
A Refinement-Tree
Based Partitioning
Method for Adaptively
Refined Grids∗

William F. Mitchell†

1 Introduction
An adaptive multigrid method solves an elliptic partial differential equation (PDE)
by beginning with a very coarse grid and cycling through phases of adaptive refine-
ment of the grid and multigrid solution of the linear system of equations resulting
from discretization of the PDE on the adaptive grid. In a parallel adaptive multi-
grid method, the adaptive refinement phase can cause the load balance over the
processors to become unequal. If the load is too unbalanced, the grid must be
repartitioned and redistributed before continuing with the solution phase.

An important part of a parallel adaptive multigrid method is the method for
determining this partition. In this context, it must not only produce equal sized
sets to balance the load and minimize cut edges to reduce communication, but must
also be very fast to not dominate the computation time of fast multigrid, and must
produce similar partitions for the refinement of a grid to reduce redistribution costs.

In this paper we present the K-way Refinement Tree (RTK) partitioning
method, a new method for partitioning grids that were created by adaptive refine-
ment. The method uses a weighted tree representation of the refinement process
that created the grid. A traversal of the tree sums the weights of the nodes. A
second traversal of the tree places subtrees into sets to quickly determine equally-
weighted connected partitions.

∗Contribution of NIST, not subject to copyright.
†Mathematical and Computational Sciences Division, National Institute of Standards and Tech-

nology, Gaithersburg, MD 20899-8910
Preprint submitted to the Proceedings of the Tenth SIAM Conference on Parallel
processing for Scientific Computing.

1



2

The RTK method was developed as a k-way version of the Refinement Tree
Recursive Bisection (RTRB) method [6]. RTRB is the same as RTK except that
the partitioning phase partitions the grid into only two parts, and is recursively
applied until the desired number of partitions have been generated. The motivation
for developing RTK was the amount of communication involved in RTRB. The
weight summation phase must be performed on each subtree partitioned during the
recursive bisection, and each of these involves one communication step. This is
a total of p − 1 all-to-all communication steps for RTRB, which quickly becomes
a bottleneck as p increases. In contrast, RTK uses only one communication step
independent of p.

Although derived from RTRB, the RTK method is very closely related to
the Octree Partition method (OCTPART) of Flaherty et al. [2, 3]. The primary
difference between RTK and OCTPART is the generation of the tree. Usually in
OCTPART, the tree represents a geometric refinement of a region covering the
domain through local subdivision of octants, rather than the refinement of some
initial set of coarse grid elements. Many of the nodes in the octree do not represent
coarser grid elements as in RTK. In most cases this is of little consequence, but
there may be situations where having the correspondence to coarse grid elements is
useful. The remainder of the OCTPART method is very similar to RTK, with only
a few minor differences.

Another class of related methods are the space filling curve methods [4, 7].
These methods produce a curve that passes through every element once, and cut
the curve into segments to define the partitions. In RTK, if the children in the
refinement tree are properly ordered then the path passing through the elements
ordered by a traversal of the refinement tree is a space filling curve. This can
be viewed as a topological generation of a space filling curve, in contrast to the
traditional algebraic generation.

The multilevel methods, like the multilevel diffusion algorithm of Schloegel et
al. [8], also use a tree-like approach to partition grids quickly. These algorithms
consist of three phases: coarsening, multilevel diffusion and multilevel refinement.
The coarsening phase merges nodes in the graph to create a multilevel hierarchy,
analogous to the refinement tree. In the multilevel diffusive phase, nodes are moved
to neighboring partitions to balance the load. The multilevel refinement phase
improves the quality of the partitions by reducing the edgecut. These methods are
more generally applicable by using an artificial tree, but require more work than a
simple method like RTK.

The rest of the paper is organized as follows. Section 2 describes the K-way
Refinement Tree algorithm (RTK). In Section 3, a method is presented for deter-
mined the order of the children such that a space filling curve is generated within
each initial element. Section 4 contains numerical results to compare RTK with
two other fast partitioning methods, recursive coordinate bisection and a multilevel
diffusive method from ParMETIS.



3

4

12

2

1

3

5

6

7 8

9 10

11

13

14

15
16

5

13

4

7 8 9 10

14

1

3

2

6

11 12

1615

Figure 1. Correspondence between grid refinement and the refinement tree.

2 K-way Refinement Tree Partitioning Method
This section describes the K-way Refinement Tree (RTK) algorithm. It begins with
a definition of the refinement tree, describes the RTK algorithm, and presents the
parallel form of the RTK algorithm.

The refinement tree is a representation of the refinement processes that pro-
duced an adaptive grid from an initial grid, as illustrated for bisected triangles in
Figure 1. The nodes of the tree correspond to the grid elements that existed at some
point during the refinement process. The children of a node correspond to the grid
elements that were created when the corresponding element was refined. Leaf nodes
correspond to the elements in the final grid. Nodes on the first level correspond to
the elements of the initial coarse grid. The root is an artificial node with the first
level nodes as children. Alternatively, an artificial tree can be constructed above
the first level nodes, ultimately terminating with a single root.

In RTK, the nodes of the tree are weighted. The weight assigned to a node
should be related to the amount of work associated with the corresponding element.
For example, elements containing a Dirichlet boundary may have a smaller weight
than elements in the interior of the domain. The weights are not limited to leaf
nodes; one may wish to apply weights to interior nodes to, for example, represent
the work on a coarse grid of a multigrid solver. In this paper we consider only the
simplest weighting scheme in which the leaf nodes have weight 1.0 and the interior
nodes have weight 0.0. This results in a partitioning of the elements of the final
grid into sets that differ in size by at most one.

RTK consists of two phases. In the first phase, every node is labeled with
the sum of the weights in the subtree rooted at that node. This is accomplished
by a depth first traversal of the tree, and takes O(N) operations where N is the
number of nodes in the tree. In the second phase, a truncated depth first traversal



4

4 61

1

1 2

3 1

3

5 9

14

1 1

1 1

1 1 1 1

1212

332

Figure 2. Partitioning the grid and tree into two sets.

of the tree is performed to create the partitions. The desired size of each partition
is determined by dividing the summed weight at the root node by the number of
partitions, and the partitions are initialized to be empty. During the traversal, the
summed weights at the nodes are examined relative to the size of the partition under
construction. If it is small enough to be added to the partition without exceeding
the desired size, then it is added and the subtree is not traversed. Otherwise, the
children are visited and the subtree will be split among two or more partitions.
Figure 2 illustrates this process for a simple grid partitioned into two parts. Most
of the time the subtree will fit in the current partition, so large portions of the grid
are assigned to a partition at the same time. Only when a partition is nearly full
will the traversal go deep into the tree to find a small enough subtree to fill out the
partition. If there are p partitions and the depth of the tree is O(logN), one would
expect the second phase to require O(p logN) operations.

In a parallel implementation, the grid is distributed over the p processors.
Each processor contains a refinement tree that includes at least the initial grid and
the part of the grid belonging to this processor. Parts of the grid belonging to
other processors will have been pruned from the tree. Thus the summation of the
weights must be done in a distributed manner. This can be accomplished with two
tree traversals and one all-to-all communication step. In the first tree traversal, the
weights are summed for nodes that belong to this processor. Leaf nodes that are
pruning points are given the weight 0.0, but otherwise the summation occurs as



5

usual. The processors then exchange information to provide the summed weights
for the pruning points, by each processor sending what it has as the summed weight
for each node that is a pruning point on a different processor. Note that a processor
may receive contributions for a pruning point from more than one processor, and
the sum of these is the correct summed weight for that node. Now with the summed
weight available for the pruning points, a second traversal is performed to obtain
the correct summed weights for the entire tree.

Each processor now has sufficient information to perform the second phase of
the RTK algorithm independently. Without further communication, all processors
will obtain the same partition, except for details within parts of the grid that the
processor does not have. These details are not needed since all the processor needs
to know is the new assignment for the elements it currently has so that it can send
those elements to the new owner during the redistribution of data.

For a grid with N elements, if each processor has O(N/p) elements and
O(

√
N/p) “shadow” elements, the expected number of operations on each processor

is O(N/p).

3 Child Order
RTK will partition the grid into sets that are as equal-sized as possible for the given
weights, but one must also consider the quality of the partition. In dynamic repar-
titioning, one looks for a reasonably good partition quickly, rather than spending a
lot of time optimizing the quality of the partition. RTK uses a heuristic approach in
which a reasonably good partition is obtained by keeping the partition connected.
It is easily seen that large connected blocks of elements are added to a partition at
the same time, since the elements corresponding to a subtree are all the descendents
of a single element. But this alone does not guarantee connected partitions. It is
important to pick the right order in which to traverse the children of a node to
guarantee connected partitions. This section presents one method of determining
the child order that works with most element types and refinement strategies.

Begin with an ordering of the elements of the initial coarse grid such that
each element is connected to the element that follows it. Within each element,
designate one vertex as the in vertex, and a different vertex as the out vertex such
that the out vertex of an element is the same as the in vertex of the next element.
(Automatically determining such an ordering and designation is currently a research
topic.) Then, for the remainder of the refinement tree, the child order and in/out
designation are determined such that the first child contains the in vertex of the
parent, the last child contains the out vertex of the parent, and the out vertex of
the kth child is the in vertex of the (k + 1)st child. Such an order and designation
can be found provided that the in and out vertices do not lie only in the same child.
Of the common element types and refinement strategies, the only known examples
where they cannot be found are bisection of quadrilaterals in 2D and bisection of
hexahedra in 3D. A different approach to finding the child order would be required
in these cases.

At worst, the order and designation can be found by exhaustive search. Al-



6

in in

out in

out out

(a)

in

out

in inout

out

(b)

Figure 3. Template for element order and in/out designation for bisected
triangles. (a) The peak is not an in/out vertex. (b) The peak is one of the in/out
vertices.

though this has exponential complexity in the number of children, the number of
children is typically bounded and very small, usually two, four or eight. So this is
not an infeasible approach. But for a known element type and refinement strat-
egy, one can use that knowledge to determine the order and designation a priori,
and define templates to quickly make the assignments. The templates for bisected
triangles and quadrisected quadrilaterals are shown in Figures 3 and 4. Templates
have also been found for quadrisected triangles (a.k.a. regular or red refinement),
bisected tetrahedra, octasected tetrahedra, and octasected hexahedra.

4 Numerical Results
Numerical experiments were performed to compare RTK with Recursive Coordinate
Bisection (RCB) and a multilevel diffusive method in terms of execution time and
the quality of the partitions. These experiments were performed using PHAML, a
parallel adaptive multigrid program for solving elliptic PDEs. PHAML is written
in Fortran 90 and uses MPI for message passing. Adaptive refinement is by newest
node bisection of triangles.

RTK was implemented as part of PHAML. RCB was implemented in version
1.1 of Zoltan [1], a C language library for dynamic load balancing. The multilevel
diffusive method was obtained from version 2.0 of the ParMETIS library [5], a C
language library that is currently the most widely used parallel library for graph
partitioning. The method used from ParMETIS is RepartLDiffusion, with PartK-
way for the first partition, and ParMETIS was accessed through Zoltan.

The computations were performed on a cluster of eight 400 MHz Pentium II



7

in in

out

in in

in

out

out out

out

(a)

in in

out

in

in

in

out

out

out

out

(b)

Figure 4. Template for element order and in/out designation for quadri-
sected quadrilaterals. (a) The in/out vertices are adjacent. (b) The in/out vertices
are opposite.

based 1 PCs connected by 100 BaseT ethernet switch and operating under Linux
2.2.16. Programs were compiled with Lahey/Fujitsu LF95 5.5 or egcs 2.91.66 us-
ing “-O” for optimization. Message passing was performed with the LAM 6.3.1
implementation of MPI.

Laplace’s equation was solved on the unit square with Dirichlet boundary con-
ditions. On three sides the boundary condition is homogeneous. On the top it is
piecewise linear and continuous, going from 0.0 at (0.0,1.0) to 1.0 at (0.7,1.0) to
0.0 at (1.0,0.0). The singularity focuses the refinement to be near (0.7,1.0). The
program begins with a grid containing two triangles (with an artificial root added
to the refinement tree) and cycles through four phases: 1) refine to approximately
double the number of triangles, 2) repartition the grid, 3) redistribute the data, 4)
solve the linear system using two multigrid V-cycles. To avoid extraneous commu-
nication, the program is run on one processor without partitioning until the grid has
1000 vertices. The program terminates when there are approximately 64,000 ver-
tices (128,000 triangles). This gives seven applications of grid partitioning, when
the number of vertices is approximately 1000, 2000, 4000, ..., 64000. Runs were
made using from two to eight processors, with the number of partitions equal to
the number of processors. Figure 5 shows an example grid with approximately 1000

1The mention of specific products, trademarks, or brand names is for purposes of identification
only. Such mention is not to be interpreted in any way as an endorsement or certification of
such products or brands by the National Institute of Standards and Technology. All trademarks
mentioned herein belong to their respective owners.



8

(b)

(c) (d)

(a)

Figure 5. (a) Sample grid, and partitions for four processors from (b)
RTK, (c) RCB, and (d) ParMETIS.

vertices and the four-set partition produced by each of the three methods.
Table 1 shows the execution time of the partitioning algorithms. This is “wall

clock” time and includes all of the time spent by the partitioner during the run,
including communication. It is easily seen that RTK is slightly faster than RCB and
two to three times faster than ParMETIS. It may be noted that the time does not
decrease like O(N/p) as expected from the operation count in Section 2. This is due
to the time spent in communication. Table 2 shows the breakdown of the time for
RTK into computation and communication. Here it is seen that the computation
time decreases like O(N/p) and the communication time increases like O(log p).

Tables 3 and 4 show measures of the quality of the partitions. Table 3 shows
the number of cut edges in the final grid. A cut edge corresponds to a triangle side
that is shared by triangles in different partitions. The number of cut edges reflects
the volume of data that must be communicated during the solution process. Table 4
shows the wall clock execution time for migration of data after repartitioning. This



9

Table 1. Time for partition (sec.).

Processors RTK RCB Metis
2 1.19 0.90 2.45
3 0.84 0.92 1.99
4 0.74 0.98 1.85
5 0.71 0.72 1.84
6 0.63 0.71 1.84
7 0.60 0.85 1.90
8 0.64 0.97 2.04

Table 2. Breakdown of time for RTK.

Processors Computation Communication
2 1.16 0.03
3 0.79 0.05
4 0.64 0.10
5 0.61 0.10
6 0.49 0.14
7 0.44 0.16
8 0.45 0.19

is a measure of how similar the new partitions are to the old partitions, in the sense
of how much data must be moved between processors to create the new partitions.
These results show no significant difference between the methods in terms of quality
of partition.

5 Summary
This paper introduced the K-way Refinement Tree partitioning method for grids
that were created by adaptive refinement. It was originally derived from the Recur-
sive Bisection Refinement Tree partitioning method, but is also closely related to the
OCTREE method and space filling curve methods. RTK uses a tree representation
of the refinement process with weights representing the amount of work associated
with each element. When executed in parallel on p processors, the expected number
of operations for partitioning into p sets is O(N/p) with only one communication
step. A method was presented for determining the child order for most common
element types and refinement stragegies. A numerical example was presented in
which RTK is two to three times faster than a multilevel diffusive method from
ParMETIS, and slightly faster than recursive coordinate bisection, while producing
partitions of similar quality.



10

Table 3. Number of cut edges.

Processors RTK RCB Metis
2 639 300 207
3 491 669 414
4 842 572 713
5 847 860 872
6 1120 1098 1019
7 1204 1212 1145
8 1343 1130 1337

Table 4. Time for data migration. (sec.).

Processors RTK RCB Metis
2 0.64 0.76 0.58
3 0.50 0.85 0.56
4 0.42 1.39 0.54
5 0.53 0.50 0.48
6 0.39 0.45 0.42
7 0.35 0.61 0.45
8 0.45 0.68 0.37



Bibliography

[1] K. Devine, B. Hendrickson, E. Boman, M. St. John, C. Vaughan
and W.F. Mitchell, Zoltan: A Dynamic Load-Balancing Library for Parallel
Applications, User’s Guide, Sandia Technical Report SAND99-1377, 2000.

[2] J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski,
J.D. Teresco, and L.H. Ziantz, Adaptive Local Refinement with Octree
Load-Balancing for the Parallel Solution of Three-Dimensional Conservation
Laws, J. Parallel and Dist. Comput. 47 (1997), pp. 139–152

[3] J.E. Flaherty, R.M. Loy, C. Özturan, M.S. Shephard, B.K. Szy-
manski, J.D. Teresco, and L.H. Ziantz, Parallel Structures and Dynamic
Load Balancing for Adaptive Finite Element Computation, Appl. Num. Math.
26 (1998), pp. 241–263.

[4] M. Griebel and G. Zumbusch, Hash-Storage Techniques for Adaptive Mul-
tilevel Solvers and Their Domain Decomposition Parallelization, Proc. Domain
Decomposition Methods 10, Contemporary Mathematics, Vol. 218, (AMS,
Providence, 1998), pp. 271–278.

[5] G. Karypis, K. Schloegel, and V. Kumar, ParMETIS: Paral-
lel Graph Partitioning and Sparse Matrix Ordering Library, Version 2.0,
http://www.cs.umn.edu/ karypis/metis/metis.html.

[6] W.F. Mitchell, The Refinement-Tree Partition for Parallel Solution of Par-
tial Differential Equations, NIST Journal of Research 103 (1998), pp. 405–414.

[7] A. Patra and J.T. Oden, Problem Decomposition for Adaptive hp Finite
Element Methods, Comp. Sys. Engng. 6 (1995).

[8] K. Schloegel, G. Karypis, and V. Kumar, Parallel Multilevel Diffusion
Algorithms for Repartitioning of Adaptive Meshes, Technical Report #97-014,
Dept. Computer Science, U. of Minnesota, 1997.

11


