phase, again demonstrating the
strong relationship of all components of this method.The addition of a new basis function and
the local relaxations that follow it affect only a few neighboring error indicators, which are easily
updated at this time.

Algorithm 1.2. Our global structure

repeat
repeat

pick a basis function to add
add that basis function†

until the number of vertices has been increased by some given factor
apply multigrid iteration(s)

until done

† the addition of a basis function includes adding other basis functions first (if necessary),

local relaxations and updating affected error indicators
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This leaves us only with the problem of knowing which potential new basis functions have
the largest error indicators. Ideally we would want to know which one has the largest, but we
cannot search them all in an acceptable number of operations.We might create a linked list
ordered by the size of the error indicator, but here, too, we cannot make an insertion in O(1) oper-
ations. Instead,we will be satisfied to add a basis function whose error indicator iscloseto the
largest. Tow ard this end we construct a set of linked lists each of which contains those potential
new basis functions whose error indicators fall in a given range of values with the ranges deter-
mined so as to guarantee that by the end of the refinement phase all the basis functions with the
largest error indicators have been added.The maintenance of these lists can be performed in O(1)
operations.

In Chapter 3 we present and analyze the multigrid iteration used to solve the linear system
of equations. This multigrid uses a V-cycle, a restricted form of red-black Gauss-Seidel relax-
ation, and restriction and prolongation operators which arise naturally from the hierarchical basis.
In the case of uniform grids the method is equivalent to that studied by Braess [10, 11, 12] and is
related to the MGR methods [22, 28].It is also very closely related to the hierarchical basis
multigrid method recently developed by Bank, Dupont and Yserentant [6].

The main difficulty with multigrid iterations for nonuniform grids is in producing a method
for which the number of operations for one cycle is proportional toN, the number of nodes, while
obtaining an error reduction factor which is bounded away from 1 independent ofN. Sev eral
approaches to this problem have been taken. Bankand Sherman [3] use a form of level compres-
sion where several levels are treated as one to obtain a geometric growth in the number of nodes
in each level. The problem with this is that the number of levels compressed into one level may
grow exponentially. This means that the relaxation must damp more than just the high frequency
components of the error, henceeither the number of relaxations required is not independent ofN
or there is no guarantee of an adequate error reduction factor. To overcome this problem, Rivara
[31] uses a local (rather than global) transfer and relaxation process for the levels where the num-
ber of nodes has not grown geometrically. Her description of this process is vague, making it dif-
ficult to tell, not only how to do this process, but also whether or not it will work. In the method
of Bank, Dupont and Yserentant [6], the number of operations for one V-cycle is guaranteed to be
O(N) for nonuniform grids by performing only the red part of a red-black Gauss-Seidel relax-
ation, the red nodes being those that are in gridk but not grid k − 1. However, the error reduction
factor is not independent of N, and the number of V-cycles required grows proportional to the
number of levels. For a uniform grid this is O(logN) and for nonuniform grids it can be as bad as
O(N). In the method of Braess the relaxation uses only the red nodes before coarse grid correc-
tion and red followed by black after. This reduces the error sufficiently, but for nonuniform grids
could require as much as O(N2) operations for one V-cycle. We use an intermediate approach
which uses only red relaxation before coarse grid correction and both red and black after, but the
black relaxation is performed only at black nodes that are neighbors of red nodes. As with the
relaxations performed during the refinement, these are the nodes that are most strongly affected
by the change of the values at the red nodes. This guarantees O(N) operations for one V-cycle
and appears to be sufficient to maintain an error reduction factor which is independent ofN. We
have no mathematical proof of this, but we present supporting numerical evidence. Thuswe have
apparently achieved bothO(N) operations per cycle and anN-independent error reduction factor.

The multigrid method presented is easily extended to higher order finite element spaces.
Little has been achieved in the multigrid solution of linear systems that arise when using high
order methods. One of the biggest difficulties is in determining appropriate restriction and pro-
longation operators.Our transfer operators fall naturally out of the conversion of the nodal basis
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to the hierarchical basis, making it easy to determine appropriate operators foranyfinite element
space. For some low order spaces they degenerate to commonly used transfers. Thus we have a
way of defining, for any finite element space, multigrid transfer operators which are of the correct
order of accuracy, natural to the space in question, and degenerate to the usual operators for some
spaces previously considered.

The multigrid iteration is used periodically in a full multigrid algorithm to keep the error in
the approximate solution smaller than the discretization error. In our full multigrid, the multigrid
iteration is used whenever the number of nodes has been multiplied by some given constant. The
frequency at which multigrid iterations must occur depends on the error reduction factor of one
V-cycle. Thusit is important to have a good bound on that factor to determine how often to
switch between refinement and solution.In the case of the usual model problem (Poisson’s equa-
tion, linear elements and uniform grids) our method degenerates to that anayzed by Braess [10,
11, 12]. Braess showed that the error reduction factor for the V-cycle is bounded by1⁄2 for certain
polygonal domains.In our analysis, we use some results from linear algebra to show how one
can compute the error reduction factor for any problem, not just the model problem.With the
model problem on the unit square we find that the error reduction factor for the V-cycle is appar-
ently bounded by 1/8, the same value found for the 2-grid iteration by Fourier analysis. It will be
shown that this means one V-cycle reduces the error sufficiently to increase the number of nodes
by the factor 32.5 between multigrid iterations, in contrast to the usual factor 4. We also examine
the error reduction factor for 3rd and 4th order finite elements with the model problem and finally
consider, through examples, the effects of nonuniform grids and reentrant corners.

In Chapter 4 we present the full multigrid which combines the adaptive refinement proce-
dure with the multigrid iteration into a very efficient unified solution method that is easily
extended to high order finite element spaces.The full multigrid method consists of alternately
performing refinement and solution phases.For the usual full multigrid method for uniform grids
the multigrid iteration (solution phase) is performed after each refinement to the next level grid.
But with nonuniform grids this can result in more than O(N) operations, as much as O(N2). The
usual extensions to nonuniform grids maintain the concept of one refinement phase resulting in a
grid in which each triangle has been refined at most once, and skip some of the grids for solution
phases, possibly performing some local solution process, to obtain the O(N) operation full multi-
grid. In contrast, we use the properties of the convergence of the discretization error to justify
basing the frequency of solution phases,not on the levels of refinement, but on the increase in the
number of nodes. Thus, as earlier noted, the refinement phase continues until the number of
nodes has been increased by some given factor. We derive a formula to determine how large this
factor can be in terms of the error reduction factor of the multigrid iteration and the convergence
rate of the discretization error for the finite element space being used.

We also present a new error estimate in Chapter 4.This error estimate is not as accurate as
some available estimates, such as that of Bank and Weiser [5]. Moreover, it may not satisfy some
of the requirements of a "good" error estimate as outlined by De et al. [16], in particular that the
effectivity index (the ratio of the error estimate to the actual error) be greater than 1 and approach
1 as N approaches infinity. But, from the values of the error indicator we use, the estimate is very
cheap to compute, requiring less than 2N multiplications, and appears to be reasonably accurate
in practice with effectivity indices typically between .9 and 1.2.More importantly, the estimate
can be extended to high order finite elements providing a reasonable error estimate for arbitrarily
high order finite element spaces.

The full multigrid method presented is an optimal combination of adaptive refinement with
multigrid iterations. The hierarchical basis multigrid iteration is guaranteed to use only O(N)
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operations, and the adaptive refinement procedure produces a grid over which the optimal order
of convergence of the discretization error is achieved. Thefrequency at which multigrid itera-
tions occur guarantees that the entire algorithm requires only O(N) operations. Allcomponents
of the method are closely related to each other, providing a unified O(N) algorithm with adaptive
refinement and multigrid solution for high order finite element spaces.
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CHAPTER 2
ADAPTIVE REFINEMENT

The use of adaptive refinement to obtain a grid for the discretization of a partial differential
equation has been the subject of much research in the past decade [2, 3, 16, 24, 25, 30, 32, 39].
The idea is to automatically construct a grid which is coarse where the solution is well behaved,
fine near singularities, boundary layers, etc., and has a smooth transition between the coarse and
fine parts. Such a grid can dramatically reduce the number of nodes needed to obtain an accurate
solution for marginally smooth problems, and can recover the optimal order of convergence for
nonsmooth problems.

Central to any adaptive refinement algorithm for a finite element grid is a method for divid-
ing (refining) the elements, triangles in our case.There are two major methods for dividing trian-
gles in adaptive refinement algorithms.Regular division divides a triangle into four similar trian-
gles by connecting the midpoints of the sides. Bank and Sherman [3, 4] show how to use regular
division in an adaptive refinement algorithm. Bisection division connects one of the vertices of
the triangle to the midpoint of the opposite side.Tw o approaches are in use regarding the selec-
tion of the vertex to be divided. Rivara [29, 30] chooses the vertex opposite the longest edge.
Sewell [32, 33] chooses the "newest" vertex. This is the method we use, and it will be fully
explained in §2.1.

Another critical element of any adaptive refinement algorithm is the error indicator, which is
used to determine which triangles should be divided. Several good error indicators have been
proposed [2, 3, 5, 39]. Most of these are based on estimating the discretization error over each
triangle. Ourapproach is slightly different. We attempt to determine which basis functions that
can be added would reduce the discretization error the most. This becomes a type of error indica-
tor for pairs of triangles. Mitchell [24] surveyed several error indicators and triangle division
methods and compared them in a numerical experiment. Hefound that, among the methods con-
sidered, there is no universally "best" adaptive refinement method, and that most of the methods
performed approximately the same. The methods we use performed well in that experiment.

We begin the presentation of our adaptive refinement algorithm by describing the process of
bisecting a triangle by the newest vertex, and giving some properties of the resulting triangles.
We then show how to use this bisection in an adaptive refinement algorithm. This is followed by
the definition of our error indicator, and finally we present the adaptive refinement algorithm.For
the most part, adaptive refinement is independent of the space of functions to be defined over the
triangulation. Theexception to this is in the error indicator, which we define first for piecewise
linear functions, and then for piecewiseC0 pth degree polynomials.

2.1 Newest vertex bisection of a triangle

The basic building block of an adaptive refinement algorithm is a method for dividing a tri-
angle. Themethod we use, which we callnewest vertex bisection, is nearly identical to a method
presented by Sewell [32]. Much of the terminology of this section is due to Sewell.

In bisection division a triangle is divided to form two new triangles by connecting one of the
vertices, called thepeak, to the midpoint of the opposite side called thebase, as in Fig. 2.1. The
original triangle is called theparent, and the two new triangles are called thechildren. The chil-
dren are said to have generation i+1 wherei is the generation of the parent.The initial triangle is
assigned generation 1. The assignment of the peak for the initial triangle will be examined in
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peak

base peak peak

basebase

Fig. 2.1. Propagation of the peak with newest node bisection

§2.2. Thenew vertex created at the midpoint of the base is assigned to be the peak of the chil-
dren, hence the name newest vertex bisection.

It is important that the angles be bounded away from 0 andπ [1, 18]. Notice that by assign-
ing the peak this way, no angle is divided more than once.Intuitively, this should prevent the
angles from getting too small. Indeed, it is shown by Sewell [32] that there are only four similar-
ity classes of triangles created by this method, as in Fig. 2.2, and hence the angles are bounded.

In the future it may be useful to know, not only that the angles are bounded away from 0 and
π, but also exactly what the angles are. It is easily seen that only eight angles arise, as illustrated
in Fig. 2.3. If α, β and γ are the angles of the initial triangle andγ is the angle at the peak, the
other angles are given by

1 2 3
1

4

1

4

2 3
3

2 3

2
2 3

Fig. 2.2. Four similarity classes of triangles generated by newest vertex bisection
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Fig. 2.3 Angles that arise during bisection
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ε1 = tan−1 2 sin α sinβ
sin(α − β )

ε2 = π − ε1

δ1 = ε2 − α

δ2 = ε1 − β

ξ = π − γ

The only angle which is not obvious isε1, which we derive here. Inthe original triangle, let
b andc be the lengths of the sides opposite the anglesβ andγ, respectively. Then by the law of
sines

sinβ
sinγ

=
b

c
and

sinε1

sinδ1
=

b

c/2

thus

sinε1 =
2 sin β sinδ1

sinγ

Sinceδ1 = π − α − ε1, sin δ1 =sin(α + ε1), and thus

sinε1 =
2 sin β
sinγ

(sinα cosε1 + cosα sinε1)

(1 −
2 sin β cosα

sinγ
) sin ε1 =

2 sin β sinα
sinγ

cosε1

tanε1 =
2 sin β sinα / sin γ

1 − 2 sin β cosα / sin γ
=

2 sin β sinα
sinγ − 2 sin β cosα

Sinceγ=π-α-β,

tanε1 =
2 sin α sinβ

sinα cosβ + cosα sinβ − 2 sin β cosα
=

2 sin α sinβ
sin(α − β )

2.2 Adaptive refinement using newest vertex bisection

Dividing an individual triangle is only one aspect of refining a triangulation.The process of
adaptive refinement is one of dividing triangles such that

(i) the angles are bounded away from 0 andπ,

(ii) the grid is fine in the right places,

(iii) the triangulation is compatible (defined below),

(iv) the process requires only O(number of triangles) operations.

In the previous section we showed that the angles will be bounded away from 0 andπ. To make
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certain that the grid is fine in the right places, one uses an error indicator which specifies which
triangles should be divided. We present our error indicator in §2.3, and for now assume the exis-
tence of such an error indicator. In this section we develop an approach to adaptive refinement
using newest vertex bisection such that the third and fourth requirements are also satisfied.

One of the difficulties in adaptive refinement is that of maintaining compatibility of the tri-
angulation. Atriangulation is said to becompatibleif for any two trianglesti and t j , ti ∩t j is
either empty, a common vertex, or a common side.Other authors, most notably Rivara [30] and
Bank et al. (e.g. [4]), have taken the approach of dividing some set of triangles with large error
indicators, producing an incompatible triangulation, and then performing a second process to
regain compatibility by dividing more triangles. The approach of Bank even includes a third pro-
cess of removing some of the extra divisions before the next refinement phase because he uses
bisection for triangles divided to maintain compatibility and regular division for the triangles
divided because of a large error indicator. In our approach we never hav ean incompatible trian-
gulation. Compatibilityis maintainedduring the refinement process, rather than after, by dividing
pairs of triangles rather than individual triangles. Thus we have eliminated the need for a sepa-
rate follow-up process to recover compatibility.

A triangle is said to becompatibly divisibleif its base is either the base of the triangle that
shares that side or part of the boundary of the domain.If a triangle is compatibly divisible, then
we divide the triangle and the neighbor opposite the peak (if such a neighbor exists) simultane-
ously as a pair. If a triangle is not compatibly divisible, then after a single bisection of the neigh-
bor opposite the peak, it will be. So in this case, we first divide the neighbor by the same process,
and then divide the triangle and neighbor opposite the peak simultaneously. This is illustrated in
Fig. 2.4. We note that this process always divides a pair of compatibly divisible triangles, or a tri-
angle whose base is part of the boundary, and that the triangulation is never incompatible. This
leads to the recursive Algorithm 2.1, which is easily implemented in FORTRAN by constructing
a stack of the triangles that need to be divided.

Fig. 2.4. Maintaining compatibility during refinement

Algorithm 2.1 divide_triangle(t)

if t is not compatibly divisible then
divide_triangle(neighbor oft opposite peak)

endif
divide the triangle pairt and the neighbor opposite the peak oft
return
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It is important that this recursion be finite and not very large. We will show that the length
of the recursion is bounded by the generation of the triangle.To do this we must assume that in
the initial triangulation every triangle is compatibly divisible. Theorem2.1 shows that this
assumption is reasonable.

Theorem 2.1. Given any triangulation, there exists a choice of peaks such that every triangle is
compatibly divisible.

We postpone the proof of this theorem until the end of this section, where the theorem is
restated as Theorem 2.9.We also need the following lemma which relates the generations of
neighboring triangles.

Lemma 2.2. Let T0 be an initial triangulation in which every triangle is compatibly divisible, T
be a refinement ofT0 andt0 ∈ T have generationg. Let t1 be the triangle opposite the peak oft0
(if it exists) andt2 andt3 be the other neighbors oft0 (if they exist). Then

(i) if t0 is compatibly divisible, the generation oft1 is g,
(ii) if t0 is not compatibly divisible, the generation oft1 is g-1,
(iii) if t0 is the triangle opposite the peak ofti , i=2 or 3, the generation ofti is g+1,
(iv) if t0 is not the triangle opposite the peak ofti , i=2 or 3, the generation ofti is g.

Proof. We prove this by induction.The conclusion holds forT0 since every triangle is compati-
bly divisible and has generationg=1. Supposethe conclusion holds forT a refinement ofT0, and
consider the triangulatioñT obtained by dividing one pair of compatibly divisible triangles as in
Fig. 2.5 (the case of dividing a single boundary triangle is nearly identical).Let g be the genera-
tion of t0 andt1 in T. Then the trianglest01, t02, t11 andt12 all have generationg+1 in T̃. It suf-
fices to examine the generations of the three neighbors oft01 in T̃. t01 is not opposite the peak of
t02 (andt11) and the generation oft01 is the same as the generation oft02 (andt11), so the conclu-
sion holds for the triangles that are not opposite the peak.For the triangle opposite the peak there
are two cases. Supposethat t0 is opposite the peak oft2 in T. Then by the inductive hypothesis
t2 has generationg+1, we see thatt01 is compatibly divisible iñT, and so the conclusion holds.If

t1 t0

t2

t3

t11

t12 t02

t01

t2

t3

Fig. 2.5 Triangles for Lemma 2.2
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t0 is not opposite the peak oft2 in T, thent2 has generationg andt01 is not compatibly divisible,
so again the conclusion holds.

Theorem 2.3. The length of the recursion in Alg. 2.1 is bounded by the generation of the triangle
t.

Proof. The recursive call occurs as long as the triangle passed in is not compatibly divisible.
From Lemma 2.2 we see that the triangle opposite the peak of a triangle which is not compatibly
divisible has one less generation.Thus the generation of the triangle decreases with each recur-
sive call, and since the minimum generation is 1, the number of recursive calls is bounded by the
generation of the first triangle.

Since some extra effort is required to divide triangles which are not compatibly divisible, it
is not unreasonable to ask whether or not we can avoid such triangles.Since we can always
assign the peaks in such a way that all triangles are compatibly divisible, we could change the
peaks to achieve this. However, we would no longer be performing newest vertex bisection and
this would surely result in angles which are unacceptably large or small.Without changing the
peaks, the only way to eliminate triangles which are not compatibly divisible is to perform some
extra refinements. The following corollary of Lemma 2.2 asserts that any such attempt would
result in a uniform refinement, and hence for adaptive refinement we necessarily have triangles
that are not compatibly divisible.

Corollary 2.4. If every triangle in the initial triangulation is compatibly divisible, then for any
refinement either there exists a triangle which is not compatibly divisible, or every triangle has the
same generation.

The remainder of this section is devoted to the proof of Theorem 2.1.We call an assign-
ment of peaks for a triangulation such that every triangle is compatibly divisible aperfect match-
ing of the triangles. This is related to perfect matching in graph theory, and in fact we will use
graph theory to prove that every triangulation has a perfect matching.

We begin with some definitions from graph theory. A graph, G, is a nonempty set,V, of
verticesand a set,E, of edgeswhich are unordered pairs of vertices. To avoid confusion between
the vertices of a triangle and the vertices of a graph, we use the termG-vertexto refer to a vertex
of a graph.If e=(u,v) ∈ E, then the G-verticesu andv are said to beadjacentand are called the
endpointsof e. Thedegreeof a G-vertexv is the number of edges inE containingv. A graph is
k-regular if all vertices have degree k. A walk is a nonempty sequencev0v1v2

. . .vn such that
(vi , vi+1) ∈ E. A cycleis a walk in whichv0 = vn andvi ≠ v j for all otheri≠j. A graph is said to
beconnectedif for every u,v ∈ V there exists a walk with v0 = u andvn = v. An edgee of a con-
nected graph is acut edge if the removal of e from G results in a graph which is not connected.A
perfect matching in G is a setM ⊆ E such that each G-vertex in V is an endpoint of exactly one
edge inM .

We are now ready to defineG(T), the graph of a triangulationT. The G-vertex set consists
of two parts. With each triangle ofT we associate aninterior G-vertex. With each side of a trian-
gle which is part of the boundary of the domain (boundary side) we associate aboundary G-
vertex. V consists of all interior and boundary G-vertices. Theedges ofG(T) are of three forms.
If u,v ∈ V are both interior G-vertices, then (u,v) ∈ E if f the corresponding triangles share a
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common side.These edges correspond to interior sides of triangles. If one ofu or v is an interior
G-vertex and the other is a boundary G-vertex, then (u,v) ∈ E if f the corresponding boundary side
is a side of the corresponding triangle. These edges correspond to boundary sides.Finally, if u
andv are both boundary G-vertices, then (u,v) ∈ E if f the corresponding boundary sides share a
common vertex. Theseedges correspond to boundary vertices. Fig.2.6 illustrates a simple trian-
gulation and its graph.We use squares for boundary G-vertices and circles for interior G-vertices.

For simplicity, we assume that the boundary of the domain is a continuous simple closed
curve. Thenit is easily seen that the graph has a cycle containing exactly the boundary G-vertices
and the edges that correspond to boundary vertices of the triangulation. This cycle is found by
traversing the boundary of the domain.The results that follow hold also for more complicated
domains, but this complicates the proofs. If the boundary is not continuous, then there is more
than one cycle of boundary G-vertices. Ifthe boundary is not a simple curve, then the edge set
between boundary G-vertices must be modified slightly so that each boundary G-vertex is adja-
cent to exactly two other boundary G-vertices. Fromthe definition of the graph of a triangulation,
the next lemma is obvious.

Lemma 2.5. The graph of a triangulation is 3-regular.

Theorem 2.6. An edge of a connected graph is a cut edge iff it is contained in no cycles.

This is a well known theorem from graph theory. See, for example, Bondy and Murty [9] p. 27.

Lemma 2.7. The graph of a triangulation contains no cut edges.

Proof. Let e be any edge inG(T). We will show thate is contained in a cycle. If e connects two
boundary G-vertices, thene is contained in the cycle of boundary G-vertices found by traversing
the boundary of the domain. Otherwise, lets be the triangle side corresponding toe and letv be a
vertex of T that is an endpoint ofs. Let {si } be the set of all triangle sides that have v as an end-
point, and {ei } be the corresponding edges inG(T) plus also the edge corresponding tov if v is a
boundary vertex. It is easily seen that, when properly ordered, the edgesei form a cycle inG(T)
since their endpoints correspond to triangles, boundary sides and boundary vertices that are adja-
cent inT. Sincee is one of theei ’s, we hav ea cycle containinge.

Fig. 2.6 A simple triangulation and its graph
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Theorem 2.8. Every 3-regular graph without cut edges has a perfect matching.

For a proof of this see, for example, Bondy and Murty [9] p. 79.

Theorem 2.9. Every triangulation has a perfect matching.

Proof. From Lemma 2.5, Lemma 2.7 and Theorem 2.8,G(T) has a perfect matchingM . We
define a perfect matching forT as follows. For eache ∈ M for which both endpoints are interior
G-vertices, select the peaks of the corresponding triangles so that the bases of those two triangles
are their common side.Then both of these triangles are compatibly divisible. For eache ∈ M
for which one endpoint is an interior G-vertex and the other endpoint is a boundary G-vertex
select the peak of the corresponding triangle so that the base is the corresponding boundary side
of the triangle. Then this triangle is compatibly divisible. Since(i) every triangle corresponds to
an interior G-vertex, (ii) M is a perfect matching, and (iii) we have considered every interior G-
vertex that is an endpoint of an edge inM , we hav eassigned a peak for every triangle and every
triangle is compatibly divisible.

Theorem 2.9 says that given any triangulation we can find a way to assign the initial peaks
such that every triangle is compatibly divisible. It would be nice to develop an algorithm which
automatically assigns the peaks such that we have a perfect matching.However, the perfect
matching problem is known to be NP-Complete [20]. It is possible that it can be solved in poly-
nomial time for the special case of 3-regular graphs, but we have been unable to find any algo-
rithm for this. In any case, it is probably not a good idea to develop such an algorithm, at least
not without incorporating further guidelines. The perfect matching is not unique, and a poor
choice can result in angles which are unnecessarily small.Whenever possible, it is best to use the
largest angle as the peak.Finding the optimal perfect matching in terms of angle conditions is
nontrivial. Usually, though, the initial triangulation contains a small number of triangles and it is
easy for the user to find a good perfect matching.

2.3 Error indicator

To guide the adaptive refinement, it is necessary to have some sort of error indicator which
determines which triangles should be refined.Many error indicators have been proposed [2, 3, 5,
39]. Mitchell [24] performed a numerical experiment to compare the effectiveness of several
indicators. Themethod we describe here performed well in those experiments. Thismethod is
similar to that proposed by Zienkiewicz et al. [39] for bilinear rectangular elements.Our interpre-
tation of the indicator makes it possible to define an error indicator for any finite element space.
We will concentrate on the spaces ofC0 pth degree polynomials over bisected triangles.We con-
sider first linear elements, and then show how to extend to arbitrary degree.

At this point we must make the distinction between an error indicator and an error estimate.
By an error indicator we mean a nonnegative real number assigned to each triangle, or small
groups of triangles, which has its largest values in the triangles whose refinement would be most
beneficial for reducing the discretization error. An error estimate, on the other hand, can be
defined either locally or globally and should be a good approximation of the discretization error
in some norm.An error indicator is used to guide adaptive refinement; an error estimate can be
used as a termination criterion for a program, or just to give the user some idea of how accurate
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the solution is.Usually, if an error estimate is defined locally it can be used as an error indicator,
but it is not clear that error estimates make the best error indicators.

Our error indicator is not an error estimate (although we present an error estimate based on
this error indicator in §4.2). Instead of attempting to divide the triangles over which the error is
the largest (which is what an error estimate based error indicator does), we attempt to divide the
triangles for which the division thereof makes the greatest change in the solution.Since this
change in the solution reduces the error, we are attempting to divide the triangles which make the
greatest reduction in the error, in other words, reduce the error the fastest for the number of divi-
sions performed. If these numbers were known exactly this would provide the optimal choice of
which triangles to divide. Of course, we are approximating these values so we do not claim this
to be the optimal method.

To approximate how much of a change in the solution will occur, we use the hierarchical
basis, which we define in §3.1.For what follows it suffices to know that when a function is
expanded using the hierarchical basis, the coefficients represent displacements rather than nodal
values as with the usual nodal basis. Fig. 2.7 illustrates this for a simple case in one dimension.
We consider the interpolation of a functionf , defined over the unit interval, by piecewise linear
functions f2 and f3 which have 2 and 3 nodes, respectively. Let f3 = α1φ1 + α2φ2 + α3φ3 for
some basisφ = {φ1, φ2, φ3}. If φ is the usual nodal basis,α2 = f ( 1

2 ). But, if φ is the hierarchical

basis,α2 = f ( 1
2 ) − f2( 1

2 ), i.e.,α2 represents how much change occurs in the approximating func-
tion when we refine the grid by adding the new node. Then α2φ2  tells us the norm of the
change in the approximation. This is the basis of our error indicator. These principles can be
extended not only to linear bases over bisected triangles, but to any finite element space, even
rectangles, 3-D, etc.We will consider in detail the spaces ofC0 pth degree polynomials over
bisected triangles, starting with the linear case.

The division of a pair of triangles as in Fig. 2.8 by newest vertex bisection corresponds to
the addition of one new basis function.We let vi andφ i , i=1,2,3 and 4, be the vertices of the tri-
angles and corresponding hierarchical basis functions, andv5 andφ5 be the new vertex and basis
function. We wish to approximate how much change would occur if this division were to be per-
formed. To do this, we approximate the coefficient ofφ5, α5, by assuming thatα i , the coefficients
of φ i , remain unchanged fori=1,2,3 and 4. Then

Fig. 2.7. A smooth function and its 2-node and 3-node linear interpolants
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v1

v2

v3 v4
v5

Fig. 2.8 Triangle pair for error indicator

(2.1)α5 = (( f ,φ5) −
4

i=1
Σ α i < φ i ,φ5 >)/ < φ5,φ5 >

where <., . > and (., .) are the usual inner products used to obtain the stiffness matrix and load
vector, respectively, and f is the right hand side of the differential equation. This corresponds to
one step of a Gauss-Seidel iteration for the linear system we would have if we divided this pair of
triangles. If .  is the energy norm defined by u 2 = < u, u >,  α5φ5 2 is the amount
by which the square of the energy norm of the error is reduced by addingα5φ5 to the approximate
solution, so we use α5φ5  as the error indicator for this pair of triangles.

We comment that one should not be concerned about the number of operations required to
compute these inner products since these are precisely the values we need to define the new row
of the stiffness matrix and load vector if this pair of triangles is actually divided. Thesevalues
can be stored and later copied into the matrix and right hand side when the triangle division
occurs. We can also storeα5 to be used for the first approximation of the solution atv5.

We assumed above that we are computing an error indicator for a compatibly divisible pair
of triangles. We must also have error indicators for triangles whose base is on the boundary and
triangles that are not compatibly divisible. Boundarytriangles are treated conceptually the same:
α5 is determined by a Gauss-Seidel relaxation of the (boundary condition) equation that would be
added to the linear system if this triangle were divided. Inthe case of Dirichlet boundary condi-
tions,α5 is simply the difference between the boundary condition and approximate solution at the
prospective new vertex. Whenone has a triangle that is not compatibly divisible, such as triangle
v1v2v3 in Fig. 2.9, we introduce the vertex v̂4 (the vertex which must be added beforev5) with
corresponding basis function̂φ4 and coefficient α̂4 = (α1 + α4)/2 and replaceα4 andφ4 by α̂4 and
φ̂4 in Eqn. 2.1.

The extension of this error indicator toC0 pth degree polynomials is straight forward. The
only difference is that now there arep2 new basis functions rather than just one, so the amount of
change depends on more than one basis function. But we still have a hierarchical basis whose
coefficients represent change, and in principle the error indicator is computed the same way. Now
Eqn. 2.1 is replaced by a linear system ofp2 equations inp2 unknowns. Thissystem can be
solved by Cholesky decomposition in an acceptable number of operations, and we can compute
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Fig. 2.9 Triangle pair for error indicator when not compatibly divisible

 Σ α iφ i  where the sum is over the p2 new nodes associated with the prospective new vertex.
It can be seen that this error indicator can be further extended to any finite element space with a
hierarchical basis.

The way in which we compute our error indicator presents a very interesting interpretation
of the role of the error indicator. We could imagine a situation in which we have an infinitely
refined uniform grid with the hierarchical basis.Recall that, with the hierarchical basis, the coef-
ficients represent how much changein the solution occurs by including the corresponding basis
functions. Theprocess of adaptive refinement is now one of discarding, from our infinite number
of basis functions, those whose coefficients are very close to zero, i.e., those basis functions that
do not make a significant contribution to the solution. The computation of our error indicator is a
form of relaxation for some of the basis functions that have not yet been added to the finite
dimensional subspace. Thus, in effect, we are using a larger approximation space, and are ignor-
ing those basis functions which do not make a significant contribution to the solution.

2.4 Selection of next triangle to divide

Given the error indicators for every triangle (or pairs of compatibly divisible triangles) we
would ideally want to select the next triangle to divide by choosing the triangle with the largest
error indicator. Howev er, for our algorithm to use only O(N) operations it is imperative that the
selection of the next triangle to divide requires only O(1) operations.This means that we do not
have time to search every triangle to find one with the largest error indicator. So instead we will
be satisfied to find a triangle whose error indicator is close to the largest.

Let e be the largest error indicator at the beginning of the refinement phase.We partition
the triangles (only including one triangle from each pair of compatibly divisible triangles) intoQ
sets such that each set contains all the triangles whose error indicators fall in a certain range.
Specifically, for a given 0<c<1, a triangle is in theqth set iff i ts error indicator is betweencq−1e
andcqe for 1 ≤ q ≤ Q − 1 and is in theQth set if its error indicator is less thancQ−1e. The first set
contains all the triangles whose error indicator is larger thance, and we will select any one of
these triangles as the next triangle to be divided.
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To represent the sets, we use a doubly linked list for each set. It is then easy to do any of the
following processes in O(1) operations.After a solution phase, the error indicator is computed
for every triangle. At this timee is determined. The lists are then set to be empty and each trian-
gle is inserted at either the head or tail (see below) of the appropriate list. During refinement, the
head of the first list is selected as the next triangle to divide. If the first list is empty, thene is
replaced byce and all the lists are "shifted to the left" by shifting the head and the tail pointers,
for example, head(1)← head(2). TheQth list is left empty. When a triangle is divided it is
removed from the list. After division, error indicators are computed for the new triangles and
these triangles are added to the appropriate list. It is possible that the new error indicators could
be larger thane. In this casee is replaced bye/c and the lists are "shifted to the right" with the
Q − 1st andQth lists merged into one. If necessary, this is repeated, but it is highly unlikely that
more than one shift to the right would occur for reasonable choices ofc. The error indicators for
neighboring triangles are also updated, and these triangles are removed from the lists and added
back to the lists.

By allowing insertion to occur at either the head or tail, we can improve the resolution of the
partition, essentially doubling the number of sets.To do this, insert at the head if the error indica-
tor is larger than the midpoint of the range and at the tail if it is smaller than the midpoint.

Note. When the discretization error converges like O(N−α ) and the number of nodes (or tri-
angles) is increased by the factor f , we would expect the largest error indicator to be reduced by
approximately the factor f −α −1⁄2. To see this, we use the result from §4.2 which says that
e2 ≈ γ Σ ε 2

i where e is the discretization error, ε i are the error indicators,γ is some constant
which depends only on the degree of the approximating polynomials, and the summation is over
all error indicators.From this and the order of convergence of the discretization error we have
ε 2

T+1 + ε 2
T+2 ≈ (1/2)2α ε 2

1 whereε1 is the largest error indicator, T is the number of triangles, and
εT+1 and εT+2 are the "children" ofε1. We also expect εT+1 ≈ εT+2, henceε 2

T+1 ≈ (1/2)2α +1ε 2
1.

With f =2, εT+1 has approximately the largest value after refinement, and we see the claimed
reduction. For f =4, there would be another refinement associated withεT+1 which, by the same
argument, gives ε 2

3T+1 ≈ (1/2)2α +1ε 2
T+1 ≈ (1/4)2α +1ε 2

1. A similar argument holds whenf is any
power of 2. Interpolating between powers of 2 gives the desired result for any f . Numerical
computations support this convergence of the maximum error indicator.

The selection ofc depends on how close to the largest error indicator you want to be.The
following should suffice. If the discretization error converges like O(N−α ) and the refinement
phase increases the number of nodes by a factor f , then, as noted, we would expect the largest
error indicator to be reduced by a factor off −α −1⁄2. By usingc = f −α −1⁄2, the first list should, over
the course of the refinement phase, contain approximately the triangles that will be divided. If it
is not completely emptied, we will at least have refined the most important triangles since we
insert at both the head and tail.If it is emptied before refinement is complete, we will start the
second list but probably will not get very far into it.With this value ofc, Q=4 should be enough
lists. Thesecond list may be used, but it is highly unlikely we would get to the third list.The
reason for having four lists rather than three is so that the second list remains undisturbed if we
should need to shift to the right.

2.5 Adaptive refinement algorithm

Combining the material presented in this chapter into an adaptive refinement algorithm
results in the rather simple looking Alg. 2.2.What we mean by "enough refinement" will be
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discussed in Chapter 4. Determining which triangle to divide was considered in §2.4 and the pro-
cess of dividing a triangle is given by Alg. 2.1 in §2.2.However, we were perhaps a bit under
detailed in Alg. 2.1 when we said "divide the triangle pair". Much happens when a triangle pair is
divided. We present the process of dividing a triangle pair in Alg. 2.3 and devote the rest of this
section to a discussion of each of the steps involved.

The details of changing the grid specification depend on the particular data structures used
to represent the grid, so we will not go into this in depth.Basically, one has to indicate that there
is another vertex, p2 more nodes and that two triangles have been replaced by four new triangles.

The size of the linear system is increased by the addition ofp2 new equations. Thecoeffi-
cients and right side for these equations are actually already available from the error indicator
computation. Sothe addition of the new equations is just a matter of copying the values into the
data structures used to represent the linear system.One may also need to do a basis change if the
hierarchical basis representation was used. The process of changing bases is detailed in §3.1.

During the refinement, the discrete problem is represented with the nodal basis. Thus when
a pair of triangles is divided, some of the neighboring basis functions change, and thus the equa-
tions associated with those basis functions also change. The coefficients and right side that we
have before dividing the pair of triangles are actually those that come from the hierarchical basis
after dividing the pair of triangles. Thus, to keep these equations in the nodal basis we need only
perform a basis change as described in §3.1. There is, however, one complication that prevents it
from being this simple. If we just did this from the beginning of the program until the end, the
equations associated with the initial basis functions would still have quadrature errors with the
order of accuracy of the initial grid, which would totally destroy the accuracy of the solution.
Thus we must replace the integration for these inner products, which was performed over the two
triangles divided, by a quadrature over the four new triangles. We can then perform the basis
change to get the corrected old equations with a quadrature error of the correct order.

Algorithm 2.2. Adaptive refinement

repeat
determine which triangle to divide
divide the triangle

until enough refinement has occured

Algorithm 2.3. Divide triangle pair

change grid specification
add new equation(s) to the linear system
change other affected equations
block relaxation for new nodes
Gauss-Seidel point relaxation for neighboring old nodes
compute error indicators for new triangles and neighboring triangles
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With the new linear system defined, we need a first approximation to the solution at the new
nodes. Thereare p2 new nodes, forpth degree polynomials, with an associatedp2 × p2 symmet-
ric positive definite submatrix (or block) on the diagonal of the matrix representing the linear sys-
tem. To obtain our first solution for these new unknowns we perform a block relaxation, i.e., one
step of a block Gauss-Seidel iteration.Actually, this need not be computed here. These values
were computed in determining the error indicator, and could be stored then and just copied over at
this time. This is the same as one step of the relaxation at the red nodes in the multigrid iteration
of §3.2.

Since it is possible for several generations of triangle divisions to occur in the same area
before the refinement phase is complete, it may also be necessary to improve the solution at the
old nodes that neighbor the new nodes to obtain a sufficiently accurate error indicator. Thus we
extend the partial Gauss-Seidel iteration to include point relaxations at the old nodes whose asso-
ciated basis functions are not orthogonal to the new basis functions. There are (p + 1)2 of these,
so this process uses only O(1) operations.This is the same as the local black relaxation in the
multigrid iteration of §3.2.

Finally, we must compute the first error indicators for the new triangles. Moreover, we must
recompute the error indicators for the neighboring triangles whose error indicators involve the old
nodes whose solution values were changed during the point relaxation. There are O(1) of these.
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CHAPTER 3
MULTIGRID SOLUTION

The multigrid method has recently established itself as perhaps the most efficient method
for solving the linear systems that arise from the discretization of differential equations. The pop-
ularity of this method can be attributed to the fact that it is optimal in the sense that one multigrid
iteration can reduce the norm of the error of the approximate solution of the linear system by a
factor that is bounded away from 1 independent ofN, the size of the linear system, while using
only O(N) operations. Themultigrid method was popularized by Brandt in the late 70’s [13, 14]
and has since been studied by many researchers. Inthis chapter we present and analyze a multi-
grid iteration suitable for the linear systems that arise from using the finite element method with
low or high order bases on the triangulations generated by the adaptive refinement algorithm of
Chapter 2.In the special case of linear elements, uniform grids and certain domains, our multi-
grid iteration is equivalent to that studied by Braess [10, 11, 12] and the MGR methods [22, 28].
In this special case it can also be presented in terms of standard relaxation and transfer operators.
However, we will develop the method in terms of hierarchical bases. From this approach it will
be easy for us to extend the method to nonuniform grids, more general domains and high order
bases.

Bank, Dupont and Yserentant [6] have recently presented a hierarchical basis multigrid
method that is similar to ours, but with two major differences. Inorder to guarantee that the
multigrid iteration uses only O(N) operations for nonuniform grids it it necessary to restrict the
amount of relaxation that is performed on each grid. Bank et al. restrict this so far that the factor
by which the error is reduced is no longer independent ofN, and O(logN) iterations are required,
hence their method is suboptimal.We use a weaker restriction on how much relaxation occurs so
that we obtain both O(N) operations and an apparentlyN-independent error reduction.Secondly,
Bank et al. use regular refinement, where we use bisection refinement.With regular refinement,
the hierarchical basis functions of the same level are not orthogonal, which means that the princi-
ple submatrix corresponding to the basis functions of one level is not diagonal. This necessitates
the use of what they call "inner iterations" during the relaxation process to solve the principle
subsystem. Essentiallythis means that relaxation consists of several red phases of a red-black
Gauss-Seidel iteration with no black phases.With newest vertex bisection refinement and linear
elements, the hierarchical basis functions of the same level are orthogonal, hence the red phase of
red-black Gauss-Seidel solves this subsystem exactly, and we have eliminated the need for inner
iterations. For high order elements the principle submatrix is block diagonal and can also be
solved exactly.

We begin our presentation of the multigrid iteration by defining the hierarchical basis and
examining some properties of the hierarchical matrix.We then present the relaxation and transfer
operators, and finally the multigrid iteration algorithm.In most cases we will first present the
method for linear finite elements, and then show how this can be extended to higher order finite
elements. Inthe last section of this chapter we examine the convergence properties of the multi-
grid iteration using a new approach which uses a combination of theoretical results and numerical
computations. With this approach we are able to examine the convergence rate with high order
finite elements and other situations that the current theories do not cover.
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3.1 Hierarchical bases

Our multigrid iteration will make use of the hierarchical basis, so we begin by defining the
hierarchical basis.The use of hierarchical bases for finite elements has been considered by
Zienkeiwicz et al. [39], Yserentant [37, 38], and more recently by Bank, Dupont and Yserentant
[6].

The usual nodal basis, {φ i }
N
i=1, for a space of piecewise polynomials can be defined on a

given grid by

φ i =




1 at nodei

0 at all other nodes

In contrast, the hierarchical basis is defined using the family of nested grids, {Ti }
L
i=1, from the

refinement process. The hierarchical basis begins with the nodal basis on the initial grid,T1. As
refinement proceeds, with each division one or more new nodes are added, and for each node we
add a new basis function defined so that it has the value 1 at the new node and 0 at all other
nodes,but the existing basis functions remain unchanged. Fig. 3.1 illustrates the nodal and hier-
archical basis for the simple case of piecewise linear elements in one dimension with a 3-level
grid. Thelevelof a basis function is the same as the generation of the elements created when the
basis function is added, so byhigher level basis functionswe mean those that are associated with
smaller elements.

We can also define hierarchical bases which do not use all levels of the grid. Such a basis is
defined by starting with the nodal basis for the gridTi for some 1≤ i ≤ L and defining the higher
level basis functions as above. If there arek = L − i + 1 lev els of the grid used in this definition,
we call this thek-level hierarchical basis(or just k-level basis). In this context the hierarchical
basis is theL-level basis and the nodal basis is the 1-level basis. We will be concerned mainly
with the nodal, hierarchical and 2-level bases, and will use the superscripts (N), (H) and (2) to

indicate which basis is in use.Thus,φ (N)
i , φ (H)

i andφ (2)
i represent basisfunctions from the nodal,

hierarchical and 2-level bases, respectively.

Any function, f , which lies in our space of piecewise polynomial functions onTL has an
expansion in terms of any of the bases.We use forms ofα to denote the coefficients in this
expansion. Thuswe have

Fig. 3.1. Nodal and hierarchical bases for piecewise linear functions in one dimension
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f =
N

i=1
Σ α (N)

i φ (N)
i =

N

i=1
Σ α (H)

i φ (H)
i =

N

i=1
Σ α (2)

i φ (2)
i

Conversion between bases is a linear process.We use S to denote the matrix that converts the
coefficient vector of the hierarchical basis to the nodal basis, thusα (N) = Sα (H) and
α (H) = S−1α (N). Sl denotes the conversion from the 2-level basis to the nodal basis on anl level
grid. If we order the rows and columns ofSl so that rows corresponding to nodes of the same
level are grouped together and the lower level rows come first, and partitionSl into two parts cor-
responding to levels 1 throughl -1 and level l , thenSl has the form

Sl =




I

s

0

I





and

S−1
l =





I

− s

0

I





wheresij = φ (2)
j (xi , yi ) and xi and yi are the coordinates of thei th node. We see that the conver-

sion between bases, i.e., multiplying a vector bySl or S−1
l , is an easy process.If Nl−1 is the num-

ber of nodes in the firstl − 1 lev els, we have

α (N)
i =







α (2)
i

α (2)
i +

Nl−1

j=1
Σ φ (2)

j (xi , yi ) α (2)
j

if node i does not have levell

if node i has levell

Most of theφ (2)
j are zero at nodei , so the sum is very short. In fact, with newest vertex bisection

refinement andpth degree piecewise polynomials, there are at most (p + 1)2 nonzeroes in the

sum. Moreover, the value ofφ (2)
j (xi , yi ) depends only onp and the relative placements of nodesi

and j in the same triangle, and is independent of the triangle shapes and sizes, problem being
solved, etc. Thus one can construct a small ( (p + 1)2 × p2 ) table of these values to be used
whenever a basis change is desired.

We will also need to multiply a vector byST
l andS−T

l . This is similar, except now we dis-

tribute the value ofα (2)
i over neighboring nodes when nodei has level l rather than collecting val-

ues from the neighboring nodes.We summarize the process of multiplying bySl andST
l in Alg.

3.1 and Alg. 3.2.Heresij representsφ (2)
j (xi , yi ). Multiplication by S−1

l andS−T
l are the same but

with +sij changed to -sij .

As with S, the rows and columns of the stiffness matrix,A, are ordered so that rows corre-
sponding to nodes of the same level are grouped together, and smaller levels come first. The stiff-
ness matrix will be called thenodal matrixor hierarchical matrixwhen we need to indicate which
basis is in use.Basis changes for the matrix are possible usingSl . Yserentant [38] showed that
we can get the hierarchical matrix from the nodal matrix byA(H) = ST A(N)S. Alg. 3.3 shows how
to change the basis of the matrix from nodal to 2-level.
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Algorithm 3.1. Multiply α by Sl

for each nodei with level l
for each neighborj of i with level < l

α i ← α i + sij α j

next j
next i

Algorithm 3.2. Multiply α by ST
l

for each nodei with level l
for each neighborj of i with level < l

α j ← α j + sij α i

next j
next i

Algorithm 3.3. ReplaceA by ST
l ASl

for each nodei with level l
for each neighborj of i with level < l

row j ← row j + sij * row i
column j ← column j + sij * column i

next j
next i

3.2 Relaxation operator

We are now ready to develop the components of the multigrid iteration.We begin with the
relaxation, or smoothing, operator. This is first presented for linear elements and uniform grids,
then extended to nonuniform grids and finally to higher order elements.

The basis of our relaxation operator is the red-black Gauss-Seidel iteration.This is among
the simplest and most commonly used relaxation operators.We always do the red phase first,
where the red nodes are those that are in the current grid, but not in the next coarser grid. As is
common in multigrid methods, we performν1 iterations of the relaxation operator before coarse
grid correction andν2 iterations after. We allow ν1 andν2 to be multiples of1⁄2 where by half an
iteration we mean only the red phase. Bank, Dupont and Yserentant [6] useν1 = ν2 = 1⁄2, i.e.,
they perform relaxations at the red nodes only. This V-cycle is equivalent to a symmetric Gauss-
Seidel iteration using the hierarchical matrix.The condition number of the hierarchical matrix is
O(L2) whereL is the number of refinement levels [37, 38]. SinceL ≥ log N and the number of
Gauss-Seidel iterations depends on the condition number we see that their method requires at
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least O(logN) iterations to reduce the error by a given factor. To overcome this difficulty we use
ν1 = 1⁄2 andν2 = 1 which adds in relaxation at the black nodes after the coarse grid correction.
This is a special case of the values ofν1 andν2 considered by Braess [12].He usesν1 = ν2 − 1⁄2,
but performs the black phase first ifν1 is an integer. Braess shows that by usingν1 = 1⁄2 and
ν2 = 1, the V-cycle reduces the error by at least a factor of .5 independent ofN for certain convex
polygonal domains.In §3.4 we provide strong evidence that for a square domain and uniform
grid, the error is reduced by a factor of at least .125.

While the use of red-black Gauss-Seidel withν1 = 1⁄2 andν2 = 1 is an effective relaxation
operator for uniform grids, it presents a problem with nonuniform grids, because the number of
nodes might not grow exponentially with the number of levels. Supposethat the number of new
nodes in each level, nl , grows polynomially, i.e.,nl = O(l p−1) for some power p≥1. Thenthe total
number of nodes in each level, Nl , satisfiesNl = O(l p). Thenumber of operations used for relax-

ation withν1 = 1⁄2 andν2 = 1 is
L

l=1
Σ O(l p−1) +

L

l=1
Σ O(l p) = O(L p+1) = O(N1+1/p

L ). This can be as

bad asO(N2
L), which is unacceptable.To overcome this problem we must restrict the amount of

relaxation performed so that the number of operations used for the relaxation on one grid is pro-
portional to the number of red nodes in that grid, not the total number of nodes.To achieve this,
Bank et al. perform the relaxation only at the red nodes.However, as noted earlier, this restriction
is too strong and destroys theN-independence of the convergence. We propose the weaker
restriction of performing the black phase only at black nodes that are immediate neighbors of red
nodes. We call this local black relaxation. Since each red node has at most four black neighbors,
the number of operations in the relaxation is proportional to the number of red nodes.Moreover,
the black nodes at which we correct the solution value are exactly those that are most strongly
affected by the change at the red nodes. The basis functions at the other black nodes are orthogo-
nal to the basis functions at the red nodes, and hence the change there is only a second order
effect through the black nodes that neighbor the red nodes.Intuitively, this may be sufficient to
maintain theN-independent convergence rate.We examine this numerically in §5.3.

In order to perform the local black relaxation we must know which black nodes are neigh-
bors of red nodes.To search all the black nodes to determine this would require more than O(N)
operations. To avoid this search, we could perform the relaxation at the black neighbors of a red
node immediately after the relaxation at each red node, but this would result in relaxations at
many of the black nodes more than once.Instead, we construct a linked list of the black neigh-
bors during the red relaxation. Also, to avoid duplication of the black relaxations we need a logi-
cal vector to indicate which black nodes are already on the list. This would be set to .true. during
the red relaxation and set to .false. duringthe black relaxation so as to avoid initializing the entire
vector every time. The construction of the "black list" is included in the algorithm for red relax-
ation.

The relaxation operator is easily extended to higher order finite elements with only one
minor change.To be specific, we will consider the spaces ofC0 pth degree polynomials over tri-
angles. Thedifference for the higher order spaces is that the basis functions of the same level are
not mutually orthogonal, as with the linear basis, so a simple red phase of red-black Gauss-Seidel
does not solve the subsystem exactly. Howev er, for the spaces we consider the submatrix is block
diagonal with blocks of sizep2, so we can still solve the subsystem exactly if we are willing to
solve many small systems.For high order finite elements the bisection of a pair of triangles adds
one new vertex, p2 new nodes andp2 new basis functions. These new nodes are the red nodes in
the relaxation.The p2 basis functions associated with the new vertex are not orthogonal to each



33

other, but are orthogonal to all other basis functions of the same level, hence the block diagonal
structure of the submatrix. Since the size of the symmetric positive definite diagonal blocks
depends only onp, these small subsystems can be solved using Cholesky decomposition in a con-
stant (w.r.t N) number of operations and we maintain the O(N) operation count for relaxation.
The use of an iterative solver for these small systems would provide little, if any, reduction in the
operation count, and could damage the convergence properties if not used carefully. All other
aspects of the relaxation operator remain the same for these spaces of high order finite elements.
We should emphasize, however, that for the local black relaxation, relaxation occurs at all black
nodes for which the associated basis function is not orthogonal to any of the red basis functions.
There are (p + 1)2 of these associated with each group ofp2 red basis functions, as illustrated in
Fig. 3.2, where we show the red and black nodes associated with a new vertex in the case of cubic
elements. Alg.3.4 and Alg. 3.5 give the red and black relaxation algorithms, respectively.

3.3 Transfer operators

•
•

•
•

•
•

•
•

•
•

•
•

• •
•

•

Fig. 3.2. Red nodes () and black nodes (•) associated with a new vertex (cubic elements)

Algorithm 3.4. Red relaxation

black list← empty
for each vertex of lev el l

set up and solve system forp2 associated red nodes
if black relaxation will follow then

for each associated black node
if black node is not on the black list then

add to black list
endif

next black node
endif

next vertex
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Algorithm 3.5. Black relaxation

for each black node on the black list of Algorithm 3.4
point Gauss-Seidel relaxation at this node

next node

The other main parts of a multigrid algorithm are the two transfer operators which are used
to move between fine grids and coarse grids. The restriction operator, Icf , transfers the problem

from the fine grid to the coarse grid and the prolongation operator, Ifc , transfers the problem from
the coarse grid to the fine grid. The transfer operators we use turn out to be those of the Galerkin
approach [36]. In this approach the restriction and prolongation operators are adjoint and the
coarse grid operator, Ac, is related to the fine grid operator, Af by Ac = Icf Af If

c . We will use the
change between the nodal and 2-level hierarchical bases to describe the transfer processes.From
this it is not clear what the transfer operators are, or even that our methodis a multigrid method,
so we also present a second derivation in terms of the usual multigrid approach to show that our
method fits into the conventional multigrid framework. Sincewe depend only upon the basis
change to define the transfers, this method applies to any finite element space with a hierarchical
basis. Theresulting operators are very natural and of the correct order of accuracy for the
approximation space being used.We immediately present this for arbitrary spaces without first
considering linear elements.

Let the nodal matrix for the linear system be

A =




A11

A12

AT
12

A22





and the nodal solution vector and right side bex = [x1 x2]T andb = [b1 b2]T where the partition
is such that the second part contains values corresponding to basis functions of the highest level.
Let Ã, etc., be the corresponding entities using the 2-level basis, and letS be the matrix that con-
verts from the 2-level basis to the nodal basis. As in §3.1,s is the lower left submatrix ofS.
From Ã = ST AS and the equivalence of Ax = b and ST ASS−1x = STb, we hav e x̃ = S−1x and
b̃ = STb. Since the lower level of the 2-level basis is the nodal basis of the coarse grid,Ã11 is the
nodal matrix for the coarse grid. It turns out that to obtain the problem we will solve on the
coarse grid we use the lower level part of the 2-level basis fine grid problem, i.e., we extract the
equations corresponding to the coarse grid nodes. This is



Ã11 Ã

T
12







x̃1

x̃2





= 

b̃1




So the problem we solve on the coarse grid is

Ã11x̃1 = b̃1 − Ã
T
12x̃2

We summarize this process in Alg. 3.6. Recall that the algorithms for the basis changes were
given in §3.1.
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Algorithm 3.6. Restriction

A ← ST AS
x ← S−1x
b ← STb
b1 ← b1 − AT

12x2
coarse grid problem isA11x1 = b1

From this derivation, it is not clear that the problem we solve on the coarse grid is equiv-
alent to the standard multigrid coarse grid problem.Nor is it clear what the transfer operators are.
To clarify these points, we provide a second derivation. In the usual multigrid methods, the fine
grid residual is restricted to the coarse grid to be used as the right hand side of the linear system.
The solution of this system then approximates theerror at the coarse grid nodes and is used as a
correction. We hav ea coarse grid problem which approximates thesolution at the coarse grid
nodes, making our method afull approximation scheme[36], but we will show the equivalence.
In the Galerkin approach, the coarse grid matrix is given by Icf Af If

c , so the usual coarse grid
problem is

(3.1)(Ic
f Af If

c )( x̃new
1 − x̃old

1 ) = Ic
f (b − Af x

old)

We will begin with this and derive our coarse grid problem.First note the following rela-
tionships between the nodal and 2-level matrices and vectors:

Ã11 = A11 + sT A12 + AT
12s + sT A22s

Ã12 = A12 + A22s

x̃1 = x1

x̃2 = x2 − sx1

b̃1 = b1 + sTb2

b̃2 = b2

We see that

Ã11 = 

I sT


A 


I

s



so we have the transfer operators given by

Ic
f = 


I sT


and I f

c = 

I

s



Then
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Ic
f (b − Axold) = 


I sT






b1 − A11xold
1 − AT

12xold
2

b2 − A12xold
1 − A22xold

2





= b1 − A11xold
1 − AT

12xold
2 + sTb2 − sT A12xold

1 − sT A22xold
2

Since we are solving for the solution, rather than the correction, we move Ã11xold
1 to the right

hand side of Eqn. 3.1 to obtain the coarse grid problem

Ã11x̃new
1 = b1 − A11xold

1 − AT
12xold

2 + sTb2 − sT A12xold
1 − sT A22xold

2

+ A11x̃old
1 + sT A12x̃old

1 + AT
12sx̃old

1 + sT A22sx̃old
1

= b1 + sTb2 − (AT
12 + sT A22)(x

old
2 − sxold

1 )

= b̃1 − Ã
T
12x̃old

2

which is the same as the problem we solve on the coarse grid.

The prolongation process is simply to add back in the part of the solution due to the high
level basis functions and return the system back to the nodal basis.The changes made inx1 by
solving the coarse grid problem are carried intox2 as corrections during the basis change
x ← Sx̃. We note, however, that in our case this step is unneccessary. Only x2 is affected by this
change, and the next step will be a red relaxation which redefinesx2 without using x2. We
include this step in the algorithm because these algorithms can also be used with approximation
spaces in which the red relaxation does usex2. We summarize the prolongation processes in Alg.
3.7.

As with the restriction process, we show that this gives the same result as a standard multi-
grid approach. There, the error computed on the coarse grid is prolongated to the fine grid and
added as a correction, i.e.,

xnew = xold + If
c( x̃

new
1 − x̃old

1 )

We hav e

xnew =




xold
1

xold
2





+ 

I

s


( x̃new

1 − x̃old
1 )

Algorithm 3.7. Prolongation

b1 ← b1 + AT
12x2

b ← S−Tb
x ← Sx
A ← S−T AS−1
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=




xold
1 + x̃new

1 − x̃old
1

x̃old
2 + sx̃old

1 + sx̃new
1 − sx̃old

1





=




x̃new
1

x̃old
2 + sx̃new

1





= S




x̃new
1

x̃old
2





So x = Sx̃ provides the desired prolongation of the correction.

Notice that in our restriction and prolongation algorithms we actually perform the basis
changes for the matrix. This could be of some concern for two reasons: (i) it requires several
operations, in fact, it is the dominant part of the operation count for high order elements, and (ii)
it could introduce excessive roundoff errors, although we never experience this in the numerical
computations of Chapter 5.Unfortunately, it is necessary to perform these basis changes. First, if
we have a highly nonuniform grid, then we cannot store all the representations of the stiffness
matrix in O(N) space. Ofcourse, we are only using O(N) of those values, and it may be possible
to find a (probably complicated) scheme to store only the useful values. Second,ev en if we can
store all the necessary values in O(N) space, we have a problem with quadrature errors. If we
were to keep the originally computed inner products of the low lev el basis functions, these values
would contain quadrature errors on the order of the very coarsest grid, which would destroy the
accuracy of the solution on the finest grid.We would have to correct these quadrature errors at
the time we refine an element, just as we do with our nodal basis matrix. But to do this with
ev ery representation would require the correction of at least O(logN) values with the addition of
each new basis function. So wemustperform these basis changes in the restriction and prolonga-
tion algorithms. One way to reduce the accumulation of roundoff errors (at the expense of essen-
tially doubling the amount of storage) would be to keep two copies of the stiffness matrix: a
working copy in which the basis changes are performed, and a backup copy which is copied into
the working copy before each V-cycle.

For some approximation spaces our transfer operators reduce to commonly used transfer
operators when we have a uniform grid on a square domain. Thus we could consider our opera-
tors to be a generalization of those operators to other spaces, other domains, and nonuniform
grids. Sincethe prolongation operator is the adjoint of the restriction operator, we will consider
only the restriction operator. The commonly used operators we consider are all described in
Stu

..
ben and Trottenberg [36]. We hav etwo cases where, with the proper approximation space, our

restriction operator is the same as a commonly used restriction operator. If the space of piecewise
linear functions over triangles which were refined byregular division is used, the restriction oper-
ator is the same as the7-point operator of [36]; if the space of piecewise bilinear functions over
rectangles is used, the restriction operator is the same as thefull weightingoperator. Howev er,
another important restriction operator, thehalf weightingoperator, is not produced by any approx-
imation space.And, the restriction operators from piecewise polynomial functions over triangles
which were refined bybisectionare not the same as any of the restriction operators in [36].

We now hav eall the necessary components for a multigrid iteration. Alg. 3.8 performs one
V-cycle usingν1 = 1

2 andν2 = 1. L is the number of levels in the grid.The exact solve on lev el 1
can be performed by Cholesky decomposition or a sufficient number of Gauss-Seidel iterations.

It is not sufficient to just know that a method requires only O(N) operations; if the constant
of proportionality is extremely large, say on the order of 10000, the method is practically useless.
We provide in Table 3.1 the asymptotic constants of proportionality for our multigrid iteration.
We provide the constants for each of the parts of the method, and for the complete V-cycle. We
make the following comments:
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Algorithm 3.8. V-cycle

for level = L downto 2
red relaxation
restriction

next level
exact solve on lev el 1
for level = 2 to L

prolongation
red relaxation
black relaxation

next level

Table 3.1. Number of multiplications per node for the multigrid iteration

Poisson linear quadratic cubic
mults adds elements elements elements

red relaxation 1 4  5 18 375/9
local black relaxation 1 - 4  4 - 16 9 - 36 14 - 37 1/4 192/3 - 43 1/9
right side basis change 1 2  2 4 62/9
solution basis change 1 2  2 4 62/9
matrix basis change 0 0  12 56 167 5/9

V-cycle total 6 - 9  18 - 30 49 - 76 174 - 197 1/4 448 5/9 - 472

(i) In addition to the general problem using linear, quadratic and cubic elements, we consider
Poisson’s equation on a square domain with linear elements.We can take advantage of the
fact that every relaxation is an averaging of four neighbors to reduce the operation count
considerably.

(ii) Red relaxation, right hand side basis change, and matrix basis change are each performed
twice in one V-cycle; solution basis change and local black relaxation are performed once in
one V-cycle.

(iii) For the general cases, the given value is the number of multiplications for each node; the
number of additions is approximately the same.For the special Poisson case, the number of
additions and multiplications differ, so we provide both.

(iv) The number of operations for local black relaxation depends on how many red neighbors
each black node has.We provide lower and upper bounds. The best case is when all black
nodes are completely surrounded by red nodes, i.e., a uniform grid. The worst case is when
each black node that has a red neighbor has only one neighboring red vertex, i.e., when the
red vertices are all widely separated. Since adaptive refinement usually occurs in areas, not
widely separated points, we would expect to be closer to the lower bound in practice.

(v) Althoughthere are (p + 1)2 black nodes andp2 red nodes associated with each red vertex,
so that there is at mostp2 × (p + 1)2 nonzeroes inS for each red vertex, many of the black
basis functions are zero at many of the red nodes. In fact, there are 2, 16 and 58 nonzeroes
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in S for each red vertex for linear, quadratic and cubic elements, respectively. We take
advantage of this in our operation count.

(vi) For red relaxation, we include the operations for factoring the principle submatrix by
Cholesky decomposition. Onemay think that this need only be done once, but because of
quadrature errors it must be done during every solution phase.It need only be done on the
"downward" pass of the first V-cycle, but we have included it for every red relaxation.
When omitted, the operation count for red relaxation is reduced by 4 and 12 1/9 for
quadratic and cubic elements, respectively.

(vii) The special Poisson case with a uniform grid is very fast indeed.We will show in Chapter 4
that the entire solution process can be done in a number of operations equivalent to 65/63
V-cycles. We note that we can solve the system with 5N nonzeroes in the matrix with only
about 6.19N multiplications. Asa further indication of how fast this is, we compare our
operation count with that of FFT (see, e.g. [8]).If one operation is a multiplication and an
addition, FFT can solve the linear system with 2N log N operations. Ifwe assume that mul-
tiplication and addition are equivalent, then one cycle of our method uses 12N operations.
The entire solution process uses about 12.38N operations. Thismeans that our method is
faster than FFT when there are more than 74 nodes. It may also be worth noting that all of
these multiplications are divisions by 2 or 4.

3.4 Convergence of the multigrid iteration

In order to determine how many V-cycles are required to keep thesolution error (the differ-
ence between our current solution and the exact solution of the discrete problem) of the same
order as thediscretization error (the difference between the exact solution of the discrete problem
and the true solution of the continuous problem), it is necessary to know the factor by which one
iteration reduces the error. In particular, we are interested in the worst case reduction of the error
in the energy norm. By using the energy norm we will be able to relate the error-reducing power
of the multigrid iteration to the convergence of the discretization error through the orthogonality
of the discretization error to the approximation space.We will use this in Chapter 4.Many
researchers use the spectral radius,ρ, of the iteration operator as the measure of the convergence
of the multigrid iteration.This is not of interest to us because we do only one V-cycle and so the
limiting behavior is not very relevant. Theerror reduction depends on many factors (elliptic oper-
ator, domain, grid, etc.); so as is typical of convergence analysis, we will determine the rate of
convergence for the model problem of Poisson’s equation on the unit square with a uniform grid.
Proposition 3.1 shows how we can numerically compute the rate of convergence of the multigrid
iteration. Thisholds for any self-adjoint elliptic operator, domain, grid and approximation space.
In this section we perform the numerical computation for the model problem using linear,
quadratic and cubic elements.We will consider some other cases in Chapter 5.For linear ele-
ments and the model problem, it is known that the rate of convergence for the 2-grid iteration is
1/8 for square domains, and Braess [12] showed that for certain polygonal domains the rate of
convergence for the V-cycle is bounded by 1/2.We determine that for linear elements and the
model problem, the rate of convergence of the V-cycle appears to be 1/8, the same as the 2-grid
iteration. Theconvergence rate for higher order elements is slower.

Let V be the iteration operator for anl -level V-cycle, i.e.,enew = Veold whereeold andenew

are the solution errors before and after the V-cycle, respectively. Let  .  be the energy norm
defined by x 2 = xT Ax whereA is the stiffness matrix. Also let .  denote the subordi-
nate matrix norm.We defineσ l to be V, and σ, the rate of convergence of the multigrid
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iteration, to be σ =
sup

l ≥ 1
σ l . σ is a bound on the amount by which the energy norm of the error

will be reduced by one V-cycle.

Proposition 3.1. Let x0 not be orthogonal to the dominant eigenspace ofVT AVA−1, and
xi+1 = VT AVA−1xi for i ≥ 0. Then

i→∞
lim

xT
i+1xi

xT
i xi

=  V 2

Proof. We recognize the limit in the conclusion as the power method for computing
ρ(VT AVA−1), so we need only show that the power method converges and that
 V 2 = ρ(VT AVA−1). SinceVT AVA−1 is similar to A−1⁄2VT AVA−1⁄2 = (A

1⁄2VA−1⁄2)T(A
1⁄2VA−1⁄2)

which is symmetric and positive semidefinite,VT AVA−1 has a complete set of eigenvectors and,
since all the eigenvalues are real and nonnegative, even if the dominant eigenvalue is a multiple
eigenvalue, no other eigenvalues have the same modulus. It is known (see, e.g., Stewart [34]) that
under these conditions, the power method will converge to the spectral radius.That  V 2 =
ρ(VT AVA−1) follows immediately from the definition of V  and the fact thatA has a sym-
metric positive definite square root as follows:

 V 2 =
sup

x ≠ 0

xTVT AVx

xT Ax
=

sup

x ≠ 0

xT A−1⁄2VT AVA−1⁄2 x

xT x
= ρ(A−1⁄2VT AVA−1⁄2)

Using a similarity transform, we get V 2 = ρ(VT AVA−1).

As a consequence of this proposition we have thatσ l can be computed by using the power
method, provided that we can multiply a vector byVT AVA−1. It is clear how one would multiply
by A−1, V, and A, but since we do not have the matrixV available it is not obvious how to multi-
ply a vector byVT. Howev er, it is possible to compute this product in O(N) operations, even for
high order elements, nonuniform grids, etc.We outline the process here.

A V-cycle consists of a sequence of several linear operations, thus we know V as the prod-
uct of several matrices. If we letRl , Bl , Sl , and S−1

l denote the matrices that represent the opera-
tions of red relaxation, black relaxation, conversion from the 2-level hierarchical basis to the
nodal basis and conversion from the nodal basis to the 2-level hierarchical basis on thel level
grid, respectively, and E1 denote the matrix representing exact solution on the coarsest grid, then

V = BL RL SL BL−1RL−1SL−1
. . . B2R2S2E1S−1

2 R2S−1
3 R3

. . .S−1
L RL

Thus

VT = RT
L S−T

L
. . . RT

2 S−T
2 ET

1 ST
2 RT

2 BT
2

. . .ST
L RT

L BT
L

and we can multiply a vector byVT if we can multiply a vector by each ofRT
l , BT

l , ST
l , S−T

l and
ET

1 . Multiplication byST
l andS−T

l were explained in §3.1.We consider the multiplication byRT
l

here. BT
l andET

1 are similar. Rl is given by a matrix of the form
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Rl =




I

−A−1
22A12

0

0





so

RT
l =





I

0

−AT
12A−1

22

0





We see that to compute

RT
l





x1

x2





we must set

x1 ← x1 − AT
12A−1

22x2

x2 ← 0

With a procedure to multiply byVT, we can use the result of Proposition 3.1 to compute the
rate of convergenceσ l . The matrixV in Proposition 3.1 can be any linear operator, so we can
also use this procedure to compute the rate of convergence of the 2-grid iteration, which can be
compared to the known theoretical 2-grid error reduction.

We determine the rate of convergence here for the usual model problem: Poisson’s equation
on the unit square with Dirichlet boundary conditions.We use a uniform refinement of the initial
triangulation of Fig. 3.3.

For the model problem, the error reduction in the energy norm for the 2-grid iteration is
known to be bounded by 1/8 independent ofh, the grid spacing, orL, the number of levels in the
grid. Moreprecisely, for anL-level refinement of the initial triangulation in Fig. 3.3,

Fig. 3.3. Initial triangulation (1-level grid) and first refinement (2-level grid)
used for the model problem



42

error reduction by 2− grid iteration=







1

8
1

8
cos3 π h

if L is even

if L is odd

whereh = 2
−

L+1

2 .

In Table 3.2 we present the theoretical and computed 2-grid iteration error reductions and
the computed V-cycle error reduction.We see that the computed 2-grid values agree with the the-
oretical values. For odd numbers of levels, the V-cycle does not reduce the error by as much as
the 2-grid iteration, but is still bounded by 1/8 and, in fact, the sequence is converging to 1/8.

Proposition 3.1 applies, not only to linear elements, but to high order elements as well.In
Table 3.3 we show the reduction of the energy norm of the error by one V-cycle for linear,
quadratic and cubic elements.We see that the rate of convergence slows as the order of the ele-
ments is increased. It is difficult to determine, from the number of levels used, the precise value
of σ for quadratic and cubic elements.However, we can be quite confident thatσ is approxi-
mately .31 for quadratics and .38 for cubics.

Table 3.2. Reduction of energy norm of error by one cycle
for the model problem using linear elements.

level 2-grid 2-grid V-cycle
of grid theoretical computed

2 .12500 .12500 .12500
3 .04419 .04419 .07329
4 .12500 .12500 .12500
5 .09857 .09857 .10297
6 .12500 .12500 .12500
7 .11793 .11793 .11823
8 .12500 .12500 .12500
9 .12320 .12320 .12330

10 .12500 .12500 .12500
11 .12455 .12455 .12463

Table 3.3. Reduction of energy norm of error by one V-cycle
for the model problem using higher order elements.

level l inear quadratic cubic
of grid elements elements elements

2 .125 .289 .333
3 .073 .291 .349
4 .125 .297 .363
5 .103 .301 .371
6 .125 .302 .375
7 .118 .303 .377
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CHAPTER 4
FULL MULTIGRID WITH ADAPTIVE REFINEMENT

The multigrid iteration provides a method for reducing the error between our approximate
solution and the exact solution of the discrete problem by a factor which is bounded away from 1
independent ofN using O(N) operations. Froman arbitrary initial guess, however, it would take
O(logN) iterations to reduce this error to the order of the discretization error. The full multigrid
methodis a way of obtaining a more accurate initial guess for the final grid so that thesolution
error (the difference between our approximate solution and the exact solution of the discrete sys-
tem) is of the same order as thediscretization error (the difference between the exact solution of
the discrete problem and the true solution of the continuous problem) and the total number of
operations is O(N). The basic idea of the full multigrid method [36] is to begin with a very
coarse grid and alternately perform refinement and solution phases. At the end of each solution
phase the solution error should be less than the discretization error.

For uniform grids, full multigrid is now a well established method. The refinement phase
consists of one uniform refinement of the grid (divide each triangle once) to obtain a grid of one

level higher. This reduces the grid spacingh by a factor of√2 or 2, depending on the type of
refinement used, and increases the number of nodes by about a factor of 2 or 4, respectively.
Using linear elements and a refinement which cutsh in half as an example, we see that the dis-
cretization error is cut in half and so the solution phase must perform enough cycles to cut the
solution error in half (this is not quite true, as we will see in the next section) which is done by a
fixed number of cycles of the multigrid iterations. Since the number of nodes grows like 4l where
l is the number of levels, the total amount of work for this is about 4/3 the amount of work done
on the final grid.Thus we have used O(N) operations and have the solution error less than the
discretization error.

For adaptive grids, the full multigrid method is not that well established.The problem is
that the number of nodes need not grow geometrically with the number of levels. If one used the
method the way it is used for uniform grids, the number of operations can be larger than O(N).
In the worst case where the number of nodes is proportional to the number of levels, the operation
count is O(N2). The usual approach used to overcome this [4, 31] follows the uniform grid
approach closely. The grid is refined to get one level higher, but if the number of nodes has not
been increased by a factor of 2 or 4 (depending on the type of refinement used) the refinement is
repeated rather than moving on to the solution phase. This approach is probably necessary
because the refinement phase follows the usual approach to adaptive refinement. Inthat approach
one determines which triangles should be refined, refines them, and enforces compatibility to
obtain a grid of one level higher. While this approach does result in an O(N) algorithm, it does
not flow smoothly, has unnecessary overhead in starting and ending refinements and may over-
shoot the target increase factor of 2 or 4.

Since the basic step of our refinement is the division of one pair of triangles and compatibil-
ity is always present, we can take a more elegant approach to the full multigrid method.The
refinement phase proceeds until the number of nodes (or vertices or triangles) has been increased
by exactly some given factor f . Moreover, there is no reason forf to be the factor 2 or 4 from
uniform refinement, so we allow f to be any real number larger than 1. The solution phase con-
sists of performingv V-cycles (multigrid iterations) wherev is large enough to keep the solution
error smaller than the discretization error. We summarize this in Alg. 4.1.
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Algorithm 4.1. Full multigrid

initializations
repeat

refine until the number of nodes has been increased by a given factor f
applyv V-cycles

until some termination criterion is met

In the next section we consider how one determines when to switch between refinement and
solution phases, i.e., what are good values forf and v. In §4.2 we present an error estimate
which approximates the energy norm of the discretization error. Such an estimate could be used
as the termination criterion in Alg. 4.1.

4.1 Switching between refinement and solution

Since the full multigrid method is just a process of alternating refinement and solution
phases, the crucial missing element of the algorithm is a method for determining when to switch
from one phase to the other. As explained earlier, we refine until the number of vertices or nodes
has been increased by some factor, f , and then performv multigrid iterations (V-cycles) for the
solution phase. What we need is a way of determining reasonable values for f andv. In this sec-
tion we will determine the most efficient values off andv in terms ofα, the rate of convergence
of the discretization error, and σ, the rate of convergence of the multigrid iteration.We begin by
finding out how much reduction in error must be obtained by the solution phase, and from this
determine the most efficient value off in terms ofα, σ andv. We then give the number of opera-
tions used by the full multigrid method, and from this show how to determinev.

For uniform grids, the rate of convergence of the discretization error is usually given in
terms ofh, a measure of the size of the triangles.A method is said to have order 2α if the energy
norm of the error decreases like O(h2α ) as h gets small.For adaptively refined grids,h is not
such a meaningful entity, but we can useN to measure the rate of convergence of the discretiza-
tion error. For a uniform grid,N = O(h−2) so the error decreases like O(N−α ) as N gets large.
The beauty of adaptive refinement is that for many problems we can maintain the O(N−α ) rate of
convergence even when the uniform grid does not provide the O(h2α ) convergence of "nice" prob-
lems. Thus,we say thatα is therate of convergence of the discretization error if α is the largest
value such that the discretization error is O(N−α ), i.e., u − uN  ∼ cN−α for some constantc
whereu is the true solution of the differential equation,uN is the exact solution of the discrete
problem with N nodes, and. is the energy norm.Normally, α=1⁄2, 1 and 3/2 for linear,
quadratic and cubic elements, respectively. As in Chapter 3,σ is therate of convergence of the
multigrid iteration defined to be a bound on the factor by which the energy norm of the solution
error is reduced in one V-cycle of the multigrid iteration, where the solution error isũN − uN and
ũN is our approximate solution.

Theorem 4.1. Let α be the rate of convergence of the discretization error andf be the factor by
which the refinement phase increases the number of nodes.Then, asymptotically, the solution
error will remain less than the discretization error if the solution phase reduces the solution error
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by a factor of at least (2f 2α − 1)−
1⁄2.

Proof. The true solution of the partial differential equation,u, lies in a Hilbert spaceH endowed
with the energy inner product <., .> and the subordinate energy norm.. Let SN ⊆ H be the
space ofC0 piecewisepth degree polynomials over the triangulation withN nodes, andSfN be
the space associated with the refined triangulation withfN nodes. We hav eSN ⊆ SfN since the
triangulation with fN nodes is a refinement of the triangulation withN nodes. LetuN be the
exact solution of the discrete problem inSN, i.e., uN is the unique function inSN such that
<u − uN, w>=0 \/— w ∈SN, and letu fN be the exact solution of the discrete problem inSfN. Let

ũN be our approximate solution inSN. We assume that ũN − uN  ≤  u − uN . We then
wish to find aũ fN ∈SfN such thatũ fN − u fN  ≤  u − u fN . Thus the solution phase is
designed to keep the solution error smaller than the discretization error.

From the definition ofα

 u − u fN 
 u − uN 

∼
c( fN)−α

cN−α = f −α

Thus u − uN  ∼ f α  u − u fN .
SinceũN ∈SN andũN ∈SfN we have the Pythagorean identities

 ũN − uN 2 +  u − uN 2 =  ũN − u 2

and

 ũN − u fN 2 +  u − u fN 2 =  ũN − u 2

and thus, using ũN − uN  ≤  u − uN 

 ũN − u fN 2 =  ũN − uN 2 +  u − uN 2 −  u − u fN 2

≤ 2 u − uN 2 −  u − u fN 2

∼ 2 f 2α  u − u fN 2 −  u − u fN 2

= (2 f 2α − 1) u − u fN 2

Therefore, to insure that ũ fN − u fN  ≤  u − u fN  we must reduce the error

 ũN − u fN  by a factor of (2f 2α − 1)−1/2.

Corollary 4.2. For giv en α, σ and number of V-cyclesv, f must be bounded by

f ≤




σ −2v + 1

2





1/2α

Proof. Since one V-cycle reduces the solution error by a factor ofσ, v iterations reduce the error
by a factor ofσ v. To keep the solution error smaller than the discretization error, we must have
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σ v ≤ (2 f 2α − 1)−1/2

Rearranging this inequality gives the desired result.

Let Nr = c1 f r be the number of nodes in the triangulation afterr refinement phases,c2Nr
be the (asymptotic) number of operations used by one V-cycle on a triangulation withNr nodes
and the final triangulation be the result ofR refinement phases. Then, the number of operations
used by the full multigrid solution is

R

r=1
Σ vc2Nr =

R

r=1
Σ vc2c1 f r = vc2c1

f ( f R − 1)

f − 1
∼ v

f

f − 1
c2c1 f R = v

f

f − 1
c2NR

We see that for given v, the operation count is minimized by using the largest possiblef .
Thus we should choosef = ((σ −2v + 1)/2)1/2α . The most efficient choice ofv is then given by the

v which minimizesv
f

f − 1
with this choice of f . Clearly, this is an increasing function ofv

whenv is sufficiently large. Thus,for given α andσ, one can computev
f

f − 1
for a few small

positive integer values ofv to determine the most efficient choice forf andv. Usually, v = 1 is
best. InTable 4.1 we give these values for linear, quadratic and cubic elements using the multi-
grid rate of convergence for the model problem as determined in §3.4. In the last column we give

the value ofv
f

f − 1
. This represents the amount of work required with respect to one V-cycle on

the finest grid, e.g., with quadratic elements the full multigrid is slightly faster than 2 V-cycles.

One final note.One can use the number of vertices or number of triangles as the quantity to
be increased by the factor f . If V andT are the number of vertices and triangles, respectively,
and we are usingpth degree piecewise polynomials, each division of a pair of triangles adds one
vertex, two triangles andp2 nodes, thusV ∼ T/2 ∼ N/p2. So V, T andN are asymptotically lin-
early related and increasing any one of them by a factor f increases the others by (approximately)
the same factor.

4.2 An error estimate

With any software package for the solution of partial differential equations it is desirable,
though not necessary, to hav ea reasonable error estimate.The distinction between an error indi-
cator and an error estimate is made by Zienkiewicz et al. [39]. An error indicator is used to deter-
mine where the grid should be refined and need not necessarily be an accurate estimate of the
error. An error estimate, on the other hand, should be a good approximation of the error in some

Table 4.1. Optimal choices forv andf for the model problem

type of elements α σ v f  vf/(f-1)

linear .5 .125 1 32.5 1.03
quadratic 1.0 .31 1 2.39 1.72
cubic 1.5 .38 1 1.58 2.72
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norm and may be used as a termination criterion for the program, or just to give the user an idea
of how accurate the solution is. Most of the available error estimates, including the one presented
here, estimate the error in the energy norm. The accuracy of an error estimate is measured by the
effectivity index, defined to be the ratio of the error estimate to the norm of the actual error.
Zienkiewicz et al. present a set of requirements for a good error estimate, the most important of
which are:

(i) it should be easy to compute,
(ii) the effectivity index should be greater than 1,
(iii) the effectivity index should asymptotically approach 1 asN → ∞.

There is no guarantee that our error estimate will satisfy these last two conditions, and, in fact, we
do not claim that this estimate is competitive (in terms of accuracy) with the best available error
estimates, such as that of Bank and Weiser [5].However, in our numerical examples of Chapter 5
we find that the effectivity index for linear elements is typically between .9 and 1.2, very
respectable indeed.It is also reasonably accurate for high order elements, whereas other error
estimates are only defined for linear elements. The most attractive feature of our error estimate is
the speed with which it can be computed when used in conjunction with the adaptive refinement
algorithm of Chapter 2.Given the error indicators, it requires onlyN/p2 to 2N/p2 operations,
depending on how many triangles are not compatibly divisible.

The derivation of our error estimate contains several crude approximations and should be
considered to be somewhat heuristic. This results in the inability to make any claims on the accu-
racy of this estimate.We once again point out that the error estimate is not a crucial part of the
algorithm and that our objective is just to find a reasonable estimate of the error that is very easy
to compute.

Let uN be our approximation ofu using N nodes and suppose we refined the grid tofN
nodes to get a new approximate solutionu fN. Since the errorefN = u − u fN is orthogonal to the
approximation space,

 eN 2 =  efN 2 +  u fN − uN 2

Also, since eN  = O(N−α ) we hav e efN 2 ≈ f −2α  eN 2, hence

(1 − f −2α ) eN 2 ≈  u fN − uN 2

or

 eN 2 ≈
f 2α

f 2α − 1
 u fN − uN2

If we were to perform a uniform refinement of our adaptive grid (divide each triangle once)
then the number of nodes is approximately doubled, so we usef =2. Thenif we can estimate how
much change occurs in the norm of the solution, we have an error estimate. Such an estimate can
be obtained from the error indicators.Each error indicator is an estimate of the change in the
energy norm of the solution if the pair of triangles is divided. For triangles that are not compati-
bly divisible, we only count one of the triangles in the pair, and so divide the error indicator by 2.
Thus, ifS1 is the set of compatibly divisible pairs of triangles andS2 is the set of triangles that are
not compatibly divisible andε i are the error indicators
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 u fN − uN 2 ≈
S1

Σ ε 2
i + 1

2
S2

Σ ε 2
i

Sinceα = p/2, we then have

 eN 2 ≈
2p

2p − 1



S1

Σ ε 2
i + 1

2
S2

Σ ε 2
i





as our error estimate.
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CHAPTER 5
NUMERICAL RESULTS

The method described in this thesis has been implemented in a FORTRAN program to solve
Eqn. 1.1. In this chapter we use this program to investigate numerically some of the questions
which are too difficult to answer mathematically, and to verify some of the mathematical results.

These computations were performed on a Pyramid 90x with floating point accelerator oper-
ating under the Pyramid Technology OSx 3.1 Operating System which is a dual port of AT&T
Bell Laboratories’ System V Release 2.0 and the University of California, Berkeley’s 4.2BSD.
The Pyramid Technology Optimizing FORTRAN 77 compiler was used with single precision,
which has about 7 decimal digits.

For these computations, we use the following problems:
Problem 1. Laplace’s equation on the L-shaped domain of Fig. 5.1(a) with the Dirichlet bound-
ary conditions chosen so that the true solution isr2/3 sin(2θ /3). Both x and y range from -1 to 1
and the reentrant corner is located at the origin. Fig. 5.1(a) shows a sample adaptively refined
grid with the initial 6 triangles in bold. The solution exhibits the leading term of the singularity
due to the 270° reentrant corner.
Problem 2. Laplace’s equation on the hexagonal domain of Fig. 5.1(b). The domain has a slit
along the positive x axis. x ranges from -1 to 1 andy from −√3/2 to√3/2. TheDirichlet bound-
ary conditions are chosen so that the true solution isr1/2 sin(θ /2). Thereentrant corner is located
at the origin. Fig. 5.1(b) shows a sample adaptively refined grid with the initial 6 triangles in
bold. Thesolution exhibits the leading term of the singularity due to the 360° reentrant corner.
Problem 3. This is Problem 54 in the elliptic PDE population of Rice, et al. [26, 27].The differ-
ential equation is

((1 + x2)ux)x + ((1 + A2)uy)y − (1 + (8y − x − 4)2)u = f

on the unit square, whereA = 4y2+. 9. The right hand side and Dirichlet boundary conditions are
chosen so that the exact solution is

2. 25x(x − A)2(1 − D)/A3 + 1/(1+ (8y − x − 4)2)

where

B = max{0, (3− x/A)3}

C = max{0, x − A}

D =




0 if C < .02

e−B/C if C ≥ . 02

Fig. 5.1(c) shows a sample adaptively refined grid with the initial 8 triangles in bold.A contour
plot of the solution can be found in [26] or [27]. The solution has a ridge in the vicinity of
y ≈ . 6−. 7.

5.1 Convergence of the discretization error

With uniform refinement, the rate of convergence of the discretization error depends on the
smoothness of the solution.For Problems 1 and 2, the best one can hope for isα=1/3 and 1/4,
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(a) (b)

(c)

Fig. 5.1. Domains and sample grids for (a) Problem 1
(b) Problem 2 (c) Problem 3

respectively, no matter what degree polynomials are used. It is possible for adaptive refinement to
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recover the optimal rate of convergence. We solve Problems 1 and 2 using linear, quadratic and
cubic elements with both uniform and adaptively refined grids.For these solutions, we use one
V-cycle for the solution phase, and increase the number of vertices by the factor f =4, 2.39 and
1.58 for linear, quadratic and cubic elements, respectively, except for Problem 2 where we use
f =2 for quadratics.We use f =4 instead of 32.5 for linear elements to give us a sufficient number
of data points for our graphs. The results are presented in Figs. 5.2, 5.3 and 5.4 for Problems 1, 2
and 3, respectively. The data points on the graphs are labeled with A, B and C for linear,
quadratic and cubic elements, respectively, for the uniform grids, and 1, 2 and 3 for linear,
quadratic and cubic elements, respectively, for the adaptive grids. Theobserved rate of conver-
gence is given by the slope of a linear least squares fit of the data.When appropriate, we discard
some of the first data points in determining the slope. These slopes are given in Tables 5.1 and
5.2.

Most of the results are as expected. For uniform grids, the rate of convergence is about 1/3
and 1/4 for Problems 1 and 2, respectively, for all three polynomial degrees. For adaptive grids,
the rate of convergence is about 1/2, 1 and 3/2 for linear, quadratic and cubic elements, respec-
tively, for both problems.For Problem 3 the rate of convergence is slightly larger than 1/2, 1 and
3/2 for linear, quadratic and cubic elements, respectively, for both uniform and adaptive grids.
Although the uniform grids achieve the optimal order of convergence, the adaptive grids have a
smaller constant of proportionality. We note that for the uniform grid and linear elements for
Problem 3, the orientation of the grid affects the error, resulting in a bumpy graph.

In numerical experiments that compare low and high order methods with uniform grids for
problems with well behaved solutions (e.g. [27]) it is usually observed that for very low accuracy
it is more efficient to use linear elements, but for moderate and high accuracy the high order ele-
ments are more efficient. We observe the same result when using adaptively refined grids for
Problems 1 and 2.

We also see that the convergence of the error with CPU time is of optimal order for the
adaptive grids. As expected from the operation counts of §3.3, the relative placements of the
graphs of linear, quadratic and cubic elements are shifted in the time vs. error graph from what
their relative placements were in the nodes vs. error graph.

5.2 Effectivity index

The effectivity index of an error estimate is defined to be the ratio of the error estimate to
the norm of the error. This is used as a measure of the accuracy of the error estimate.It is desir-
able to have an effectivity index near 1. When solving the problems in §5.1 we compute the error
estimate of §4.2 after each solution phase and measure the effectivity index. We present the
effectivity indices for the adaptive grids in Tables 5.3, 5.4 and 5.5.Each value corresponds to one
of the data points in the graphs of Figs. 5.2, 5.3 and 5.4.We observe that the error estimate is
very good, not only for linear elements, but for quadratics and cubics, too. The only deficiency is
with quadratics and cubic for Problem 2, where the error is underestimated. This is easily
explained. Theerror estimate is designed to estimate thediscretizationerror, but not thesolution
error. For Problem 2 with quadratics and cubics, the solution error is almost as big as the dis-
cretization error, so the total error is underestimated.To verify this, we solved Problem 2 with
quadratic and cubic elements again, this time using 2 V-cycles so that the solution error is much
smaller than the discretization error. The effectivity indices for this are presented in Table 5.6.
Here we see the more desirable situation of slightly overestimating the error. We also note that
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Fig. 5.2. Results for Problem 1
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Fig. 5.4. Results for Problem 3

Table 5.1. Observed order of convergence
with uniform grids

problem linear quadratic cubic
elements elements elements

1 .355 .355 .349
2 .284 .273 .264
3 .697 1.131 1.555

Table 5.2. Observed order of convergence
with adaptive grids

problem linear quadratic cubic
elements elements elements

1 .540 1.011 1.633
2 .542 .967 1.496
3 .616 1.159 1.680
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Table 5.3. Effectivity index for Problem 1

linear quadratic cubic
elements elements elements

1.178 .800 .748
1.129 .919 .729
1.161 .968 .783
1.122 1.000 .801
1.115 1.061 1.040

1.069 1.091
1.198

Table 5.4. Effectivity index for Problem 2

linear quadratic cubic
elements elements elements

.836 .723 .704
1.030 .748 .629
.999 .944 .672
.997 .853 .685

1.000 .852 .749
.856 .822
.863 .790

.818

.856

Table 5.5. Effectivity index for Problem 3

linear quadratic cubic
elements elements elements

.711 .732 .704
1.069 .922 .760
1.263 1.065 .716
1.355 1.197 .833
1.501 1.400 1.037

1.586 .975
.896
.929
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Table 5.6. Effectivity index for
Problem 2 withv=2

quadratic cubic
elements elements

.737 .710

.793 .636
1.083 .697
1.078 .744
1.106 .881
1.194 .966
1.182 1.054

1.123
1.055

the error is overestimated in Problem 3.This is probably due to the order of convergence being
slightly larger than optimal.

5.3 Convergence of the multigrid iteration

In this section we consider the effect of several factors on the rate of convergence of the
multigrid iteration. We use the techniques of §3.4 to determine the rate of convergence for the L-
shaped domain of Problem 1 with linear elements.This is computed using a uniform grid and
also with an adaptively refined grid. For the adaptive grid we consider three forms of relaxation:

(i) full black, in which we relax at all the black nodes after solving the coarse grid prob-
lem (ν1 = 1⁄2, ν2 = 1)

(ii) local black, in which we relax at the black nodes that are neighbors of red nodes as
discussed in §3.2

(iii) no black relaxation (ν1 = 1⁄2, ν2 = 1⁄2)
The results of these computations are presented in Table 5.7.

We first note that the reentrant corner has a pronounced effect on the rate of convergence.
The only difference between the uniform grid here and the V-cycle in Table 3.2 is the shape of the
domain, yet the rate of convergence has slowed from .125 to about .2. The use of a nonuniform
grid has almost no affect on the asymptotic rate of convergence. Usinglocal black relaxation
slows the rate of convergence very slightly. The difference is small enough to ignore, especially
when one considers that the full black relaxation requires more than O(N) operations for a highly
nonuniform grid. When no black relaxation is performed, the rate of convergence deteriorates
rapidly. We see from the data that the rate of convergence behaves like 1-O(1/logN), so it is not
bounded away from 1, and, in fact, O(logN) iterations are required to reduce the error by a given
constant.

5.4 Effect of f on the error

In this section we consider how f , the factor by which the number of nodes is increased
during the refinement phase, affects the accuracy of the solution.We examine this for each part
of the error -- the solution error and the discretization error.
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Table 5.7. Rate of convergence of the multigrid iteration
with the L shaped domain and linear elements.

uniform grid adaptive grid
levels

nodes σ nodes full black local black noblack

3 21 .081 13 .081 .081 .188
4 33 .127 18 .070 .075 .217
5 65 .137 20 .081 .093 .256
6 113 .154 25 .084 .097 .273
7 225 .165 27 .090 .103 .289
8 417 .177 40 .086 .109 .347
9 833 .187 53 .105 .129 .419

10 1601 .196 78 .118 .143 .498
11 3201 .205 82 .120 .146 .498
12 114 .141 .162 .544
13 116 .135 .163 .544
14 155 .139 .168 .580
15 159 .136 .169 .580
16 312 .178 .200 .645
17 316 .173 .201 .645
18 443 .192 .212 .679
19 459 .186 .212 .679
20 606 .194 .217 .705

The selection off must be such that the solution error is of the same order as the discretiza-
tion error, giv en the error-reducing power of the solution phase. Our approach is to choose anf
such that the solution error is no larger than the discretization error. Under this condition, a for-
mula for an upper bound onf was derived in §4.1. Onemay choose a different bound on how
large the solution error can be, such as half the discretization error, but in any case the crucial
quantity is the ratio of the solution error to the discretization error. We examine how this ratio
behaves as a function of f for Problem 1 using quadratic elements,v=1, and an adaptive grid with
at most 2000 nodes. In Fig. 5.5 we show this ratio for values of f between 1.5 and 4.We are

attempting to examine
lim

N → ∞
 soln. err. 
 disc. err. 

as a function off . For f sufficiently large, this

limit may be infinite, but we believe it is finite for f ≤ 4. In order to have N be a power off
times the initial number of nodes, we must use a different value ofN for each value off . This is
probably the cause of the irregularities in the graph, and indicates that we have not quite reached
the limit. However, we expect that the correct relationship is close to this curve. We see that the
relationship is slightly concave upward and that the ratio is 1 at approximately 2.8. This is rea-
sonably close to the value 2.4 determined in §4.1. In fact, it is remarkable that it is this close
since we do not have a uniform grid or the unit square, and the error reduction of the solution
phase does not include the reduction made by the local relaxations during the refinement phase.

The second consideration is the effect on the discretization error. We may expect the choice
of f to affect the discretization error because iff is large we are not improving the solution very
often. Thismay affect the error indicators enough that the adaptively refined grid is no longer
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Fig. 5.5. Solution error as a function off

optimal. We again solve Problem 1 with quadratic elements and values of f between 1.5 and 4,
this time with exactly 2000 nodes. Extra V-cycles are employed at the end to determine the dis-
cretization error. We present these results in Table 5.8.We see that there are small fluctuations in
the discretization error, but there is no discernible pattern.We conclude that the solution error
must be much larger than the discretization error before the adaptivity is seriously affected.
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Table 5.8. Discretization error as a function off

f error f error

1.5 1.46e-3 2.8 1.47e-3
1.6 1.46e-3 2.9 1.48e-3
1.7 1.49e-3 3.0 1.50e-3
1.8 1.49e-3 3.1 1.64e-3
1.9 1.51e-3 3.2 1.72e-3
2.0 1.50e-3 3.3 1.72e-3
2.1 1.58e-3 3.4 1.65e-3
2.2 1.50e-3 3.5 1.67e-3
2.3 1.50e-3 3.6 1.59e-3
2.4 1.51e-3 3.7 1.51e-3
2.5 1.47e-3 3.8 1.49e-3
2.6 1.66e-3 3.9 1.52e-3
2.7 1.49e-3 4.0 1.52e-3
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CHAPTER 6
POSSIBLE FUTURE DIRECTIONS

To present our high order finite element, adaptive refinement, multigrid method we have
concentrated on the solution of self-adjoint second order elliptic partial differential equations with
Dirichlet boundary conditions on polygonal domains in two dimensions usingC0 pth degree
piecewise polynomials over triangles. Clearlythe method also applies to curved domains, more
general boundary conditions, and probably approximation spaces with more continuity, howev er
the definition of the hierarchical basis for curved domains is not obvious (here we are not consid-
ering the use of isoparametric elements). When a triangle with a curved side is divided, the union
of the two new triangles is not necessarily the old triangle.In this case, the domain of the old
basis functions must be extended to cover the new triangles. Thepolynomial does not change,
only the domain of definition.Now the value of the old basis function can be determined at the
new nodes to define the matrixS used for basis changes, and the extension of the algorithm is
clear.

The principles on which our method is based can also be used similarly for many more
classes of problems and types of underlying methods.In this chapter we present some prelimi-
nary thoughts on possible directions in which future research on this approach may go.

6.1 Three dimensional problems

The first possible extension we consider is to three dimensional elliptic problems.Very lit-
tle seems to have been done in either of the areas of adaptive refinement or multigrid solution for
three dimensional problems. All of the aspects of our method are easily extended to more dimen-
sions, providing the possibility of high order methods for three dimensional elliptic problems
using adaptive refinement and a multigrid solution with O(N) operations. Ofcourse, we do not
actually know that the multigrid iteration will reduce the error by a factor which is independent of
the number of nodes, but there is no indication that it will not.

Since the relaxation, restriction and prolongation operators are defined in terms of the hier-
archical basis only, it is obvious how to define a multigrid iteration for these problems once we
understand what the hierarchical basis is.Moreover, once we know the hierarchical basis, it is
easy to define an error indicator for the adaptive refinement, which leaves us only with the ques-
tion of how to divide tetrahedra. Once we know how to divide tetrahedra, the definition of the
hierarchical basis is obvious.

The only difficulty in bisecting tetrahedra is in determining what is meant by "newest ver-
tex" bisection. For bisection a new vertex is added at the midpoint of one of the edges, but one
vertex does not uniquely determine the edge as it does with triangles. Instead, we needtwo
newest vertices. For this we use the newest and second newest vertices. Thenwe bisect the tetra-
hedra by passing a plane through the newest vertex, second newest vertex and midpoint of the
edge that is oppositeboth of these vertices. Thenewest vertices propagate in a natural manner.
This is illustrated in Fig. 6.1 where we label the newest and second newest vertices with "1" and
"2", respectively. In this figure (and Fig. 6.2) we use dashes for hidden lines and dots for the lines
added by the bisection.
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Fig. 6.1. Newest vertex bisection of tetrahedra

The edge on which the new vertex is placed is common to either four or eight tetrahedra.
Thus the addition of one vertex (or basis function(s) associated with one vertex) involves simulta-
neously dividing four or eight tetrahedra, analogous to dividing two triangles. Thedivision of
four tetrahedra is illustrated in Fig. 6.2.We believe the other processes and properties of triangles
presented in Chapter 2 have their analogues in three dimensions. One obvious property is that the
number of tetrahedra shapes is finite.We see that the faces are bisected by newest vertex bisec-
tion, hence there is a finite number of face shapes. This implies that there is a finite number of
tetrahedra shapes. One property that is not so obvious is the bound on the length of the recursion

..................................................................

........................................................

Fig. 6.2. Four tetrahedra bisected simultaneously
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for maintaining compatibility. In three dimensions one must checkall of the other tetrahedra that
share the edge to be divided. Also,it may requiretwo divisions of neighboring tetrahedra before
the tetrahedra are compatibly divisible. Thiscomplicates the recursion somewhat in a nonrecur-
sive language like FORTRAN. A bound on the number of tetrahedra that must be divided for
compatibility remains an open question.

6.2 Time dependent problems

It should be obvious how our approach to solving elliptic problems can be used to solve
parabolic problems of the form

ut = Lu

and hyperbolic problems of the form

utt = Lu

whereL is an elliptic operator.

For either of these problems, one can use any of a number of standard methods to handle the
time direction.Such methods discretize the problem in time and require the solution of an elliptic
PDE at each time step.One could use our multigrid method to solve the discrete systems that
arise. However, we expect that due to the high accuracy of the "initial guess" provided by the
solution at the previous time step, it will probably be more efficient to use a simpler solution
method like ADI, SOR or conjugate gradient. The more interesting question is how to get the
adaptive refinement to follow the behavior of the solution with time. What we propose as a possi-
bility is similar to an approach suggested by Gannon [19].

The nature of our refinement is very local in the sense that the basic step is one of dividing a
pair of triangles by connecting their opposing vertices through the midpoint of their common
side. It is just as easy to reverse this process and "de-refine" four triangles into two triangles. In
fact, we essentially do this during the multigrid iteration.Moreover, since our error indicator for
potential divisions is an approximation of the coefficient of the 2-level hierarchical basis function
at the new node, we can use the actual coefficients of the 2-level hierarchical basis functions of
existing nodes as an indication of which nodes are not needed.Then, the process for one time
step may be

set equations for this time step
solution phase
compute error indicators and determine coefficients for

existing 2-level basis functions
refine grid where error indicators are large and de-refine grid where

2-level basis coefficients are small
solution phase

It may be necessary to repeat this process more than once, and of course we need to maintain
compatibility during the de-refinement just as we do during refinement.This just means that we
would not remove refinements that are needed for compatibility. Initially, we should adapt a grid
to the given initial conditions of the problem using the hierarchical coefficients of the interpola-
tion of the initial condition as the error indicator. This process should result in grids which evolve
with the solution so that the fine areas of the grid move with the "difficult" areas of the solution.
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6.3 Rectangular elements

Throughout this thesis, we have concentrated on triangular elements. In principle, all
aspects of our method apply to rectangular elements as well, once we have defined the hierarchi-
cal basis. The definition we gav eof hierarchical bases in §3.1 applies not only to triangular ele-
ments but also to any space of functions over rectangular elements such as bilinear functions or
C1 Hermite bicubics. Gannon [19] considered the adaptive refinement of rectangular elements
using a hierarchy of grids, but did not consider the hierarchical basis. Except for special situa-
tions, a locally refined rectangular grid necessarily contains incompatibilities, as in Fig. 6.3.The
vertices at the incompatibilities are calledinactiveby Gannon. The inactive vertices donot have
basis functions associated with them, whereas the active vertices do. Under the interpretation of
refinement as the addition of hierarchical basis functions to the approximation space, it is clear
how to perform adaptive refinement for rectangles.We simply add to the approximation space
those basis functions (or groups of basis functions associated with a vertex) which have the
largest hierarchical coefficients, but three points must be kept in mind to make sure that the result-
ing grid makes sense.

(i) You can add the basis function(s) associated with a vertex at thecenterof a rectanglewith-
out adding the basis functions associated with the vertices at the center of thesidesof the
rectangle. Thiscreates inactive vertices.

(ii) If you add the basis functions associated with the vertices at the center of two adjacentrect-
angles, then youmustalso add the basis function(s) associated with the vertex at the center
of the common side, since this vertex now becomes active.

(iii) If you add the basis function(s) associated with the vertex at the center of asideof a rectan-
gle, then youmustalso add the basis functions associated with vertices at the centers ofboth
neighboring rectangles, since both rectangles must be refined to create this active vertex.

• • • •

• •

• • • •

• •

• • • •

Fig. 6.3. Active (•) and inactive ( ) vertices
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The rest of the extension of our method to these spaces is straightforward since our method is
defined in terms of the hierarchical basis only.

6.4 Collocation

Another method for determining a finite element approximation is the method ofcollocation
(see, e.g., [8], [21], or [35]).For second order elliptic partial differential equations, the space of
C1 Hermite bicubics over rectangular elements is usually used. The method of collocation
requires fewer operations than the Galerkin method to generate the discretization matrix and can
be applied to elliptic problems not having a minimum principle. Other advantages and disadvan-
tages of the collocation method are discussed by Dyksen, et al. [17].One of the main disadvan-
tages of collocation is that the resulting linear system is not symmetric and positive definite. Asa
result, the only reliable method of solution is banded Gauss elimination which cannot compete
with the iterative solvers used for the linear system that the Galerkin method produces.Addition-
ally, it has not been known how to do adaptive refinement for collocation with hermite bicubics
because of the tensor product nature of the nodal basis.It is possible that our approach can be
used for collocation to overcome these problems.

The discussion of rectangular elements in §6.3 should make it clear how one can do adap-
tive refinement for collocation with C1 Hermite bicubics, except for the placement of collocation
points and the evaluation of the error indicator. With the distinction between active and inactive
vertices, the placement of collocation points becomes clear. With a uniform grid, there are four
collocation points surrounding each vertex, placed at the "Gauss points" in the four rectangles
surrounding the vertex (see, e.g. [8]).These points correspond to the four basis functions associ-
ated with each vertex. With an adaptive grid, we have basis functions associated with the active
vertices only, so we surround each active vertex with four collocation points, but do not place col-
location points around the inactive vertices. We illustrate this through an example in Fig. 6.4.
How to compute the error indicator is an open question, but some approximation of the
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Fig. 6.4. Placement of collocation points for a nonuniform grid
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hierarchical coefficient could be used.

It is also possible that the multigrid iteration can be modified for collocation.With the
Galerkin method, thei th equation in the coarse grid problem is basically

(Lulow,φ i ) = ( f ,φ i ) − (Luhigh,φ i )

whereulow is the part ofu that comes from the low lev el hierarchical basis functions,uhigh is the
part ofu that comes from the high level hierarchical basis functions and (., .) is the L2 inner prod-
uct. Byanalogy, we suggest that thei th equation of the coarse grid problem for collocation be

Lulow(xi , yi ) = f (xi , yi ) − Luhigh(xi , yi )

where (xi , yi ) is the i th collocation point of thecoarsegrid. Thiscorresponds to the interpretation
of collocation as a finite element method in which the test functions are Dirac delta functions.
Unfortunately, the coarse grid collocation points are not a subset of the fine grid collocation
points and we would have to evaluate the hierarchical basis functions of every higher level at the
coarse grid collocation points. But each collocation point lies in only one rectangle of each level;
so for each collocation point there is at most 16 basis functions that must be evaluated on each
higher level. Moreover, on the l th level there are O(4l ) collocation points andL − l higher levels.
Consequently, the number of basis function evaluations for one cycle onL levels is

O(
L

l=1
Σ 4l (L − l )) = O(4L) = O(N). Thusit is possible to define a collocation multigrid that is anal-

ogous to our Galerkin multigrid and requires O(N) operations for one V-cycle. Whetheror not
this multigrid iteration has anN-independent error reduction factor is an open question.

6.5 Parallelism

With the new architectures that have been developed for computing machinery, it has
become more important to consider the parallelism present in numerical methods. The method
we have dev eloped has a high degree of natural parallelism, at least in principle. Perhaps the
most obvious is in the relaxation.Since the submatrix for any lev el is diagonal (or block diago-
nal) the red nodes can all be relaxed in parallel (or the blocks can be done in parallel).We also
note that the transfer operations take the form vector = vector + matrix*vector, which is an opera-
tion with a high degree of parallelism. The same is true of basis changes. The error indicators
are completely independent of each other, so they can be computed in parallel.Finally, one can
perform the division of several pairs of triangles in parallel provided that one is careful to avoid
pairs that are too close together. Howev er, it is not known how easily this algorithm maps onto
any giv en architecture.

6.6 Other possibilities

We hav epresented some preliminary thoughts on how the approach we have taken to adap-
tive refinement and multigrid solution can be extended to other situations. There are many other
worthy problems and solution methods to which the underlying principles may also apply. These
include, but are not limited to, nonlinear problems, systems of PDE’s, fourth order differential
equations, the p version of the finite element method, and the combined h-p version of the finite
element method.
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