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Abstract

PHAML (Parallel Hierarchical Adaptive MultiLevel) is a Fortran module for the
solution of elliptic partial differential equations. It uses finite elements, adaptive
grid refinement (h, p or hp) and multigrid solution techniques in a message pass-
ing parallel program. It has interactive graphics via OpenGL. This document
is the user’s guide for PHAML. The first part tells how to obtain any needed
software, how to build and test the PHAML library, and how to compile and
run the example programs. The second part explains the use of PHAML, in-
cluding program structure and the various options that are available. The third
part is a reference manual which describes the API (application programming
interface) of PHAML. The reference manual begins with a 2 page Quick Start
section for the impatient.
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Chapter 1

Introduction

To start using PHAML immediately, see the Quick Start guide in Section 6.1.
PHAML stands for Parallel Hierarchical Adaptive MultiLevel method. It

solves systems of linear elliptic partial differential equations (PDEs) of the form

− ∂

∂x

(
cxx

∂u
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)
− ∂
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)
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)
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∂u

∂x
+ cy

∂u

∂y
+ cuu = f in Ω

(1.1)
where cxx, cxy, cyy, cx, cy, cu and f are functions of x and y, and the domain Ω is
a bounded, connected, region in R2. The boundary conditions can be Dirichlet
on part of the boundary,

u = g on ∂ΩD (1.2)

and natural or mixed on the remainder of the boundary,(
cxx

∂u

∂x
+ cxy

∂u

∂y

)
∂y

∂s
− cyy

∂u

∂y

∂x

∂s
+ cbcu = g on ∂ΩN (1.3)

where g and cbc are functions of x and y, cxx, cxy and cyy are the same functions
as in Equation 1.1, and the boundary ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩ ∂ΩN = ∅.
Periodic boundary conditions are also supported.

For natural boundary conditions, differentiation with respect to s is with re-
spect to a counterclockwise parameterization of the boundary (x(s), y(s)) with
‖(dx/ds dy/ds)‖ = 1. Note that when cxx = cyy = 1 and cxy = 0 or the bound-
aries of the domain are parallel to the axes, the natural boundary condition
reduces to the Neumann boundary condition

∂u

∂n
= g

where n is the outward unit normal.
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If the domain has curved boundaries, it is defined by subroutines that define
the boundary parametrically. If it is polygonal, it can instead be defined by an
initial triangulation given in data files created by the program Triangle.

PHAML also solves elliptic eigenvalue problems where the right hand side
f(x, y) is λu, and λ is an eigenvalue to be determined along with u. For eigen-
value problems, the boundary conditions must be homogeneous, i.e., g = 0.

PHAML also solves 3D elliptic PDEs, with the obvious extensions to Equa-
tions 1.1 and 1.3. See Section 4.4. Most of the rest of the user’s guide will only
address the 2D problem.

PHAML discretizes the PDE using the standard finite element method with
piecewise polynomial functions over triangles. The approximating polynomial
degrees may be a fixed constant or adaptive. The grid is generated by be-
ginning with a very coarse grid of fixed degree and using uniform or adap-
tive h-refinement in the form of newest node bisection, uniform or adaptive
p-refinement in which the polynomial degree is increased, or hp-adaptive refine-
ment which combines both forms of refinement.

The standard process alternates between phases of grid adaptation and so-
lution of the discrete equations. The default solution method is a hierarchical
basis multigrid method. Other solution methods are available through other op-
tional software packages. If the cross derivative or first order terms are included,
i.e. cxy 6= 0, cx 6= 0 or cy 6= 0, then one of the alternate solution methods for
nonsymmetric matrices must be used. All this is performed in parallel using the
full domain partition to minimize communication. The default load balancing
method is a refinement-tree based partitioning algorithm. Other load balancing
methods are available through other optional software packages.

PHAML can be run as a sequential program, a master/slave parallel pro-
gram using MPI-2, an SPMD parallel program using MPI-1, MPI-2, an SMP
program using OpenMP, or a hybrid parallel program using both MPI and
OpenMP. PHAML optionally uses OpenGL to provide menu-driven interactive
visualization.

7



Chapter 2

Software

2.1 Obtaining Software

PHAML and all required or optional auxiliary software can be obtained by freely
downloading them from the web, although some have commercial alternatives.
This section explains what software is used with PHAML, when you need that
software, and where to obtain it. Most of this software is optional and you do
not need to install it unless you are using the relevant features as described
below.

2.1.1 PHAML

PHAML is available for download at http://math.nist.gov/phaml. It is a
gzipped tar file. When unpacked, it creates a directory called phaml-x.x.x

where the x’s are the version number. It has been tested under many Unix
systems, but not under MS Windows. It is standard conforming Fortran 90,
so (theoretically) it should work under Windows (at least sequentially) without
too much effort. For the remainder of this document, we will assume that the
operating system is some variant of Unix, including Linux.

2.1.2 Fortran 90 and C Compilers

A Fortran 90 (or later Fortran standard) compiler is required to compile PHAML.
In some cases, a C compiler will also be required to compile some wrapper rou-
tines to C libraries. Most Unix systems already have a C compiler installed, and
many also have a Fortran 90 compiler installed. Check your local documentation
to find out, or look for a command like f90 or f95.

If you do not have a Fortran 90 compiler, many good commercial compilers
are available for most (if not all) Unix systems. To identify what is available
for your system, see Michael Metcalf’s Fortran 90/95/HPF Information File at
http://www.fortran.com/fortran/metcalf.htm.
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There are currently two free Fortran 90 compilers, g95 at http://www.g95.
org and GNU’s gfortran at http://gcc.gnu.org/fortran.

2.1.3 BLAS and LAPACK

BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACK-
age) libraries are required for PHAML. The reference Fortran implementation
for them can be obtained from Netlib at http://www.netlib.org. However,
for best performance you should use a BLAS library that is optimized for your
computer system. You may find that the BLAS and LAPACK libraries are al-
ready installed on your system, or that there are commercial optimized versions
available for your system.

There are also freely available optimized BLAS packages such as ATLAS
at http://math-atlas.sourceforge.net and GOTO BLAS at http://www.

tacc.utexas.edu/resources/software/.

2.1.4 MPI

To run PHAML as a message passing parallel program, you must have an
MPI library. Many computer systems will already have an MPI library in-
stalled. Check your local documentation. If not, there are freely available
implementations of MPI. The Open MPI implementation is available at http:

//www.open-mpi.org. The MPICH implementation is available at http://

www.mpich.org.

2.1.5 OpenGL (or Mesa), GLUT and f90gl

If you wish to use the visualization capabilities of PHAML, then you will need
an OpenGL library (graphics library), GLUT (window, mouse, keyboard and
menu management), and f90gl (the Fortran 90 interface to OpenGL and GLUT).

Some computers will already have an OpenGL library installed. If not,
there are some commercial OpenGL libraries for some computer systems, and
there is the freely available Mesa library. Mesa can be obtained from http:

//www.mesa3d.org, and further information about OpenGL can be found at
http://www.opengl.org.

If your system already has an OpenGL library, then it is likely to also have
GLUT already installed. However, many versions of GLUT are not compatible
with f90gl, so you may need to reinstall GLUT anyway. If you (re)install GLUT,
you should get it from the software section of the f90gl web pages at http:

//math.nist.gov/f90gl. Alternatively, if you are installing Mesa, then also
get MesaGLUT. This distribution works with f90gl since version 7.0.3.

It is highly unlikely that f90gl will already be installed on your system. You
can obtain f90gl from http://math.nist.gov/f90gl.
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2.1.6 Triangle

PHAML uses Jonathan Richard Shewchuk’s mesh generator, Triangle [42], to
generate the initial grid for arbitrary geometry in 2D. If you are only solving
problems on the unit square, then you do not need Triangle – you can use
the Triangle output files in the examples. You also do not need it if you have
obtained Triangle data files elsewhere. Otherwise, you will need it. You also
need it if you choose to define your domain through subroutines. Triangle is
available at http://www.cs.cmu.edu/~quake/triangle.html.

2.1.7 Gmsh

PHAML uses Gmsh [19, 20] to generate the initial grid for arbitrary geometry
in 3D. If you are only solving problems on the unit cube, then you do not need
Gmsh – you can use the Gmsh .msh files in the examples. You also do not need it
if your domain has only planar faces and you have obtained .msh files elsewhere.
Otherwise, you will need it. Gmsh is available at http://geuz.org/gmsh.

2.1.8 SLEPc

To solve elliptic eigenvalue problems, PHAML needs an algebraic eigensolver.
SLEPc [11] is used for this. SLEPc requires that you also have PETSc (sect.
2.1.11) installed. You can get SLEPc from http://www.grycap.upv.es/slepc,
but see the note about compatibility in the PETSc section.

2.1.9 ARPACK

ARPACK [25] is an external package supported by SLEPc, and can be used as
an eigensolver for PHAML, accessed through SLEPc. It is optional, but if you
choose to include it, ARPACK is compiled separate from SLEPc, and you must
enable ARPACK support when you configure SLEPc for compilation. You can
get ARPACK and PARPACK from http://www.caam.rice.edu/software/

ARPACK. For a sequential compilation you do not need PARPACK.

2.1.10 BLOPEX

BLOPEX [23, 24] is an external package supported by SLEPc, and can be
used as an eigensolver for PHAML, accessed through SLEPc. It is optional,
but if you choose to include it, BLOPEX is compiled with SLEPc by using
--download-blopex when you configure SLEPc for compilation.

2.1.11 PETSc

PETSc [7][8] is a package of iterative linear system solvers and preconditioners
from Argonne National Laboratory. In most cases it is not required, but can be
linked with PHAML to provide alternative linear system solvers. It is required
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for 3D problems and for problems that have first order derivative terms or mixed
derivative terms. It is available at http://www.mcs.anl.gov/petsc/.

However, in the past PETSc has often made changes to the API that require
changes in PHAML. Since PHAML is no longer under development, it is possible
that a version of PETSc released after the final release of PHAML will not
work with PHAML. If you find this to be the case, you can obtain the last
version of PETSc known to work with PHAML from the PHAML web page
http://math.nist.gov/phaml. Note that if you get PETSc from there, you
must also get SLEPc from there (if you use SLEPc) because the SLEPc version
must agree with the PETSc version.

2.1.12 MUMPS

MUMPS [3][4] is a parallel direct linear system solver. It is not required, but
can be included to provide an alternative linear system solver. It is accessed
through PETSc, so you must also install PETSc and use --download-mumps

--with-mumps-serial --with-mpiuni-fortran-binding=0 when configuring
PETSc for a sequential compilation, or --download-mumps --download-parmetis

--download-scalapack --download-blacs when configuring PETSc for a par-
allel compilation.

2.1.13 SuperLU

SuperLU [26] is a parallel direct linear system solver from the Lawrence Berkeley
National Laboratory. It is not required, but can be included to provide an
alternative linear system solver. It is accessed through PETSc, so you must
also install PETSc and use --download-superlu for a sequential compilation
or --download-superlu dist --download-parmetis for a parallel compilation
when configuring PETSc.

2.1.14 hypre

hypre [16][17] is a package of iterative linear system solvers and preconditioners
from the Lawrence Livermore National Laboratory. It is not required, but
can be included to provide alternative linear system solvers. It is accessed
through PETSc, so you must also install PETSc and use --download-hypre

when configuring PETSc.

2.1.15 ML

ML provides multi-level, multigrid-like preconditioners. It is part of the Trili-
nos Project [50] at Sandia National Laboratory. It is not required, but can be
included to provide an alternative AMG preconditioner. It is accessed through
PETSc, so you must also install PETSc and use --download-ml when config-
uring PETSc.
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2.1.16 Zoltan

Zoltan [14][15] is a library of dynamic load balancing methods. It is not required,
but can be linked with PHAML to provide alternative methods for partitioning
the grid for distribution over parallel processors. It can be obtained at http:

//www.cs.sandia.gov/Zoltan.
Zoltan may be compiled with suppport for certain third party libraries. Two

of these are supported in PHAML through Zoltan. ParMETIS is a static par-
titioning library. Zoltan includes a complimentary copy of the ParMETIS soft-
ware. DRUM is utility for load balancing on heterogeneous or dynamically
changing parallel computers. It has not yet been officially released and can only
be obtained by requesting it from the author.

2.2 Compiling PHAML

This section gives instructions for compiling the PHAML library. Throughout
this section it is assumed that the current working directory is the PHAML root
directory.

2.2.1 Creating the Makefiles

Before compiling you must create a Makefile. The is done by running the shell
script mkmkfile.sh. This script will make all the Makefiles in all the PHAML
subdirectories, so you do not need to run any of the other mkmkfile.shs. Be-
fore running this script you must edit it to set system dependent values, like
the paths to certain libraries, and specify the configuration you wish to build
a Makefile for (what kind of computer, what message passing library, etc.).
Instructions for modifying mkmkfile.sh are contained in the file, but are also
summarized here. There are three steps to modifying mkmkfile.sh: 1) set the
default system configuration, 2) set the paths, library names, etc., and 3) set
values for particular systems.

In step 1, the default system configuration is set. If you will only be running
in one environment, then you can set the configuration here and forget it. In
fact, you can probably just make the Makefile once and forget it. If you will
be using more than one environment, then you can set the defaults here, and
they can be overridden by one of the methods described later in this section.

The configuration variables (e.g. PHAML ARCH) and legitimate values (e.g.
origin) can be found under Step 1 in mkmkfile.sh. You can also get a list of
all the configuration variables, their legitimate values, and current defaults by
executing

./mkmkfile.sh help

They are:

• PHAML ARCH mac origin rs6k sgi sun tflop x86. This defines the type
of computer architecture you have.
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• PHAML OS aix cougar cygwin irixn32 irix64 linux osx solaris. This
defines the operating system running on your computer.

• PHAML F90 absoft g95 gfortran intel lahey mingw nag pathscale pgi

sgi sun xlf. This defines the Fortran 90 compiler to use.

• PHAML C cc gcc. This defines the C compiler to use.

• PHAML HASHSIZE 1 2. This defines the size of hash key to use for global
identifiers. 1 uses one integer and 2 uses two integers. Using 1 saves
memory and reduces message sizes; using 2 allows smaller elements (more
refinement levels).

• PHAML PARALLEL messpass spawn messpass nospawn openmp hybrid spawn

hybrid nospawn sequential. This defines the type of parallelism. You
can select between running a sequential program (no parallelism), having
a master process that spawns the slave and graphics processes, running an
SPMD (single program multiple data) program in which all processes are
identical and started from the command line, running an SMP program
using OpenMP, and running a hybrid OpenMP/MPI program either as
master/slave or SPMD. Note: not all compilers support OpenMP.

• PHAML PARLIB lam mpi mpich mpich2 myrinet openmpi none. This de-
fines the parallel library to use. lam, mpich, mpich2 and openmpi refer
to the packages by those names, mpi to vendor implementations of MPI,
myrinet to a special implementation of MPICH for myrinet networks, and
none should be used if PHAML PARALLEL is sequential or openmp.

• PHAML ELEMENT triangle tetrahedron tetrahedron fixdeg. This de-
fines what kind of elements will be used, which determines whether PHAML
will be compiled for 2D or 3D problems. See Section 4.4 for the difference
between tetrahedron and tetrahedron fixdeg.

• PHAML GRAPHICS metro mesa none opengl. This defines what OpenGL
library should be used. opengl refers to vendor OpenGL libraries, mesa
to the MESA library, metro to a commercial OpenGL library for Linux,
and none indicates that the graphics program should not be built.

• PHAML BLAS atlas compiler goto standard vendor. This defines the
BLAS library to use. atlas and goto are as mentioned in Section 2.1.3.
compiler refers to a BLAS library provided with the Fortran compiler de-
fined in PHAML F90. vendor refers to a BLAS library supplied by the hard-
ware vendor defined in PHAML ARCH. standard refers to a BLAS library in
a standard location like /usr/lib, and often is not a high performance
library.

• PHAML LAPACK atlas compiler standard vendor. This defines the LA-
PACK library to use, and is usually given the same value as PHAML BLAS.
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• PHAML SLEPC no yes. This indicates whether or not to include SLEPc.

• PHAML ARPACK no yes. Should be yes if and only if SLEPc was built with
ARPACK support.

• PHAML BLOPEX no yes. Should be yes if and only if SLEPc was built with
BLOPEX support.

• PHAML PETSC no yes. This indicates whether or not to include PETSc.

• PHAML MUMPS no yes. Should be yes if and only if PETSc was built with
MUMPS support.

• PHAML SUPERLU no yes. Should be yes if and only if PETSc was built
with SUPERLU support.

• PHAML HYPRE no yes. Should be yes if and only if PETSc was built with
hypre support.

• PHAML ML no yes. Should be yes if and only if PETSc was built with ML
support.

• PHAML ZOLTAN no yes. This indicates whether or not to use Zoltan.
When Zoltan was compiled, it may or may not have included support
for third party libraries. The next few parameters indicate which of them
were built into Zoltan. These must agree exactly with how Zoltan was
built, or you will get error messages from the linker.

• PHAML PARMETIS no yes. Should be yes if and only if Zoltan was built
with ParMETIS support.

• PHAML DRUM no yes. Should be yes if and only if Zoltan was built with
DRUM support.

• PHAML SYSTEM none dirac looney pepe raritan suns stampede. This
designates a specific computer system for overriding configuration vari-
ables in Step 3. Usually it is the hostname of the system.

If you don’t find a value that matches your system, you can either (1) add
that value and modify mkmkfile.sh to handle it by mimicking what is done for
other values, or (2) use a similar value and edit Makefile to correct it for your
system. However, if you edit Makefile then you will lose your changes the next
time you run mkmkfile.sh.

In step 2, set the paths, library names, etc. Here you set shell variables in
mkmkfile.sh with the names of commands, flags, paths, library names, etc.,
for the configurations you will be using. Many of these will already be correct,
but examine them because some of them are specific to the systems on which
PHAML was developed. In particular, many of the compiler command names
have been changed to avoid conflicts between multiple compilers on one system,
and nearly all of the paths will vary between systems.
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In step 3, you can override values set in step 2 for particular system configu-
rations. For example, suppose your MPI library has a different name on Linux
than it has on all your other systems. Then in step 2 you set the name used on
most systems, and in step 3 you override it if PHAML SYSTEM is your linux box.

There are two other ways to override the default configuration variable val-
ues: 1) on the command line for mkmkfile.sh (described below), and 2) by
setting environment variables in your shell. If an environment variable exists
with the same name as a configuration variable, the value of that environment
variable is used. Usually these variables are set in the shell startup file. For
csh-type shell, an example is

setenv PHAML OS linux

Once you finish modifying mkmkfile.sh, running it will create Makefile in
the src directory and all the subdirectories under example and testdir. If
a file named Makefile already exists, it is moved to Makefile.bak before the
new file is created. To accept the default configuration, just run

./mkmkfile.sh

To override the default values and values given by environment variables,
specify them on the command line by giving a space-separated list of configura-
tion variables and values. Here, including the “PHAML ” part of the configuration
variable is optional. For example,

./mkmkfile.sh PARALLEL messpass spawn PARLIB lam

2.2.2 Compiling the Library

Once Makefile has been built, just type make in either the PHAML root di-
rectory or src subdirectory to compile the PHAML library. If this shows that
Makefile has errors in it, you can either edit Makefile to fix them (but then
they will appear again if you need to run mkmkfile.sh again), or fix the errors
in mkmkfile.sh and rebuild Makefile. This will create the PHAML library
libphaml.a and copy it to subdirectory lib. It also copies any module files
(e.g., *.mod) to subdirectory modules, and creates a file lib/CONFIG that con-
tains the values of the configuration variables used to create the library.

2.3 Testing the Library

After creating the PHAML library, you can test it by running the PHAML
Test Suite. The suite contains over 100 short test programs to test nearly
all aspects and options of PHAML. Tests that do not apply to the current
compilation of the library are skipped. The tests have not yet been written for
PHAML PARALLEL=messpass nospawn (i.e. SPMD programs). They can only be
run with sequential, messpass spawn, openmp or hybrid spawn programs.

To run the full test suite on an interactive system, enter the command
make test

from either the PHAML root directory or the testdir subdirectory. If you
are using a batch system like PBS or Torque/Maui, you can run the tests with
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one of the PBS scripts in the testdir directory. To delete all the files that were
created by the tests, enter the command

make test what=clean

The tests can be grouped into three categories. The first tests consists of two
very simple programs to verify that a program can be compiled, linked and run.
The interactive tests test the use of the pause variables to phaml solve pde,
spawning in a debug window, and graphics. The remaining tests are the non-
interactive tests. Depending on how many optional auxiliary packages are in-
cluded, the speed of your computer system, etc., these may take anywhere from
a few minutes to a few hours to run.

You can run just the first tests, just the first and interactive tests, or just
the first and noninteractive tests with the commands

make test what=first

make test what=interactive

make test what=noninteractive

If you are running the tests from a batch system where you cannot respond
to interactive prompts, you should use what=noninteractive.

The individual interactive tests can be run by giving what the value pause,
debug, or graphics. The noninteractive tests are in the directories testdir/test *.
You can run individual noninteractive tests by giving what the name of the sub-
directory, with or without test . For example, to run the PETSc tests you can
use either

make test what=test petsc, or
make test what=petsc

The results of the tests are printed both to the screen and to the file
testdir/testresults. The file only contains standard output, not standard
error, so things like messages from the compiler will not appear in the file.
Each test consists of a short program that is compiled and run with the output
directed to a file. The file is compared to an existing file that contains the ex-
pected output. Each test is identified as SUCCESS, FAILURE or WARNING.
WARNING indicates that the output is not the same as the comparison file.
Often this difference is just minor numerical differences (accumulated round
off error) due to different processors, compilers, versions of auxiliary packages,
etc. The warning message will direct you to a file that contains the differences,
as identified by diff, which you should examine to see if the differences are
significant.

2.4 Compiling and Running the Examples

Next you compile your application and link in the PHAML library. With most
compilers you will need to specify the location of the module files when compil-
ing program units that use phaml. Many compilers use the -I flag for this (e.g.
f90 -I $PHAML HOME/modules myprog.f90), but you should check your com-
piler’s documentation. You also need to link with the PHAML library (e.g. f90
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myprog.f90 -L$PHAML HOME/lib -lphaml) and any other libraries your pro-
gram needs (MPI, OpenGL, LAPACK, etc.). Your best start is to look at the
examples in the examples directory, and their Makefiles. These Makefiles
were created when you ran mkmkfile.sh in the top PHAML directory. You
should not run the mkmkfile.sh in the examples subdirectories.

With the examples, a successful make will create up to three executables:

1. the primary executable phaml. This is the program you run.

2. phaml slave if PHAML PARALLEL is messpass spawn. This is spawned by
phaml.

3. phaml graphics if PHAML GRAPHICS is not none and PARALLEL is not
messpass nospawn. This is spawned by phaml and phaml slave if PARALLEL
is messpass spawn, or run from the command line if PARALLEL is sequential.

In the PHAML root directory, make clean will remove any files created by
compilation (e.g. *.o) in src, examples/*, and testdir/*. make reallyclean

will also remove everything in lib and modules, and the Makefiles.
In general, you run phaml as you would any parallel program that uses the

message passing library you have selected. Some examples are:

1. A sequential compilation. Run the primary program.

phaml

If you requested graphics, you must also run the graphics program.

phaml graphics

2. LAM MPI, with spawning. You only start the master program, which
spawns the slaves and graphics, so specify the number of processors to be
1.

mpirun -w -np 1 phaml

I have also found that in this case you don’t need to use mpirun, you can
just execute the master.

phaml

3. MPICH MPI, as an SPMD program. Since this does not spawn the slaves
and graphics, you must use mpirun to specify the right number of pro-
cesses. If there are to be n slaves, this consists of the sum of the following:
One for the master, n for the slaves, one if the master is doing graphics,
and n if the slaves are doing graphics. For example, if there are four slaves
and the master is doing graphics,

mpirun -machinefile <file with list of hosts> -np 6 phaml

4. For OpenMP or hybrid OpenMP/MPI programs, set the OMP NUM THREADS
environment variable to the desired number of threads, probably equal to
the number of cores on the SMP computer, or number of cores on each
node of the distributed memory parallel computer, and run the same as a
sequential or MPI program.
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5. See also the file doc/HINTS for my notes on running under debuggers,
using ssh, redirecting displays, etc.

If you request graphics, a window should pop up with the graphical display.
The following actions are defined by default:

• arrow keys - pan

• left mouse button - rotate

• middle mouse button - zoom

• right mouse button - a menu of actions

The menu contains a large number of ways to change the graphics. See
Section 3.5 for further details.
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Chapter 3

Scalar Linear Elliptic
Boundary Value Problems

The primary function of PHAML is to solve second-order scalar linear self-
adjoint elliptic partial differential equations of the form given in Equation 1.1
with Dirichlet, natural (often Neumann), or mixed boundary conditions given
by Equations 1.2 and 1.3. This section explains how to write a program that uses
PHAML to solve these problems. Other classes of problems that can be solved
using PHAML are addressed in subsequent sections. The information here is
organized by concept. For an organization by subroutine and parameters, see
the reference guide in Section 6.

3.1 Main program

PHAML is a library of subroutines. The user must write a program that calls
these subroutines to solve the application problem. Ordinarily this just requires
a simple main program and subroutines that define the equations, but the pro-
gram can be as complex as needed. Subroutines in the PHAML library can be
called from either the main program or subroutines.

3.1.1 Parallelism

There are six models of parallel processing supported by PHAML. The pro-
gramming model used must correspond to the one specified by PHAML PARALLEL

in mkmkfile.sh when the PHAML library was built (see Section 2.2.1). The
correspondence is given in Table 3.1.

In the master/slave model, the parallelism is almost transparent to the user.
The user only needs to specify nproc in phaml create, and start the program in
the manner specified by the message passing library, requesting 1 process. With
some libraries, for example LAM and MPICH2, even this can be transparent,
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model PHAML PARALLEL

sequential sequential

master/slave messpass spawn

SPMD messpass nospawn

OpenMP SMP openmp

hybrid OpenMP/MPI master/slave hybrid spawn

hybrid OpenMP/MPI SPMD hybrid nospawn

Table 3.1: Correspondence between PHAML PARALLEL in mkmkfile.sh and the
parallel programming model.

since you can just run the executable when you are only starting 1 process, un-
less your system uses a queuing program like PBS. Sequential programs can use
the same program as a master/slave program, and nproc will be ignored. Single
Program Multiple Data (SPMD) programs require a little more knowledge of
the parallelism. Each instance of the program must determine if it is to be the
master, a slave, or a graphics server, and act accordingly. This is explained
in the next section. Since SPMD PHAML programs behave as if they were
a master/slave program, with process 0 acting as the master, this document
will often make reference to the master and slaves, even though the program
might be SPMD. With OpenMP, the parallelism is completely transparent to the
user, except for setting the desired number of threads for each process through
the environment variable OMP NUM THREADS or the nthread argument to
phaml create. Usually this is equal to the number of cores on an SMP com-
puter, or, for hybrid OpenMP/MPI programs, the number of cores on each node
of a distributed memory parallel computer or cluster. However, it is sometimes
advantageous to use one less than the number of cores if the operating system
is running a lot of background processes that would run on the unused core.

3.1.2 Program structure

3.1.2.1 Master/slave and Sequential

In a master/slave program, the user writes a program for the master pro-
cess. The same program can be used for sequential, OpenMP and hybrid
OpenMP/MPI master/slave models. The slave and graphics programs are given
in the src directory as slave.f90 and graphmain.f90. To compile these pro-
grams, see the Makefiles in the examples directory.

Figure 3.1 illustrates a very simple main program for a master/slave model.
More complicated examples can be found in the examples directory. This ex-
ample illustrates the main steps in writing a PHAML program.

First it must use module phaml. This gives access to all the public subrou-
tines, the defined constants that are used as values for subroutine arguments, the
phaml solution type data structure, and the defined constant my real which
contains the kind number for reals in PHAML.
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program simple

use phaml

type(phaml_solution_type) :: sol

call phaml_create(sol,nproc=2)

call phaml_solve_pde(sol, &

max_vert=100000, &

print_grid_when=PHASES, &

print_grid_who=MASTER, &

print_error_when=PHASES, &

print_Linf_norm_error=.true., &

print_error_who=MASTER)

call phaml_destroy(sol)

end program simple

Figure 3.1: A simple main program.

Second, there must be at least one variable of type phaml solution type.
Variables of this type contain all the information known about the solution of
the equation, including the current grid, solution, parallel processes, etc. The
type is a public entity in module phaml, but the internals of the type are private.
This means you cannot directly manipulate components of the variable, you can
only pass it to the PHAML subroutines that operate on it.

Next, the solution variable is initialized by subroutine phaml create. This
creates an initial grid, allocates and initializes other components of the variable,
and, for master/slave programs, spawns the slave and graphics processes. Here
we requested the use of 2 slave processors. Other arguments will be discussed in
subsequent sections as they become relevant. A full list can be found in Section
6.4.4.

The PDE is solved by calling phaml solve pde. This subroutine requires
that the first argument be a solution variable. There are over 100 more argu-
ments to this subroutine, which will be discussed in subsequent sections and
can be found in Section 6.4.15. To make this manageable, all arguments are
optional, have reasonable defaults, and should be given as keyword arguments,
i.e. dummyarg=value, as shown in the example.

Finally, the solution variable should be destroyed by phaml destroy to free
memory and terminate any processes that were spawned by phaml create.

3.1.2.2 SPMD

An SPMD program is more complicated because the master, slave and graphics
processes are identical. However, it still operates like a master/slave program,
so each process must determine if it is the master, a slave, or a graphics server.
This is illustrated in Figure 3.2 for a program that uses an MPI library. The
same program can be used for a hybrid OpenMP/MPI SPMD model.

In addition to using module phaml, it must use module mpif mod to get
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program simple_spmd

use phaml

use mpif_mod

integer :: whodrawg

integer :: jerr

integer :: my_processor, total_nproc

integer :: nslave, subtract, divide

! initialize MPI, find out how many processors and what my rank is

call mpi_init(jerr)

call mpi_comm_size(MPI_COMM_WORLD,total_nproc,jerr)

call mpi_comm_rank(MPI_COMM_WORLD,my_processor,jerr)

! set the graphics options

whodrawg = NO_ONE

! determine how many processors for slaves and graphics

subtract = 1

if (whodrawg == MASTER .or. whodrawg == EVERYONE) subtract = 2

divide = 1

if (whodrawg == SLAVES .or. whodrawg == EVERYONE) divide = 2

nslave = (total_nproc-subtract)/divide

! call the master, slave or graphics program depending on my rank

if (my_processor == 0) then

call phaml_master(whodrawg,nslave)

elseif (my_processor <= nslave) then

call phaml_slave

else

call phaml_graphics

endif

end program simple_spmd

subroutine phaml_master(whodrawg,nslave)

use phaml

integer, intent(in) :: whodrawg, nslave

type(phaml_solution_type) :: sol

call phaml_create(sol,nproc=nslave,draw_grid_who=whodrawg)

call phaml_solve_pde(sol, ... )

call phaml_destroy(sol)

end subroutine phaml_master

Figure 3.2: An SPMD main program using MPI.
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subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)

use phaml

real(my_real), intent(in) :: x,y

real(my_real), intent(out), dimension(:,:) :: cxx,cxy,cyy,cx,cy,c

real(my_real), intent(out), dimension(:) :: rs

cxx=1

cxy=0

cyy=1

cx=0

cy=0

c=0

rs=0

end subroutine pdecoefs

Figure 3.3: pdecoefs for Laplace’s equation.

access to the MPI include file.
The first step is to initialize MPI, determine how many processes there are,

and determine the rank of this process. This is needed to determine what type
of process this will be, so it cannot be hidden inside phaml create like it is for
master/slave programs.

Then the number of slaves is computed based on the total number of pro-
cesses (which is specified when the program is launched, for example by mpirun)
and how many graphics processes are needed.

Each process determines its type based on its rank (my processor) and the
number of slaves, and calls the corresponding main subroutine. The slave and
graphics main subroutines are in the PHAML library. The main subroutine for
the master is nearly identical to the main program in the master/slave model,
as shown in Figure 3.2.

3.2 Defining the problem

3.2.1 Defining the PDE

The PDE in Equation 1.1 must be defined in subroutine pdecoefs. For conve-
nience, the equation is repeated here.

− ∂
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∂x

)
− ∂
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)
− ∂
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∂u

∂y

)
+ cx

∂u

∂x
+ cy

∂u

∂y
+ cuu = f in Ω

pdecoefs receives a point (x, y) and returns the value of the functions cxx, cxy,
cyy, cx, cy, cu and f at that point in the arguments cxx, cxy, cyy, cx, cy, c and
rs respectively. The interface for this routine is given in Section 6.3.6. For a
scalar PDE, the return variables are 1×1 arrays (they have higher dimension for
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systems of equations; see Section 4.2) and can be assigned with a whole array
assignment statement, making their “arrayness” transparent. Figure 3.3 shows
how pdecoefs could be written for Laplace’s equation ∇2u = 0.

Certain characteristics of the PDE might have an effect on the solvers. For
example, if there are first order terms then the matrix is not symmetric and a
nonsymmetric solver must be used. Also, PHAML can take advantage of some
characteristics, such as knowing the operator is the Laplacian, to get better
performance. PHAML attempts to determine the relevant characteristics by
sampling pdecoefs at the midpoints of the initial grid. It is possible for this
test to fail. If so, you can force PHAML to know the characteristic through the
following arguments to phaml solve pde:

• Set pde has first order terms to .true. if cx or cy is not identically
zero.

• Set pde has cross derivative to .true. if cxy is not identically zero.

• Set laplacian operator to .true. if cxx and cyy are identically one
while cxy, cx, cy and c are identically zero.

• Set isosceles right triangles to .true. if every initial element is an
isosceles right triangle and they are paired up such that all the right angles
are peaks.

In most cases where task=SET INITIAL the automatic testing for these charac-
teristics will call pdecoefs before the old solution has been set by phaml copy soln to old

resulting in many warnings. You should include the above variables in that call
to avoid these warnings.

3.2.2 Defining the boundary conditions

The boundary conditions are defined in subroutine bconds. The interface for
this routine is given in Section 6.3.1. On each piece of the boundary (Section
3.2.3 explains how to define the boundary piecewise and send a piece ID number
to bconds) the boundary can be Dirichlet as defined by Equation 1.2

u = g,

natural (usually Neumann) or mixed as defined by Equation 1.3(
cxx

∂u

∂x
+ cxy

∂u

∂y

)
∂y

∂s
− cyy

∂u

∂y

∂x

∂s
+ cbcu = g

or periodic (usually on opposite sides of a rectangle).
bconds receives as input a point (x, y) at which to return the boundary

conditions, and bmark, an integer ID number for the piece of the boundary that
(x, y) is on. This ID is defined along with the boundary of the domain (Section
3.2.3).
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subroutine bconds(x,y,bmark,itype,c,rs)

use phaml

real(my_real), intent(in) :: x,y

integer, intent(in) :: bmark

integer, intent(out) :: itype

real(my_real), intent(out) :: c(:,:),rs(:)

if (bmark == 1) then

itype = NATURAL

else

itype = DIRICHLET

endif

c=0

rs=0

end subroutine bconds

Figure 3.4: bconds for homogeneous boundary conditions, natural on boundary
piece 1 and Dirichlet elsewhere.

boundary condition itype

Eq. 1.2 DIRICHLET

Eq. 1.3 with cbc = 0 NATURAL

Eq. 1.3 with cbc 6= 0 MIXED

periodic PERIODIC

Table 3.2: Permitted values for itype to specify the type of boundary condi-
tions.
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The type of boundary condition for the indicated piece is returned in itype

using a symbolic constant listed in Table 3.2. The functions cxx, cxy and cyy in
Equation 1.3 are the same as those in the PDE, Equation 1.1, which are defined
in subroutine pdecoefs (Section 3.2.1) and not repeated here. The function
cbc in Equation 1.3 is returned in the variable c. Finally, the function g in
Equations 1.2 and 1.3 is returned in rs.

c and rs are arrays, but for scalar problems the dimensions are all 1, and
they can be assigned with a whole array assignment statement. (They have
higher dimension for systems of equations; see Section 4.2.)

Assuming the domain is the unit square with the left side assigned 1 for the
ID, Figure 3.4 shows a subroutine for the boundary conditions

∂u/∂n = 0 on x = 0 (3.1)

u = 0 elsewhere (3.2)

Periodic boundary conditions say that the value of the solution on one piece
of the boundary is the same as the value on another piece. Usually the two
pieces are opposite sides of a rectangle, but for generality we need a means of
indicating which two pieces are matched up. This is done by making the piece
ID of the two pieces have the same absolute value, with one positive and the
other negative. c and rs are not used with periodic boundary conditions, but
it is prudent to set them to 0. For an example of periodic boundary conditions,
see examples/periodic.

Natural and periodic boundary conditions require that there be at least one
point with Dirichlet boundary conditions to make the solution unique.

3.2.3 Defining the domain and initial grid

The domain and initial grid can be defined in one of two ways. The first is
to supply subroutines that define the boundary explicitly as a piecewise curve
in R2. This approach is required if the boundary is not polygonal, i.e. if it
has curved pieces, but can also be used for polygonal domains. The second is
to provide triangle data files that were produced by the program Triangle [42].
These files can be created by writing a .poly file and running Triangle, or by
using the first approach once and saving the triangle data files that PHAML
creates, or by using the triangle data files from one of the PHAML examples. In
either case, this gives a starting triangulation, which is preprocessed to create
the initial grid.

To define the domain with subroutines, you must write three subroutines
similar to those used by the domain processor of Rice [40].

subroutine boundary point(ipiece,s,x,y) contains the definition of the
boundary. Each piece of the boundary is given by a parametric curve (x(s), y(s))
for s in some range of R. The ending point of one piece must be the same as the
starting point of the next piece, including the last piece of the outer boundary
connecting to the first piece of the outer boundary, and the last piece of each
hole connecting to the first piece of the same hole. The input parameters ipiece

26



and s indicate which piece of the boundary and parameter value to evaluate,
and the output parameters x and y are the requested point on the boundary.

ipiece is also used as the boundary marker for the triangle data files, and
will be passed to bcond (Section 6.3.1) to simplify evaluation of boundary con-
ditions. The endpoints of the boundary pieces will always be vertices of the
grid, and are assigned the boundary marker of the piece they start. To get a
boundary marker that is unique to an individual vertex, define a boundary piece
of length 0 at that vertex (i.e., starting and ending parameters are the same).
The last boundary piece cannot be a single point. Instead, make that point be
the first piece.

function boundary npiece(hole) (Section 6.3.3) returns the number of
pieces used to define the boundary. If hole is 0, it should return the number of
pieces that define the outer boundary. Otherwise it should return the number
of pieces that define the holeth hole. The holes are numbered consecutively
starting with 1. boundary npiece(0) must return a positive integer if and only if
subroutines are used to define the boundary. If it returns 0 or a negative integer,
the starting triangulation is read from triangle data files. If hole is larger than
the number of holes in the domain, it should return 0.

subroutine boundary param(start,finish) returns the range of param-
eter values for every piece of the boundary. The output variables start and
finish are real(my real) arrays of length equal to the total number of bound-
ary pieces, and should be assigned the starting and ending parameters of each
piece.

The starting grid is created by PHAML by creating a .poly file for input
to Triangle, which is then run to create triangle data files. Running Triangle
involves a call to the intrinsic subroutine system, which is not standard in For-
tran 90. Most compilers provide this routine as an extension, and use the same
behavior for it, but if you have trouble you may have to change the definition
of my system in sysdep.f90.

You can control the fineness of the starting grid with the parameter max blen

in phaml create. No triangle boundary side in the starting triangulation will
have length longer than max blen, and Triangle is run with -a max blen2

√
3/4

to limit the area of the triangles to that of an equilateral triangle with side
length max blen.

The name of the .poly file is determined by the parameter triangle files

in phaml create, which has the default value "domain". The file name will be
the character string with the added suffix .poly. Note that if the full path is not
given in triangle files, the location of the file may be compiler dependent.
If PHAML is run MPI parallel, the file must be placed on a file system that is
shared by all the processes, which may require specifying the full path.

The second method for defining the domain and initial grid is to use triangle
data files. These are the edge (.edge), element (.ele), neighbor (.neigh), node
(.node) and poly (.poly) files created by the program Triangle.

To indicate that the starting grid is given by triangle data files, have function
boundary npiece(0) return 0 or a negative number. The parameter triangle files

in phaml create, which has the default value "domain", then contains the root
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of the name of the five triangle data files. If Triangle inserted an iteration
number (e.g. .1) into the name, then it should be included.

If you are solving a PDE on the unit square, or on one of the other domains
in the examples, then you only need to copy the triangle data files from the
example and, if necessary, specify the name of the files.

Otherwise you must define the polygonal domain with a .poly file, which is
basically a list of vertices and boundary line segments. Holes are allowed. See
the documentation for Triangle [43] for the exact definition of a .poly file. You
should specify a boundary marker for each vertex and boundary segment. The
boundary marker must be 0 if and only if the vertex or edge is interior, i.e., not
on the boundary. This boundary marker will be passed to function bcond to
simplify the definition of boundary conditions. With a .poly file defined, create
the triangle data files with the command

triangle -pneqj root of filename.poly

The -p flag indicates the input is a poly file. The -n, and -e flags force the
writing of neighbor and edge files. The -q flag requests a quality mesh, which
imposes bounds on the angles. The -j flag says to jettison (remove) vertices
that are not part of the triangulation. Also, the -a flag may be useful to impose
a maximum size (area) of the triangles, and the -I flag can be used to prevent
the insertion of the iteration number in the filename. See the documentation
for Triangle [43].

Regardless of whether they are created by Triangle from a .poly file, created
by PHAML from the boundary subroutines, or copied from somewhere else, the
triangle data files define a starting triangulation. PHAML requires an initial
grid that satisfies certain conditions. This initial grid is determined from the
starting triangulation automatically by PHAML through a process of refinement
and grid smoothing. The triangles of the initial grid are obtained by bisection
or trisection of the starting triangles, followed by some node movement.

3.2.4 The true solution

If the true (a.k.a. exact or analytical) solution is known, it and its first deriva-
tives can be provided through subroutines trues, truexs and trueys. If these
are provided, then the program can print norms of the error (Section 3.4.2)
or choose the error as the function to visualize with the graphics. If trues is
defined, but truexs and/or trueys is not, then the energy norm, H1 norm,
and H1 semi-norm of the error cannot be printed, but all other norms and the
graphics are still valid.

The interfaces for these routines are given in Sections 6.3.9, 6.3.10 and 6.3.11.
They are function subroutines that return the value of the solution, x derivative
of the solution, and y derivative of the solution, respectively. The input vari-
ables give the point (x, y) at which to return the solution. There are also two
input variables, comp and eigen, that are not relevant for scalar boundary value
problems (they are used for systems of equations and eigenvalue problems).

28



3.3 Solution method

There are many arguments to phaml solve pde that affect the details of the
solution method. This section explains the options available. It is organized
with sections on discretization, refinement, the error indicator, the linear sys-
tem solver, load balancing and termination. Each section briefly describes the
methods used, but this is not intended to be a thorough treatment of parallel
adaptive multilevel finite element methods. See the references for more details
of the methods.

See also Section 6.4.15 which formally defines the arguments to phaml solve pde.

3.3.1 Discretization

PHAML uses a standard Galerkin finite element method (see, for example
[45][47]) to approximate the solution of Equations 1.1-1.3, which we briefly de-
scribe here. The domain is partitioned into a set of conforming triangles, T ,
(the grid or mesh) and the approximation space is defined as the Hilbert space
of continuous functions that are polynomials over each triangle. The degree
of the polynomial can be different over different triangles. The p-hierarchical
basis, Φ = {φi}, of either Szabo & Babuška [47] or Carnevali et al. [12] spans
the space, and gives a representation for the approximate solution

uT =
∑
φi∈Φ

αiφi (3.3)

Basis functions can be categorized in three groups. The linear (p = 1) basis
functions are in one-to-one correspondence with the vertices of the grid. Higher
order basis functions are associated with edges or faces (triangles). There are
p− 1 edge bases associated with an edge of degree p, and (p− 1)(p− 2)/2 face
bases associated with a face of degree p.

The space has the energy inner product defined by

〈u, v〉 =

∫
Ω

cxxuxvx + cxyuyvx + cyyuyvy + cxuxv + cyuy + cuuv (3.4)

where cxx, cxy, cyy, cx, cy, and cu are from Equation 1.1, and the subordinate
energy norm ‖u‖2 = 〈u, u〉. (Note: We need cxy = cx = cy = 0 for 3.4 to be an
inner product because of symmetry, and cu ≥ 0 for 〈u, u〉 to be a norm because
of positivity, but formally we proceed with these definitions knowing that some
of the following statements are not strictly true.) The approximate solution
is the function in the space that minimizes the energy norm of the error, i.e.
the error is orthogonal to the space under the energy inner product. Thus the
approximate solution satisfies

〈uT , φi〉 = 〈f, φi〉2 ∀φi ∈ Φ (3.5)

where 〈., .〉2 is the L2 inner product 〈u, v〉2 =
∫

Ω
uv. Substituting Equation

3.3 into Equation 3.5 leads to the discretized form of the problem Ax = b
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with aij = 〈φi, φj〉, bi = 〈f, φi〉2, and x the vector of αi’s. Natural boundary
conditions are imposed automatically by the energy inner product. Dirichlet
boundary conditions are imposed by replacing the corresponding equations with
equations that set the corresponding αi’s directly from the boundary condition.

Also of interest is the H1 norm

||u||H1 =

∫
Ω

u2
x + u2

y + u2 (3.6)

and H1 semi-norm

|u|H1 =

∫
Ω

u2
x + u2

y (3.7)

There are only six arguments that affect how discretization is performed.
First, you can select the degree of the polynomials in the approximation space
with the argument degree. This sets all elements to start with the given de-
gree, even if you use p- or hp-refinement. Second, the integrals of Equation 3.4
are computed by numerical quadrature, with the order of the quadrature rule
determined such that integrals are exact for polynomials of the degree 2(p− 1)
where p is the degree of the basis over each triangle. Sometimes this may
not be accurate enough, in which case you can supply an increase of the or-
der through inc quad order. Third, in triangles that are owned by a different
processor (see Section 3.3.5), the quadrature is performed by the owner and
communicated by message passing. If this were not done, then the integrals
over those triangles would be less accurate than the same integrals on the pro-
cessor that owns the triangle, because it will have refined the triangle into many
smaller triangles. However, sometimes this doesn’t matter, such as when solv-
ing Laplace’s equation (all the integrals are exact) or when using a solver other
than the (default) hierarchical basis multigrid solver 3.3.4.1, which don’t use
the unowned triangles. You can avoid the extra computation and communica-
tion with ignore quad err=.true. Next, by default PHAML does not put any
limitation on how much the degrees of neighboring elements can differ. You can
control this through p compatibility, which has a default of PCOMPAT NONE,
and max p diff, which has a default of 1. If you use PCOMPAT INCREASE, and
the degrees of two neighboring elements differ by more than max p diff, then
the one with smaller degree is increased to p−max p diff, where p is the larger
degree. Similarly, PCOMPAT DECREASE causes the larger value to be decreased
to enforce compatibility. However, use of PCOMPAT DECREASE is discouraged be-
cause it can cause refinement to stall. Finally, you can select how the degree
of an edge is determined when the triangles that share that edge have different
degrees through edge rule. If you select MINIMUM RULE (the default), then the
edge gets the smaller of the two triangle degrees. If you select MAXIMUM RULE,
then the edge gets the larger of the two triangle degrees.

3.3.2 Refinement

One of the major phases in phaml solve pde is refinement of the grid to increase
the size of the approximation space, which reduces the norm of the discretization
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DOUBLE NVERT

DOUBLE NELEM

DOUBLE NEQ

HALVE ERREST

KEEP NVERT

KEEP NELEM

KEEP NEQ

ONE REF

ONE REF HALF ERRIND

MATCH TOL

Table 3.3: Permitted values for refterm to determine how much refinement to
do.

error. h-refinement refers to subdividing triangles by newest node bisection (see
[29] [31] for 2D, and [6] for 3D). p-refinement refers to increasing the polynomial
degree over a triangle. In either case the refinement can be undone, referred
to as derefinement or coarsening. Derefinement can be switched off with the
argument derefine=.false. Refinement can be done uniformly, i.e. refine all
triangles in the grid, or adaptively, i.e. refine a selected subset of the triangles.

The type of refinement that is performed is determined by the argument
reftype. This argument can have one of the values H UNIFORM, H ADAPTIVE,
P UNIFORM, P ADAPTIVE or HP ADAPTIVE. With HP ADAPTIVE an element may be
refined by either h- or p-refinement. hp-adaptive strategies are explained later
in this section.

With h-adaptive and p-adaptive refinement, the refinement phase consists of
a coarsen-refine loop. At the beginning of each time through the loop, a coarsen
cutoff and refine cutoff is determined, and elements are marked for coarsening or
refining. In general, an element is marked to be coarsened if its error indicator
(Section 3.3.3) is less than the coarsen cutoff, and marked to be refined if its
error indicator is greater than the refine cutoff. However, some elements are not
coarsenable or refinable. An element is not h-coarsenable if it is in the initial
grid, it or any of its siblings (the children of the parent and the parent’s mate)
has children, or any of its siblings have an error estimate larger than the coarsen
cutoff. Also, it will not be coarsened if it has already been coarsened and then
the parent rerefined within this refinement phase, to prevent an infinite loop
(but see an exception under MATCH TOL below). An element cannot be p-
coarsened if it has degree 1. An element cannot be h-refined if the level of the
children would exceed max lev or the size of the children would be smaller than
min elem size, and cannot be p-refined if its degree would exceed max deg.

The cutoffs are determined by the arguments coarsentol, reftol, coarsentol factor,
reftol factor, and reftol scale energy. If coarsentol is given as a posi-
tive real number, the coarsen cutoff is coarsentol/coarsentol factor, and if
reftol is given as a positive real number, the refine cutoff is reftol/reftol factor.
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There are also some special values for coarsentol and reftol. If reftol is
MAX ERRIND OVER FACTOR, the refine cutoff is the maximum error indicator (over
all refinable elements) divided by reftol factor, and likewise for coarsentol.
If coarsentol is REFCUTOFF OVER FACTOR, the coarsen cutoff is the refine cutoff
divided by coarsen factor. If coarsentol is REFCUTOFF TIMES CONVERGENCE,
the coarsen cutoff is the refine cutoff divided by coarsen factor and multi-
plied by the energy norm asymptotic convergence rate, (1/2)p/2 where p is the
degree of the element. If reftol scale energy is .true., the refine cutoff is di-
vided by the square root of the number of elements, and if in addition errtype

is RELATIVE ERROR, the refine cutoff is multiplied by the energy norm of the
computed solution. (See ONE REF below.)

Each time through the coarsen-refine loop, first all elements marked for
coarsening are coarsened, in order of finest level to coarsest level, and then all
elements marked for refinement are refined, going from coarsest level to finest
level.

There are several ways to determine how much refinement to perform in one
refinement phase, i.e., when to exit the coarsen-refine loop. This is controlled by
the argument refterm. The allowed values for this argument are given in Table
3.3. Under any of these choices the coarsen-refine loop is also exited after going
through it refmaxloop times. This limit prevents an infinite loop if coarsening
and refining negate each other.

“Double” means that the refinement should approximately double the num-
ber of vertices, elements or equations in the grid. The factor 2 was chosen
because this corresponds to the increase that would occur with one uniform
h-refinement of the grid. If a different factor is desired, it can be specified with
the real valued argument inc factor. The number of the specified entities is
not doubled exactly because all elements marked for refinement are refined. The
coarsen-refine loop is exited when the number of elements is a least doubled.

“Keep” attempts to change the grid by derefining some elements and refining
others while keeping the total number of entities approximately the same. This is
useful, for example, with time dependent problems where the grid should track
the movement of some feature of the solution. If the corresponding “max ”
value is supplied (for example, max vert along with KEEP NVERT), then the
attempt is to match the number supplied. Otherwise, the attempt is to match
the number of entities currently in the grid, which can cause a drift in the
number of entities after several iterations.

HALVE ERREST refines the grid until the maximum error indicator has been
reduced by half. This corresponds to the expected reduction of error by a
uniform h-refinement with degree=1 and a smooth solution.

With ONE REF the coarsen-refine loop is exited after one repetition. The
default refinement parameters with this choice are reftol=term energy err

(Section 3.3.6), reftol factor=1.0 and reftol scale energy=.true. Using
this, if the error indicator of every element is exactly refine cutoff, the global
energy norm error estimate is exactly term energy err.

ONE REF HALF ERRIND is like ONE REF except the default refine parameters
are reftol=MAX ERRIND OVER FACTOR, reftol factor=inc factor and reftol
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scale energy=.false., so this makes one pass refining elements with error in-
dicators larger than half the maximum.

MATCH TOL repeats the coarsen-refine loop until the error indicator of all el-
ements is between the coarsen cutoff and refine cutoff, except those that are
not coarsenable or refinable. For this the cutoffs are computed the first time
through the coarsen-refine loop, and remain constant thereafter. Normally the
ban on coarsening an element that was already coarsened and then recreated
by the parent being refined is reset at the beginning of the coarsen-refine loop.
With MATCH TOL it is possible for this to result in an infinite refine-solve loop
by having the refinement negate the coarsening, giving the same grid back af-
ter the refinement phase. To avoid this, the reset is not performed after the
recoarsen limitth time through the refine-solve loop if the change in the num-
ber of elements in the previous refinement phase was less than recoarsen tol

times the number of elements in the grid.
A large number of strategies for hp-adaptive refinement have been imple-

mented in PHAML. Selection of which strategy to use is controlled by the
argument hp strategy. Some strategies may override the values of some ar-
guments, in particular refterm, derefine, inc factor, and error estimator.
The strategies are briefly described here. For a more complete description, see
[35, 36]. For a comparison of how the different strategies performed on a set of
test problems, see [36, 37].

In all of the hp strategies, if an element that would be refined by p refinement
has degree max deg, then it is refined by h refinement (unless stop on maxdeg is
true), and if an element that would be refined by h refinement has level max lev

or size less than min elem size, then it is refined by p refinement (unless the
level is max lev and stop on maxlev is true). If an element has both max deg

and max lev or min elem size, then it is not refined.
The following values are currently allowed for hp strategy:
HP APRIORI is an extension of the second strategy in Ainsworth & Senior [2].

The basic approach is to refine elements by p refinement, except elements that
contain a known point singularity are refined by h refinement. The extension
is that we do not limit irregularities to point singularities, and you can specify
the strength of that irregularity.

This strategy requires that the user provide a function subroutine that in-
dicates where the solution has an irregularity (i.e. is singular or nonsmooth).
See the end of examples/L-domain/pde.f90 for an example of this subroutine.
Also see Section 6.3.8. In theory, this routine should return the largest value of
m such that the solution is in Hm(T ), i.e. the derivative up to order m are in
L2, where T is the triangle whose vertices are given as input to the function.
For multicomponent solutions, it should return the worst (i.e. smallest) such m
among the components.

In practice, it can be used to guide refinement in other a priori known trouble
areas, such as sharp peaks, boundary layers and wave fronts. The actual use is
that p refinement is performed if the current degree of the triangle is less than
the returned value, and h refinement is performed otherwise. So, for example, if
you know some region contains a boundary layer, you could return 3.1 for any
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triangle that intersects that region to perform h-refinement with cubic elements
over the boundary layer.

Several hp-adaptive strategies use the same principle as the HP APRIORI

strategy, but attempt to estimate the regularity in various ways. HP NEXT3P is
an implementation of the first strategy given in Ainsworth & Senior [2]. Three
error estimates are computed by the equilibrated residual method with spaces
of degree p + 1, p + 2 and p + 3, where p is the current degree of the element.
If φ is the actual error over the element, the error estimates ηp+q, q = 1, 2, 3,
converge to φ with error bounds

||φ||2 − η2
p+q ≤ C(p+ q)−2α.

The three error estimates are used to determine the three unknown constants
||φ||, C and α. The regularity is then given by m = 1 + α.

HP PRIOR2P E and HP PRIOR2P H1 are inspired by a strategy of Suli, Houston
and Schwab [46]. Two error estimates are computed using the local p error
estimator with spaces of degree p− 1 and p− 2. The regularity is estimated by

m = 1− log(ηp−1/ηp−2)

log((p− 1)/(p− 2))

HP PRIOR2P E uses the energy norm of the error estimate, whereas HP PRIOR2P H1

uses the H1 norm.
HP TYPEPARAM selects the type parameter strategy of Gui and Babuška [21].

Perceived smoothness of the solution over element t is given by

R(t) =

{
e(t,p)
e(t,p−1) e(t, p− 1) 6= 0

0 e(t, p− 1) = 0

where p is the degree of the element and e is the error indicator for the given
degree. The type parameter, γ, determines the type of the element. If R(t) > γ
then t is of h-type and will be h refined; otherwise it is p-type and will be p
refined. γ is specified with tp gamma.

Another way of determining if the solution is smooth is to compare the local
a posteriori error estimate with a prediction of what the error estimate should
be, after refinement, under the assumption that the solution is smooth and has
the proper asymptotic convergence rate [28]. If ηE is the error estimate on
element E, and E′ is a child of E after refinement, then the predicted error
indicator for E′ is

ηpred
E′ =

{
1
2γh

(
1√
2

)pE
ηE if E was h refined

√
γpηE if E was p refined

where pE is the degree of element E, and γh and γp are control parameters
given in sp gamma h and sp gamma p. Then, if E′ is selected for refinement, it
is refined by h-refinement if ηE′ > ηpred

E′ , and by p-refinement otherwise. This
strategy is selected with HP SMOOTH PRED.
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HP BIGGER ERRIND selects a strategy in which both the LOCAL PROBLEM H and
LOCAL PROBLEM P error indicators are computed. It is similar to the strategy for
1D problems in [41]. The error indicator specified by error estimator is used
to determine which elements will be refined (see 3.3.3). For each element that is
selected for refinement, it is h refined if LOCAL PROBLEM H gives the larger error
indicator, and p refined if LOCAL PROBLEM P is larger. The premise is that the
local problem error indicators approximate how much the solution will change
if the refinement is performed, and one should perform the type of refinement
that will cause the largest change, and hence reduce the error the most. Exper-
iments have indicated that it is often beneficial to bias the refinement towards
p-refinement, which can be done by setting pbias to a number greater than 1.
We have found that generally pbias=2 works best if the solution is singular or
has exceptionally strong features, and pbias=4 is best for smooth solutions or
moderately strong features.

HP PATCH selects a strategy based on solving local problems on patches of
elements that was proposed by Bürg and Dörfler in [10]. The patch consists of
the element to be refined, K, and all elements that share an edge with it. We
solve the residual problem, like in the local problem error indicators, using ho-
mogeneous Dirichlet boundary conditions. Two or more candidate refinements
are considered. For candidate j, the patch is refined as indicated by the can-
didate, the residual problem is solved, and the energy norm of the solution is
computed to get βK,j . wK,j is the number of degrees of freedom in the refined
patch. The candidate with the smallest value of βK,j/wK,j is selected.

Candidates are defined by two arrays, hp patch mult and hp patch add,
with dimension (2,number of candidates). If p is the current degree of element
K, then for the jth candidate, the degree of the ith child of h-refinement, i = 1, 2,
is max(1, bp ∗ hp patch mult(i,j)c + hp patch add(i,j)). For example, to
consider child degrees (p/2 + 1, p/2) use hp patch mult(:,j)=(/.5,.5/) and
hp patch add(:,j)=(/1,0/). To keep symmetry in the candidates, also include
candidate (p/2, p/2 + 1).

The special case where the second entry in hp patch mult is zero des-
ignates p-refinement. The first entry of hp patch mult is ignored and the
first entry of hp patch add designates how much to increase p. For example,
hp patch mult(:,j)=(/1.0,0.0/) and hp patch add(:,j)=(/2,0/) indicates
a candidate p-refinement with p increased by 2.

There are also some defined constants for hp patch add to specify special
candidate sets. In this case, hp patch mult is ignored, if present.

• HP PATCH H P CANDIDATES indicates the usual two candidates: 1) h-refinement
keeping the same p, and 2) p-refinement increasing p by 1. This is the de-
fault.

• HP PATCH REFSOLN ELEM CANDIDATES indicates the candidates used by the
HP REFSOLN ELEM strategy (defined below): nine h-refinement candidates
with degrees (p0 + i, p0 + j), 0 ≤ i, j ≤ 2, where p0 = b(p + 1)/

√
2c, and

two p-refinement candidates increasing p by 1 and 2.
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• HP PATCH REFSOLN EDGE CANDIDATES indicates the candidates used by the
HP REFSOLN EDGE strategy (defined below): p h-refinement candidates with
degrees (1,p), (2,p-1), (3,p-2), . . ., (p,1), and one p-refinement candidate
increasing the degree by 1.

A strategy for 1D problems based on the coefficients of the Legendre polyno-
mial expansion of the solution was given in [27]. If p refinement is optimal, then
the coefficients should decrease exponentially. A least squares fit of the last four
coefficients is made to ce−σpi , where pi are the degrees of the last four Legendre
polynomials. If σ > 1 then p refinement is performed, otherwise h refinement.
To extend this to 2D, we use the coefficients of the p-hierarchical basis. The
ith “coefficient” is given by the sum of the absolute values of all coefficients of
bases of degree i. This strategy is selected with HP COEF DECAY.

Another strategy based on Legendre coefficients is given in [22]. This strat-
egy, selected with HP COEF ROOT, uses a “root test” on the coefficients to es-
timate the regularity of the solution. p refinement is used where the solution
is sufficiently smooth, and h refinement elsewhere. Again, PHAML uses the
coefficients of the p-hierarchical basis instead of the Legendre coefficients.

A strategy based on that of Šoĺın et al. [44] is implemented as HP REFSOLN ELEM.
This strategy has its own overall structure to the adaptive refinement algorithm,
so most of the refinement-related parameters to PHAML have no effect, includ-
ing the error indicator. Also note that the global energy norm error estimate is
actually a relative H1 norm error estimate (which is equivalent), and the L∞
and L2 error estimates are not available. However, all the usual error estimates
are available through phaml query. The method begins by computing a refer-
ence solution, uref on a grid that has been globally refined by both h and p.
The error indicator for element E is computed as ||uref − uT ||H1(E). Elements
for which the error indicator is larger than the largest error indicator divided
by inc factor are selected for refinement. For each element to be refined, 11
candidate refinements are considered: p-refine to degree p+1, p-refine to degree
p + 2, and h-refine with the child degrees being all combinations of p0, p0 + 1
and p0 + 2 where p is the current degree of the element and p0 = b(p+ 1)/

√
2c.

For each candidate, the H1 projection of the reference solution onto the corre-
sponding space, Πcandidate, is computed, and the projection error is computed
as ||uref−Πcandidate||H1(E). The projection error onto the unrefined space is also
computed. The winning candidate refinement is selected based on the amount
by which the logarithm of the projection error is reduced relative to the increase
in the number of degrees of freedom. Experiments have indicated that it is of-
ten beneficial to bias the refinement towards p-refinement, which can be done
by setting pbias to a number greater than 1. We have found that generally
pbias=2 works best if the solution is singular or has exceptionally strong fea-
tures, and pbias=4 is best for smooth solutions or moderately strong features.
HP REFSOLN ELEM has not yet been implemented in parallel, so it currently
requires nproc=1.

Another strategy based on using a reference solution is that of Demkow-
icz [13]. HP REFSOLN EDGE is based on this strategy. It is similar to
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HP REFSOLN ELEM, but one first considers the refinement of edges by pro-
jecting the reference solution onto spaces corresponding to candidate refinements
of the edge. Once it is determined how to refine the edge, the refinement of the
element is determined by consistency of the h-refinement of the edge and the
minimum edge rule for p. This method has not been implemented in parallel
yet, so it currently requires nproc=1.

3.3.3 Error indicator

The heart of an adaptive refinement strategy is the error estimator, or more
properly, error indicator. An error indicator is computed for each triangle,
and those with the largest error indicators are refined. PHAML currently
contains six error indicators. The error indicator is selected by the argument
error estimator which takes one of the values EXPLICIT ERRIND, LOCAL PROBLEM H,
LOCAL PROBLEM P, EQUILIBRATED RESIDUAL, HIERARCHICAL COEFFICIENT or TRUE DIFF

to select one of the error indicators. It can also take the value INITIAL CONDITION.
Many error indicators are based on the interior residual within elements

r = f − LuT (3.8)

and the boundary residual on element edges

R =


g − BuT if the edge is on ∂ΩN

0 if the edge is on ∂ΩD

−[∂uT

∂n ] if the edge is interior

(3.9)

where L is the operator defined in Equation 1.1, B is the operator defined in
Equation 1.3, f , g, ∂ΩN , and ∂ΩD are defined in Equations 1.1-1.3, uT is the
approximate solution, and [∂uT

∂n ] is the jump in the normal derivative across the
element boundary. See [1] for a more detailed treatment of error indicators.

EXPLICIT ERRIND selects the explicit error indicator defined in Chapter 2
of [1], with slight modifications for the more general operator and degree-based
weights for high order elements as given in [28] . The error indicator is based
on the norm of the residual. The explicit error indicator, ηe, for an element e is
given by

η2
e =

h2
e

p2
||r||L2(e) +

he
2p
||R||L2(∂e) (3.10)

where he is the longest edge length of the element and p is the degree of the
element. The error indicator is used to guide adaptive refinement. The energy
norm error estimate is given by an unknown constant times the square root
of the sum of the squares of the error indicators. For the L2 error estimate,
the powers on the h’s are increased by 2. For the L∞ error estimate, the L∞
norm of the residuals is used and the maximum error indicator gives the error
estimate. In PHAML the unknown constant has been chosen to be 1/4 for the
energy norm and 1/20 for the L2 and L∞ norms based on the results obtained
with the example and test problems, although these constants work better with
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high order or hp-adaptive elements than linear elements. The integrals for the
energy and L2 norms are approximated with a 4th order quadrature rule, and
the L∞ norm is approximated by values at the quadrature points of the same
quadrature rule. The H1 and H1 semi-norm error estimates are not available
when using this error indicator, and will return 0.0. The explicit error indicator
is quite efficient to compute and generally provides good guidance for adaptive
refinement, but one cannot be certain of the accuracy of the error estimates.

LOCAL PROBLEM H and LOCAL PROBLEM P are based on solving a small local
problem. Equation 1.1 is modified by replacing f with the interior residual
r. For a linear PDE, the solution of this equation is the error. The modified
equation is solved on a domain consisting of one or two triangles to get an
estimate of the error over that small domain. To approximate the solution of
this small problem with slightly higher accuracy than the current solution uT ,
the triangle(s) are refined once either by h-refinement or p-refinement. The
h-refinement form uses two triangles and refines them as a pair by bisection.
Homogeneous Dirichlet boundary conditions are applied. The p-refinement form
uses one triangle with polynomial degree one larger than that used for uT .
Natural boundary conditions are applied using the boundary residual R. Since
the refinement used for the error indicator is exactly what would occur if the
triangle(s) was (were) chosen for refinement by h- or p-refinement, this gives an
estimate of how much the solution would change if this triangle(s) was (were)
refined. The local problem error indicators are very accurate, but relatively
expensive, because of the computation required to set up and solve the elemental
matrices for each triangle.

The EQUILIBRATED RESIDUAL error indicator is similar to the LOCAL PROBLEM P

indicator, except that the residual is equilibrated so that the boundary fluxes are
in equilibrium with the interior residual loads (see Chapter 6 in [1]). This insures
that the discrete Neumann problem has a solution, which in turn allows the use
of the full local approximation space of degree p, whereas the LOCAL PROBLEM P

uses a reduced space spanned by the bases of exact degree p. It can be shown
that this method produces an error estimate that is a guaranteed upper bound
on the actual energy norm of the error, if the local problem was solved exactly.
Of course, the local problem is solved approximately so the guarantee does not
hold, but the PHAML examples typically find the ratio of error estimate to ac-
tual error to be about 1.25. This is the most accurate and stable error indicator
in PHAML, but also the most computationally expensive.

A less expensive approach, given by HIERARCHICAL COEFFICIENT, is to sim-
ply examine the hierarchical coefficients (see [29]) of uT over each triangle, which
is similar to computing the local problem indicator one refinement back. For
linear elements, the coefficient of the h-hierarchical basis is used. For higher
order elements, the coefficients of the p-hierarchical bases are used. This indi-
cator can provide a very inexpensive way to guide adaptive refinement, but is
not likely to give an accurate estimate of the norm of the error. The H1 and
H1 semi-norm error estimates are not available when using this error indicator,
and will return 0.0.

The TRUE DIFF error indicator uses the difference between the true solution
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(if given, see 3.2.4) and uT . The energy, H1 and L2 norms, and H1 semi-norm
are estimated with a sixth order quadrature rule, and the L∞ norm is estimated
using the same quadrature points. This is primarily available for comparison
with new error indicators and would not normally be used.

The INITIAL CONDITION estimate uses the difference between the function
given in subroutine iconds and uT . Normally this is used to define an initial
grid for time dependent or nonlinear problems (see Section 4.3), but it can also
be used to provide a function that indicates where you believe the grid should
be finer.

3.3.4 Linear system solver

Another major phase of phaml solve pde is the solution of the linear system
of equations to get the coefficient vector of the solution. PHAML contains a
hierarchical basis multigrid method as the primary linear system solver, along
with two basic Krylov space solvers, conjugate gradients and GMRES. It also
contains hooks into several freely available software packages of direct and iter-
ative parallel solvers for comparative studies and for situations where the native
solvers are not sufficient. For information on obtaining the optional software
discussed in this section, see Section 2.1. The solver is selected by the arguments
solver and preconditioner.

3.3.4.1 Hierarchical basis multigrid solver

The default solver is the hierarchical basis multigrid solver (HBMG), which
can be explicitly selected with solver = MG SOLVER. (Note: this solver must
NOT be used if the linear system is not symmetric (i.e., cxy, cx or cy from
Equation 1.1 is nonzero, or a coefficient matrix in a coupled system of equa-
tions is nonsymmetric) or indefinite (i.e., cu is negative with sufficiently large
magnitude).) It combines the ideas of an hp-multigrid method [34] with the
h-hierarchical basis multigrid method for linear elements [30]. The equations
corresponding to high order face basis functions 3.3.1 are first removed by static
condensation [51]. A p-multigrid cycle is applied to the equations correspond-
ing to vertex and edge basis functions as follows. The cycle is like a normal
multigrid V-cycle, except the levels are given by the polynomial degree. Some
number of Gauss-Seidel iterations are performed on all equations up to degree
pmax where pmax is the maximum degree. Then the Gauss-Seidel iterations are
applied to all equations up to degree pmax − 1, then pmax − 2, etc., until only
the linear and quadratic equations are used. With the p-hierarchical basis, the
“intergrid transfers” are automatic. Then the “coarse grid” equations (equa-
tions corresponding to the vertices, i.e. linear elements) are solved “exactly”
by using a standard h-multigrid method. In PHAML, the h-hierarchical basis
multigrid method is used, as follows. The residual is injected into the equations
corresponding to the linear basis functions. The equations corresponding to
the linear basis functions are relaxed by some red-black Gauss-Seidel iterations.
The black equations are those corresponding to equations in the coarse grid,
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and the red equations are from the fine grid but not the coarse grid. A half it-
eration is allowed, which means relaxing the red equations but not the black. A
basis change is then performed on those equations to convert from a nodal basis
to a 2-level h-hierarchical basis, and the coarse grid equations are extracted.
The process of relaxation, basis change and extraction is repeated until the
grid consists only of the initial grid, i.e. all elements have refinement level 1.
The coarsest grid problem is solved with a LAPACK direct solver. The process
is then reversed by performing relaxation followed by conversion from 2-level
h-hierarchical basis to nodal basis to get the next finer grid. After the finest
level is reached, the second half of the p-multigrid cycle performs relaxations
on all equations up to degree 2, then up to degree 3, etc. This constitutes one
multigrid V-cycle. Cycles are repeated until some termination criterion is met.
Finally, the equations corresponding to face basis functions are solved directly.

There are several arguments to phaml solve pde that determine the specifics
of the multigrid algorithm. mg prerelax ho and mg postrelax ho determine
the number of Gauss-Seidel iterations to perform on each level of the p-multigrid
cycle, before and after solving the linear basis equations. mg prerelax and
mg postrelax give the number of half-red-black Gauss-Seidel iterations to per-
form before and after solving the coarse grid problem for the linear equations.
A half iteration relaxes the red equations but not the black equations. So, for
example, mg prerelax=2 specifies one red-black iteration.

The termination of the multigrid cycles can be specified as a fixed number of
cycles or by a tolerance on the residual of the linear system. To terminate by a
tolerance, specify the tolerance in mg tol. Iterations continue until the `2 norm
of the residual of the scaled linear system is less than mg tol. There are two
symbolic constants that provide special values for mg tol. MG ERREST TOL says
to cycle until the residual is reduced to some fraction of the global error estimate.
This avoids excess computation from solving the system more accurately than
is necessary relative to the discretization error. MG NO TOL says to use a fixed
number of iterations rather than a tolerance. The argument mg cycles gives
the fixed number of cycles to perform. Used in conjunction with a tolerance,
mg cycles provides an upper bound on the number of cycles to guarantee the
iteration will terminate.

The HBMG as implemented in PHAML uses the full domain partition ap-
proach to parallelism by default [32]. This approach allows the use of only two
messages in each h-multigrid cycle, one at the coarsest grid and one at the
finest grid, with a (usually very minor) reduction in the convergence rate of
the h-hierarchical basis multigrid method, but still uses communication after
each level of the p-multigrid cycle. PHAML also provides the option of using
conventional parallelism with messages on each h-level, which gives exactly the
same results as the sequential HBMG. This is selected by specifying mg comm =

MGCOMM CONVENTIONAL.
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3.3.4.2 Krylov space solvers

PHAML also contains two Krylov space solvers: conjugate gradients and GM-
RES. For a description of these methods, see [9]. The methods are selected
by setting solver to be CG SOLVER and GMRES SOLVER, respectively. As with
the HBMG method, PHAML begins by eliminating the equations associated
with face basis function by static condensation. It also eliminates the equations
associated with Dirichlet boundary conditions so that the working matrix is
symmetric.

Either method can be used without preconditioning via preconditioner=NO PRECONDITION

or with HBMG as the preconditioner via preconditioner=MG PRECONDITION.
As a preconditioner, HBMG does not need to converge to the solution, just give
an approximation. It is usually sufficient to use two iterations, so the default
HBMG parameters are set appropriately when HBMG is used as a precondi-
tioner instead of a solver. Also, the HBMG preconditioner uses, by default,
ignore quad err=.true. to avoid reducing the larger quadrature errors in un-
owned elements, and mg comm = MGCOMM NONE to skip the communication steps
in HBMG.

There are three parameters that control the Krylov space solvers. krylov iter

provides an upper bound on the number of iterations allowed, and krylov tol

gives a tolerance on the `2 norm of the residual. Convergence is declared when
the residual is less than the tolerance. If the maximum number of iterations is
achieved before convergence, the solution is accepted and a warning is printed.
krylov restart gives the number of restart vectors for GMRES.

3.3.4.3 Alternative direct solvers

3.3.4.3.1 LAPACK

The LAPACK library [5] is always linked with a PHAML program. In lim-
ited situations it can be used as the linear system solver. It is specified by
solver=LAPACK SPD SOLVER for most problems, which generate a symmetric
positive definite matrix, or by solver=LAPACK INDEFINITE SOLVER for prob-
lems that generate an indefinite symmetric matrix. However, it can only be
used as the solver for sequential programs because it is not a parallel library.
And it should only be used for relatively small problems.

3.3.4.3.2 MUMPS

MUMPS [3][4] is a parallel direct solver from the European project PARASOL.
It is accessed through PETSc, so PETSc must also be installed and be configured
for MUMPS support. MUMPS is specified with solver=PETSC MUMPS SPD SOLVER

for the symmetric positive definite solver, or solver=PETSC MUMPS GEN SOLVER

for the nonsymmetric solver.
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PETSC RICHARDSON SOLVER Richardson
PETSC CHEBYCHEV SOLVER Chebychev
PETSC CG SOLVER conjugate gradients
PETSC BICG SOLVER BiConjugate Gradients
PETSC GMRES SOLVER generalized minimal residual
PETSC BCGS SOLVER biconjugate gradients stabilized
PETSC CGS SOLVER conjugate gradient squared
PETSC TCQMR SOLVER transpose-free quasi-minimal residual
PETSC TFQMR SOLVER transpose-free quasi-minimal residual
PETSC CR SOLVER conjugate residual
PETSC LSQR SOLVER least squares

Table 3.4: Available values of solver for the PETSc solvers.

NO PRECONDITION no preconditioning
MG PRECONDITION one hierarchical basis multigrid V-cycle
PETSC JACOBI PRECONDITION Jacobi
PETSC BJACOBI PRECONDITION block Jacobi
PETSC SOR PRECONDITION SOR and SSOR
PETSC EISENSTAT PRECONDITION SOR with Eisenstat trick
PETSC ICC PRECONDITION incomplete Cholesky
PETSC ILU PRECONDITION incomplete LU
PETSC ASM PRECONDITION additive Schwarz
PETSC GAMG PRECONDITION algebraic multigrid
PETSC TRILINOS ML PRECONDITION algebraic multigrid package ML from Trilinos

Table 3.5: Available values of precondition for the PETSc solvers.

3.3.4.3.3 SuperLU

SuperLU [26] is a parallel direct solver from the Lawrence Berkley National Lab-
oratories. It is accessed through PETSc, so PETSc must also be installed and be
configured for SuperLU support. SuperLU is specified with solver=PETSC SUPERLU SOLVER.

3.3.4.4 Alternative iterative solvers

3.3.4.4.1 PETSc

PETSc [7][8] is a parallel library of preconditioners and Krylov space iterative
solvers from Argonne National Laboratories. PHAML provides access to most of
the methods in PETSc and several parameters to those methods. Table 3.4 con-
tains the available PETSc solvers as specified by solver. Table 3.5 contains the
available preconditioners for the PETSc solvers specified by preconditioner.

There are a number of arguments that are used as parameters to the PETSc
methods. These are listed in Table 3.6. Refer to the PETSc User’s Manual [8]
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real(my real) petsc richardson damping factor
real(my real) petsc chebychev emin
real(my real) petsc chebychev emax
integer petsc gmres max steps
real(my real) petsc rtol
real(my real) petsc atol
real(my real) petsc dtol
integer petsc maxits
integer petsc ilu levels
integer petsc icc levels
real(my real) petsc ilu dt
real(my real) petsc ilu dtcol
integer petsc ilu maxrowcount
real(my real) petsc sor omega
integer petsc sor its
integer petsc sor lits
logical petsc eisenstat nodiagscaling
real(my real) petsc eisenstat omega
integer petsc asm overlap

Table 3.6: Arguments that are passed to the PETSc solvers.

for explanations of these arguments.
If the preconditioner is not one of the ones starting with PETSC, then memory

can be saved by not copying the matrix to the PETSc format. This is specified
by petsc matrix free=.true.

If you use PETSc, you might have to make some changes to PHAML depend-
ing on what version of PETSc you have. See mkmkfile.sh, petsc init.F90,
and petsc interf.F90 and search for “before” to see if you need to make
changes.

3.3.4.4.2 hypre

hypre [16][17] is a package of parallel iterative solvers and preconditioners from
Lawrence Livermore National Laboratories. It is accessed through PETSc, so
PETSc must also be installed and be configured for hypre support. The four
preconditioners from hypre that are available through PETSc are BoomerAMG,
ParaSails, and Pilut. The are used in conjunction with a PETSc solver from Ta-
ble 3.4. They are selected with preconditioner = PETSC HYPRE xxx PRECONDITION,
with xxx being BOOMERAMG, PARASAILS or PILUT. BoomerAMG can also be used
as a solver via solver = PETSC HYPRE BOOMERAMG SOLVER. There are several ar-
guments that are passed to the hypre methods listed in Table 3.7. See the hypre
reference manual (available at the hypre web site) for an explanation of these.
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real(my real) hypre BoomerAMG tol
real(my real) hypre BoomerAMG trunc factor
real(my real) hypre BoomerAMG strong threshold
real(my real) hypre BoomerAMG max row sum
real(my real) hypre BoomerAMG relax weight
real(my real) hypre BoomerAMG outer relax weight
integer hypre BoomerAMG cycle type
integer hypre BoomerAMG max levels
integer hypre BoomerAMG max iter
integer hypre BoomerAMG P max elmts
integer hypre BoomerAMG agg num levels
integer hypre BoomerAMG agg num paths
integer hypre BoomerAMG num sweeps all
integer hypre BoomerAMG num sweeps down
integer hypre BoomerAMG num sweeps up
integer hypre BoomerAMG num sweeps coarsest
integer hypre BoomerAMG relax type all
integer hypre BoomerAMG relax type down
integer hypre BoomerAMG relax type up
integer hypre BoomerAMG relax type coarsest
integer hypre BoomerAMG relax order
integer hypre BoomerAMG measure type
integer hypre BoomerAMG coarsen type
integer hypre BoomerAMG interp type
logical hypre BoomerAMG print statistics
logical hypre BoomerAMG print debug
real(my real) hypre Pilut tol
integer hypre Pilut maxiter
integer hypre Pilut factorrowsize
real(my real) hypre ParaSails thresh
real(my real) hypre ParaSails filter
real(my real) hypre ParaSails loadbal
integer hypre ParaSails nlevels
integer hypre ParaSails sym
logical hypre ParaSails logging
logical hypre ParaSails reuse

Table 3.7: Arguments that are passed to the hypre solvers and preconditioners.
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3.3.5 Load balancing

A parallel program with adaptive grid refinement must perform dynamic load
balancing. When the grid is refined adaptively, some processors will perform
more refinement than others, resulting in more grid elements, and hence more
of the computational load, than others. Dynamic load balancing redistributes
ownership of the elements to balance the load among the processors.

In PHAML, load balancing is performed by partitioning the grid into P
sets where P is the number of slave processes. Each process is said to own
the triangles in one of the partitions. Each vertex and edge has an associated
triangle and is owned by the process that owns that triangle. PHAML uses a full
domain partition (FuDoP) [31] in which each process also has additional coarse
elements that cover the unowned part of the domain. Figure 3.5 illustrates
an adaptively refined grid and the grid that would be seen by each of three
processors, with the color indicating ownership.

One normally thinks of performing load balancing after refinement to redis-
tribute the new grid. But it is also possible to perform predictive load balancing
before refinement, which can reduce the amount of data to be redistributed.
There also may be advantages to basing the balance on the number of elements,
number of vertices or number of equations. PHAML provides the choice of
balancing any of these entities before and/or after refinement. The number of
entities (elements, vertices or equations) that are associated with an element is
used as the weight for the element in the partitioning algorithms. For balancing
after refinement, it divides up the number of entities as equally as possible. For
balancing before refinement, it estimates the number of entities that will be as-
sociated after refinement. If refterm is not ONE REF or ONE REF HALF ERRIND,
it includes the error indicator in the weight, so that those that are likely to be
refined more times are given more weight. The selection of what to balance
and when to balance is given by the arguments prebalance and postbalance

which can take the value BALANCE NONE, BALANCE ELEMENTS, BALANCE VERTICES

or BALANCE EQUATIONS. Usually, one of the two arguments is BALANCE NONE so
that either regular or predictive balancing is performed, but it is possible to
perform balancing on both sides of refinement.

Grid partitioning algorithms have been the topic of extensive research, and
there are several algorithms available. The method built into PHAML is the
k-way refinement tree method [33]. This method uses the inherent refinement
tree where the tree nodes correspond to triangles and the children of a tree
node are the triangles created when a triangle is refined. Weights are attached
to the leaf nodes and a tree traversal is performed to sum the weights. A second
traversal is performed to partition the tree into P subtrees of equal summed
weight. The children in the tree are ordered such that a tree traversal gives a
space filling curve through the grid, and partitions are connected.

The choice of partitioning method is determined by the argument partition method.
The built in k-way refinement tree method is selected by the value RTK. Alter-
native partitioning methods are provided through the optional Zoltan dynamic
load balancing library [14][15]. The values for selecting methods from Zoltan
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Figure 3.5: An adaptive grid partitioned for 3 processors, and the grid seen by
each of the processors.

ZOLTAN RCB recursive coordinate bisection
ZOLTAN OCT RPI’s Octree method
ZOLTAN METIS local diffusion method from ParMETIS
ZOLTAN REFTREE refinement tree
ZOLTAN RIB recursive inertial bisection
ZOLTAN HSFC Hilbert space filling curve
ZOLTAN FILE read Zoltan method and parameters from a file

Table 3.8: Available values of partition method for Zoltan partitioners.
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are given in Table 3.8. See the Zoltan User’s Guide for descriptions of these
methods, except ZOLTAN FILE.

ZOLTAN FILE lets you specify the method to use in Zoltan, and also to specify
other Zoltan parameters, in a file. Basically, any parameter than can be set with
Zoltan Set Param (see the Zoltan User’s Guide) can be set by including a line
containing the parameter name and value. In particular, you can specify the
method with, for example, LB METHOD RCB. For a full description of this file,
see the zoltanParams web page [49]. The Zoltan parameter file is specified
by the phaml solve pde argument zoltan param file, with a default value of
"zoltan.params".

DRUM (the Dynamic Resource Utilization Model) [18][48] supports resource-
aware, large-scale scientific computing in heterogeneous and hierarchical paral-
lel computing environments. It can improve the load balance on, for example,
clusters containing different kinds of processors. Within PHAML, DRUM is ac-
cessed with the partitioning method ZOLTAN FILE. The parameters for DRUM
are specified in the Zoltan parameter file. See the DRUM documentation for a
description of the DRUM parameters.

3.3.6 Termination

There are several ways to specify how long phaml solve pde should continue
to work on the solution, i.e. when to terminate. This section presents them.
At least one of them must be specified or else the subroutine will run forever.
Multiple termination criteria can be specified, and the routine will return when
any of them are satisfied.

The argument task selects what task should be performed by phaml solve pde.
Three of the values for task invoke a single pass of one part of the pro-
gram, and no further termination criterion is needed. These are BALANCE ONLY,
REFINE ONLY, and SOLVE ONLY. The value BALANCE REFINE SOLVE invokes a loop
over the three phases until one of the termination criteria is met. SET INITIAL

also loops over the three phases, but for the solve phase it interpolates the
function in subroutine iconds (see Section 6.3.5). This is usually used for set-
ting initial conditions for a time dependent problem, or an initial guess for a
nonlinear problem (see Section 4.3).

The termination criteria are given by optional arguments and fall into two
categories. The first is those that specify an upper bound on the number of
something. These arguments all take an integer value. The arguments are
max elem (elements), max vert (vertices), max eq (equations in the linear sys-
tem), and max refsolveloop (number of times through the refine/solve loop).
You can also specify max lev (refinement levels) and max deg (polynomial de-
gree), but by default these are not termination criteria – if the refinement of
an element would exceed the given value, then it is simply not performed. To
use these as termination criteria, use the logical arguments stop on maxlev and
stop on maxdeg.

The other category is to terminate when an error estimate is small enough.
The global error estimate is computed from the local error indicator. The es-
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timate can be an estimate of the energy norm, H1 norm, H1 semi-norm, L∞

norm, or L2 norm of the error. The arguments term energy err, term H1 err,
term H1 seminorm err, term Linf err, and term L2 err all take a real(my real)

value. term H1 err and term H1 seminorm err cannot be used in conjunction
with the HIERARCHICAL COEFFICIENT and EXPLICIT ERRIND error es-
timators.

3.4 I/O

3.4.1 I/O files

PHAML writes printed output to two units, which can be specified through the
integer arguments output unit and error unit of subroutine phaml create.
Error messages and warnings are written to error unit and all other printed
output is written to output unit. By default, output unit is 6 which most
compilers provide as a pre-connected unit, often referred to as stdout. Also
by default, error unit is 0 which most compilers provide as a pre-connected
unit, often referred to as stderr. If your compiler uses different unit numbers
for pre-connected units, the correct units can be specified through these argu-
ments. The two units can be the same if you want to have error messages and
printed output intermixed. Warning messages from the master and slave pro-
cesses can be suppressed by passing print warnings=.false. to subroutine
phaml solve pde. Error messages and warnings from graphics processes cannot
be suppressed.

Usually stdout and stderr print to the terminal screen. In particular, they
usually print to the window from which the program was started. However,
the processes of a parallel program might not have an associated window, and
the destination of stdout and stderr is determined by the parallel library. For
example, if using a master/slave model with LAM as the parallel library, output
from the master process will go to the window from which it was started, but
output from the slave processes will go to the window from which lamboot was
run. Moreover, output from all the slaves is intermixed in this window. To
get more control over the destination of output from the slaves you can use
spawn form=DEBUG SLAVE in phaml create. This will open a window for each
slave process and normally the printed output goes to those windows.

If you prefer to have the printed output directed to a file, then you can open
a unit and specify that unit in output unit and/or error unit. PHAML pro-
vides “parallel open” and “parallel close” subroutines for this purpose. Subrou-
tine phaml popen (Section 6.4.11) opens a unit with a different file for the master
and each of the slaves. If you specify the name of the file to be root.suffix

then the actual filenames are rootXXXX.suffix for slave number XXXX, where
the number of digits in XXXX is the minimum needed for the number of slaves.
The master process is number 0. Subroutine phaml pclose (Section 6.4.10)
closes the unit.

Thus the usual process for directing printed output (or error) to files is: 1)
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call phaml create with some non-pre-connected unit number in output unit,
2) call phaml popen with that unit number and some root file name, 3) call
phaml solve pde, 4) call phaml pclose with that unit number. Note that if
there are any error messages printed by phaml create, they cannot be written to
this file because the unit has not yet been opened. These messages are written
to unit 0 by default. You can specify a different unit through the argument
output now, but it must be a pre-connected unit.

3.4.2 Printed I/O

PHAML provides for the printing of various quantities at various times during
the execution of phaml solve pde. By default, the only printed output is a
header containing a summary of the input variables to phaml solve pde and a
trailer containing termination information, printed by the master process. Other
output is controlled through a series of “when” and “who” arguments. The
“when” arguments indicate how often to print something. They take the values
NEVER (don’t print that quantity), FINAL (print it just before returning), PHASES
(print it once in each refine/solve loop), and FREQUENTLY (print more often,
usually used for debugging). The “who” arguments indicate which processes
should print something. They take the values NO ONE (don’t print that quantity),
MASTER (the master prints that quantity for the entire grid), SLAVES (each slave
prints that quantity for the part of the grid that it owns), EVERYONE (both the
master and the slaves print), and MASTER ALL (the master prints the quantity
for each of the slaves).

print grid when and print grid who provide for printing a summary of the
grid, such as the number of vertices, number of elements, etc. print linsys when

and print linsys who provide for printing a summary of the linear system, such
as the number of equations, etc. print solver when and print solver who

provide for printing a summary of the solver, such as the number of iterations
used, the norm of the residual, etc.

print error when and print error who provide for printing certain norms
of the error (if the true solution is provided) and error estimates. The logical

arguments print energy norm error, print H1 norm error, print H1 seminorm error,
print Linf norm error and print L2 norm error indicate whether or not to
print the energy norm, H1 norm, H1 semi-norm, L∞ norm and L2 norm of the
error, respectively. The default is .false. for all of them. The energy, H1, H1

semi-norm and L2 errors are approximated using a sixth order quadrature rule
for the integrals. The L∞ norm is approximated using the quadrature points of
a sixth order quadrature rule.

Similar arguments, but with “error” replaced by “errest” (e.g. print energy norm errest),
control whether or not the error estimates are printed.

The norms of the error and error estimates can be either absolute error (the
default) or relative error. This is controlled by errtype which takes the values
ABSOLUTE ERROR and RELATIVE ERROR. If the relative error is selected, then the
printed norm of the error is divided by the norm of the true solution, and the
printed error estimate is divided by the norm of the computed solution.
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print error when also provides for monitoring the convergence rate of the
iterative linear system solver, if the solver is the built-in hierarchical basis multi-
grid, conjugate gradients, or GMRES method or one of the solvers from PETSc.
If it has the value FREQUENTLY then the `2 norm of the residual is printed after
each iteration. For GMRES, it is printed at the restarts. It also accepts the
value TOO MUCH which additionally sets the solution to 0.0 before starting the
iterations, to avoid convergence in 1 iteration.

print time when and print time who provide for measuring execution time
of the program. The execution time of each section of the program (refinement,
reconciliation, load balancing, matrix assembly, linear system solution, com-
munication) is printed. Each time the time is printed it prints the time for
the most recent pass through the refine/solve loop and the total time so far.
clocks determines how the time is measured. It can be CLOCK C for the cpu
clock, CLOCK W for the wall clock, or CLOCK CW for both.

print header who and print trailer who specify which processes should
print the header and trailer, respectively.

3.4.3 Pausing

In order to examine printed or graphical output while a PHAML program is
running, it is often useful to have the program pause until you indicate that it
may continue. There are several “pause” arguments to phaml solve pde that
provide for this. They are logical arguments. When the program pauses, the
master prints “press return to continue” to its printed output unit. It then
reads from standard input, which is usually associated with the window from
which the master program was run. The pause arguments are pause at start

(pause upon entering phaml solve pde), pause at end (pause before leaving
phaml solve pde), pause after phases (pause at the end of each refine/solve
loop), and pause after draw (pause each time the graphics is updated).

3.5 Graphics

3.5.1 Overview

Graphics, or visualization, in PHAML is provided using OpenGL, which is a
platform-independent specification of a graphics application programming in-
terface, and GLUT, which supplies window, keyboard and mouse usage for
OpenGL. There are libraries for both of these specifications available for nearly
every computer. See Section 2.1.5 for URLs for more information on OpenGL
and GLUT and how to obtain the software.

PHAML’s graphics are interactive and menu driven. There may be graph-
ics windows associated with the master process and/or with each of the slave
processes. The master’s graphics shows the grid and solution as a whole en-
tity, whereas the slaves each show the grid and solution as they know it. The
selection of which processes will have graphics is made with the argument
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view modifier ⇒
element edge color ⇒
element interior color ⇒
function ⇒
contour plots ⇒
preprocess function ⇒
subelement resolution ⇒
color scheme ⇒
toggle lights ⇒
element label ⇒
edge label ⇒
vertex label ⇒
associated element ⇒
eigenfunction to use ⇒
component to use ⇒
component scale ⇒
space filling curve ⇒
grid offset ⇒
axes ⇒
crop (debug window)
toggle color key
write postscript ⇒

Table 3.9: The main graphics menu.

draw grid who to phaml create, which can have the value MASTER, SLAVES,
EVERYONE, or NO ONE. There is no option to have only a subset of the slaves do
graphics.

The graphics servers, which are separate processes in the parallel program,
receive messages from the associated master or slave whenever the grid or so-
lution changes. For a program under a sequential compilation of PHAML, the
messages are passed by writing files to /tmp. For a master/slave program,
the graphics servers are spawned automatically during the execution of sub-
routine phaml create. For an SPMD program, the graphics servers should
be included in the number of processes launched (see Section 2.4). For a se-
quential program, you must start the graphics server, phaml graphics, from
the command line. If a sequential program terminates abnormally, you must
terminate phaml graphics by hand, and should check /tmp for leftover files
phaml message and phaml lock, and remove them if they exist.

All interaction with the graphics is performed with the mouse and arrow
keys. The left and middle mouse buttons and arrow keys can be assigned various
operations to change the view, as discussed in Section 3.5.3. By default, the left
button rotates, the middle button zooms and the arrow keys pan. The right
button brings up a menu of actions you can take to modify the graphics. The
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main menu is shown in Table 3.9. Menu items with a right arrow (⇒) bring up
submenus.

The next section will show some of the visualizations that are available.
The subsequent sections will discuss how to manipulate the graphics through
the submenus.

3.5.2 Example visualizations

The PHAML graphics server has many options in the graphics menu. Primarily
the graphics options are for different displays of the grid properties, functions
over the grid, and the partitioning of the grid over the slaves. The functions
that can be displayed include not only the computed solution, but also the true
solution and error (if the true solution is given), and error estimates. In this
section we present some examples of PHAML’s graphics capability with very
brief descriptions. The subsequent sections will discuss how to use the submenus
to create these and other graphical displays.

Figure 3.6 shows several of the different ways you can display a function.
Parts (a)–(f) show surface plots of the solution, which comes from using the
menu to select function to be solution. Part (a) shows the surface with the
triangle interiors colored by the solution value using the rainbow color scheme
where blue represents small values and red represents large values. In part (b)
the same function is shown with the grid added to the surface, drawn in black.
Part (c) displays the grid in black on the surface, but selects element interior color
to be transparent. Part (d) is the same but with hidden lines removed, which
is achieved by selecting element interior color to be white so that the triangle
faces hide the grid lines behind them. Part (e) also has the grid on the surface
and hidden lines removed, but with the grid lines colored by solution value.
Part (f) is a surface plot using the striped color scheme and placing contour
lines on the surface. Parts (g)–(l) show 2D displays of the solution obtained by
selecting function to be no function and viewing from straight above. Part (g)
uses the striped color scheme with contour lines drawn in the x-y plane. Part
(h) shows the solution using the rainbow color scheme. Part (i) adds the grid
to the previous image, and part (j) colors the triangle interiors transparent and
the grid lines with the solution value. Part (k) is simply a contour plot with
no grid lines and the triangle interiors transparent. Finally, part (l) adds the
coloring of the triangle interiors by the solution value using the gray scale color
scheme.

Figure 3.7 shows some additional visualizations of the grid. Part (a) simply
shows the grid drawn in black. Part (b) shows the regions in which the grid is
coarse or fine by coloring the interiors of the triangles by the triangle size, using
blue for small triangles and red for large. In part (c) the triangle interiors are
colored by the polynomial degree of the triangle, for visualizing the effect of p-
and hp-adaptive refinement. And in part (d) we use function ⇒ levels to create
a hierarchy of grids based on refinement level.

Figure 3.8 shows a few of the ways you can visualize how the grid has been
partitioned for distribution over the slaves during the load balancing step. In
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Figure 3.6: Visualizations of the solution.
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Figure 3.6: (continued) Visualizations of the solution.
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Figure 3.6: (continued) Visualizations of the solution.
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Figure 3.7: Visualizations of the grid.
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Figure 3.8: Visualizations of the partitions of the grid for load balancing.
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left mouse button ⇒
middle mouse button ⇒
arrow keys ⇒
reset to initial view
view from above
view from above origin
quit

Table 3.10: The view modifier submenu.

part (a) the interior of the triangles is colored by owner and the grid lines are
colored black. Part (b) colors the grid lines by owner and leaves the interior
transparent. In part (c) the interiors are again colored by owner, but only the
triangle edges that are on partition boundaries are drawn. Finally, part (d)
shows an exploded grid where the partitions are physically separated.

3.5.3 View modifier

In this section, we discuss the view modifier. The view modifier submenu is
shown in Table 3.10.

The first three items set the operation performed by the left mouse button,
middle mouse button and arrow keys, respectively. The selected operation re-
mains in effect until you select another one. The submenus below each of these
are all the same. They contain rotate, zoom, pan, scale x (stretch or shrink along
the x axis), scale y, scale z, explode (as in Figure 3.8(d)), and move light (see
Section 3.5.6).

The next three entries are quick changes to a specific view of the grid. reset
to initial view resets the rotation, zoom and pan settings to the original settings.
view from above sets a view that looks straight down and at the center of the
grid, with the (xmin,ymin) corner of the domain at the lower left corner of the
image. This is normally used with function ⇒ no function for visualizations of
the grid and contour plots. view from above origin looks at the point (0,0,0)
from straight above. This is useful if you want to zoom in on the origin without
having to pan repeatedly.

The final entry, quit, should not normally be used. If you terminate the
graphics program using this menu item, it may or may not kill the master and/or
slaves. The graphics program will terminate properly when phaml destroy

is called. Using the quit entry in the menu is only useful if the master or
associated slave terminated early, and even then there might be a better way to
terminate the graphics server (for example, with LAM the command lamclean

will terminate all the processes).
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no lines
black
edge owner
vertex owner
computed solution
true solution
error
size
degree
partition boundary black

Table 3.11: The element edge color submenu.

3.5.4 Colors

By default, PHAML uses a rainbow color scheme. Colorization of items that
have a continuous numerical value, like the solution, comes from a continu-
ous spectrum with blue corresponding to small values and red to large values.
Normally the spectrum is scaled to correspond to the minimum and maximum
values of the item begin drawn. Colorization of items that have a finite set of
N discrete values, like the owner, comes from an equally spaced set of N colors
in the spectrum from blue to red with blue assigned to the first item.

There are four other color schemes available. The color scheme is selected
in the submenu under color scheme which has the selections rainbow, double
rainbow, gray scale, striped, and stepped sequential. The double rainbow passes
through the colors twice, with the second time a little more pastel. This is useful
when discrete colors need more separation, such as when coloring by owner and
there are a lot of processors, or when coloring by element degree with an hp-
adaptive grid. The gray scale scheme uses a continuous gray scale from black
to white with black corresponding to small values and white to large values.
The striped scheme is like the rainbow scheme except the colors are from a
discrete set of equally space colors from the spectrum from blue to red. The
number of colors in the scheme is one less than the number of contour lines
used for contour plots, so that contour lines will fall on the boundary between
colors. The stepped sequential scheme uses several steps of saturation/value
within each of several hues ranging from red to violet. The number of steps and
number of hues can be changed by use of a submenu. By default, there are 4
steps of 6 hues for a total of 24 colors. This scheme is particularly useful for
discrete values such as owner and degree.

With a color scheme selected, you can choose how to color the grid lines (i.e.
element edges) and triangles (i.e. element interiors) to get different information
about the grid, partition, solution, error, etc. Table 3.11 shows the element
edge color submenu for selecting how to color the element edges. no lines means
don’t draw the grid. black draws the edges black for a simple drawing of the
grid. edge owner selects the color to indicate which slave process owns each
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edge. vertex owner selects the color to indicate the owner of the vertices at the
ends of each edge. If the owners of the two endpoints are different, the color
blends from one to the other along the length of the edge. computed solution uses
the color corresponding to the value of the computed solution at the endpoints,
and blends the colors along the length of the edge. true solution is similar but
uses the true solution if it is given in function trues. Likewise, error uses the
computed solution minus the true solution, if it is available. size colors the
edges according to their length, using red for the largest edges and blue for
the smallest. This is useful for distinguishing element sizes when the grid is
so fine that drawing the edges black would result in large black areas. degree
colors the edges by the polynomial degree of the approximation space along that
edge. Finally, partition boundary black draws only the edges that fall between
two triangles with different owners, and edges on the domain boundary. This
results in the partition boundary being drawn black.

The submenu for element interior color is similar to the one for element edge
color, with just a few differences. The no lines entry is replaced by transparent,
but has the same meaning of don’t draw the element. black is replaced by white.
Coloring an element interior white, which is the same as the graphics window
background, has the effect of blocking whatever is behind the element, and can
be used to draw hidden line plots. There is only one owner entry, used to indicate
which slave owns each element. computed solution, true solution, error, size, and
degree all have the same meaning as with edge color. There is no partition
boundary entry. It has an additional entry for coloring each element by its error
indicator.

3.5.5 Functions

The function submenu determines what function to draw as surface plots and
contour plots. This menu has six entries. The first is no function, which simply
draws the elements in the x-y plane. This is usually used in conjunction with
viewing from above. The next three entries are computed solution, true solution,
and error. They draw the corresponding function. The fifth entry is levels. This
draws the elements, including parent elements, in L discrete planes parallel to
the x-y plane, where L is the number of refinement levels in the grid (see Figure
3.7(d)). Each level contains the elements of that refinement level. You may find
it useful to use scale z from the view modifier (Section 3.5.3) with this. The final
entry is error indicator. This is a piecewise constant function with each element
drawn at the height corresponding to its error indicator.

The functions (except levels) can be preprocessed in several ways with the
submenu under preprocess function. The menu entries indicate what would be
applied to a function f . They are none (no preprocessing, the default), -f
(negate), abs(f) (absolute value), f**2 (square), and log(abs(f)) (logarithm of
the absolute value).
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3.5.6 Lights

When the function is no function, levels or an error estimate, or the striped color
scheme is used, the image is rendered in flat light. Otherwise, it is rendered
with a light source resulting in a 3D appearance with shadows. There are five
lights available in the PHAML graphics. Four of them are fixed in position:
one to the right, one to the left, one above and one below. The fifth light is
movable. The default is that only the light to the right is turned on. Lights can
be turned on and off with the submenu under toggle lights. The movable light
can be moved with the mouse or arrow keys by selecting move light under the
view modifier submenu.

3.5.7 Contour plots

In addition to being drawn as a surface or being represented by color, a function
can be drawn as a contour plot. Contour plots are controlled by the submenu
under contour plots. This submenu has four entries for selecting what function
to plot, and three submenus for changing the properties of the contour plot.

The first four entries in the contour plot submenu select the function to plot.
As usual, they are no contour plot, computed solution, true solution, and error.
By default, no contour plot is drawn.

The next entry is set number of uniform lines. Initially PHAML uses 21
equally spaced contour values between the minimum and maximum values of
the function. This submenu allows you to change the number of values while
keeping them equally spaced. There are six entries that allow you to make
the change directly from the menu: increment by 1, decrement by 1, increment
by 10, decrement by 10, double, and cut in half. The final entry, enter num-
ber in debug window, lets you type in the number of contour lines you want.
However, it prompts for this number from standard input, so the graphics pro-
cess must have an associated window. This is achieved by using spawn form =

DEBUG GRAPHICS or spawn form = DEBUG BOTH in the call to phaml create (see
Section 6.4.4).

You can also space the contour lines nonuniformly by using set nonuniform
lines. This also requires a debug window. You will be prompted for the number
of contour lines, and then to enter a comma separated list of the values for the
contour lines.

The final menu entry gives two choices for the placement of the contours.
They can either be placed on the x-y plane, or be elevated by the function value,
i.e., placed on the surface.

3.5.8 Multiple solutions

If you solve a coupled system of equations (multicomponent solution) or solve
for more than one eigenvalue of an eigenvalue problem, then there is more than
one solution to draw. Two submenus let you select which function to display.
The default is to display the first one.
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Figure 3.9: Improvement of a surface visualization by using subelement resolu-
tion.

eigenfunction to use provides the selection of which eigenfunction to display.
It has an entry of the form eigenfunction 1, eigenfunction 2, etc., up to the number
of eigenvalues computed. If there are more than 9 eigenvalues, the last entry
is more ⇒. This brings up a submenu containing 10’s ⇒, 20’s ⇒, etc. Under
these submenus you will find the eigenfunctions with larger indices. PHAML
sorts the eigenvalues from smallest to largest, and orders the corresponding
eigenfunctions the same way.

component to use provides the selection of which component of a multi-
component solution to display. It contains entries of the form component 1,
component 2, etc. Like the eigenfunction selection, there are submenus for the
higher indices if there are more than 9 components. The menu also contains
two entries for displaying a composite of the components. If the components of
the solution are u1, u2, . . . , then L1 sum will display |u1| + |u2| + . . . , and L2
sum will display u2

1 + u2
2 + . . .

component scale provides the selection of how to scale the components when
the function is computed solution, true solution or error. Normally the function is
scaled by its maximum absolute value. For multicomponent solutions, you can
choose to have each component scaled by its own maximum absolute value by
selecting individual, or you can choose to have all components scaled the same
using the maximum absolute value over all components by selecting all the same.

3.5.9 Miscellaneous features

This section addresses some menu items that are not big enough to warrant a
section of their own.

The subelement resolution submenu is useful when high order elements are
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used. By default, a triangle is drawn as a piece of a plane defined by the three
vertices of the triangle. Color blending, contour lines, etc., are also limited by
this definition. This applies both to 3D surfaces and 2D drawings in the x-y
plane. This is fine for piecewise linear elements since the solution is a plane over
each triangle. But with higher order element, any detail on the subelement level
is lost. This menu entry defines how much subelement resolution to use. The
drawing is still done by drawing pieces of a plane, i.e. triangles, but multiple
triangles are drawn within a grid element. With subelement level 0, the element
is drawn as a single triangle (the default). With subelement level 1, the element
is drawn as 4 triangles, formed by connecting the midpoints of the element
edges. At subelement level 2, each of those 4 triangles are drawn as 4 triangles
by connecting the midpoints of their sides, resulting in 16 triangles in a grid
element. In general, subelement level ` results in drawing 4` triangles in each
element. The effect of using a high level of subelement resolution can be seen
in Figure 3.9.

subelement resolution has entries for 0, 1, 2 and 3 levels of subelement resolu-
tion. Since the number of triangles drawn grows exponentially with the number
of subelement levels, using higher values of subelement resolution can be very
slow. However, if needed, values larger than 3 are obtainable with the submenu
entries increase, which adds 1, and decrease, which subtracts 1.

Axes can be added and removed from the plot with the axes submenu.
x, y and z axes can be added and removed from the plot by selecting standard

axes and then toggle standard axes. The axes are fairly primitive with tic marks
and values only at the ends and midpoint.

You can also define your own custom axes by selecting user defined axes.
Submenu items are toggle defined axes, add axis, change axis, and remove axis.
Use of this feature requires that the graphics process be run in a debug window,
e.g. using spawn form=DEBUG GRAPHICS in phaml create. When add, change
or remove is selected, you will be prompted for input in the debug window. A
new axis is defined by providing the (x, y, z) coordinates of the end points of
the axis, and the number of tick marks for the axis.

A color key can be added and removed with the toggle color key entry. The
key gives the correspondence between the color of the interior of the elements
and numeric values. Figure 3.10 illustrates two uses of the color key: a con-
tinuous color key for the function value using the rainbow color scheme, and a
discrete color key showing the element degree using the stepped sequential color
scheme.

crop (debug window) provides a means of restricting how much of the domain
is used in the display. Since it requires input from standard input, the graphics
process must have an associated window. This is achieved by using spawn form

= DEBUG GRAPHICS or spawn form = DEBUG BOTH in the call to phaml create

(see Section 6.4.4). When this menu entry is selected, it will prompt for the
crop region to be entered as xmin, xmax, ymin, ymax.

The grid offset submenu helps to solve a potential problem with the rendering
of the graphics. The elements are drawn as triangles and the grid lines are drawn
as lines separately, but they occupy the same space. This can cause a problem
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Figure 3.10: Examples of the color key.

in determining which should show when the image is rendered. Even if they
are separated very slightly, there can be a problem because of machine roundoff
error. This submenu allows you to change how far the grid lines are offset from
the triangles. If you find that grid lines are disappearing, you should increase
the offset. If you find that the grid lines appear to be separated from the surface,
you should decrease the offset. The submenu entries let you increase or decrease
by 1 or 10 at a time.

3.5.10 Development aids

Some of the graphics options were created as aids in the development and debug-
ging of PHAML. These are probably not much use to the end user. They are the
element label, edge label, and vertex label, which label each entity with its index
in PHAML’s data structure, associated element which displays the edge-element
and vertex-element correspondence used to determine the owner of edges and
vertices, and space filling curve which displays the space filling curve associated
with the refinement tree partition method.

3.5.11 Postscript

The write postscript submenu lets you save the current visualization to an en-
capsulated postscript file. It writes vector graphics in the postscript language.
This means the saved image is high quality and scalable, but it creates very
large files. If you want smaller files you can use a screen capturing program and
save the image in a raster graphics format like JPEG.

write postscript has two options in the submenu: unsorted and sorted. The
sorting option sorts the entities of the image by distance from the viewer before
writing the postscript file. There isn’t really any reason to use the unsorted
option, and it will probably be removed in the future.

When write postscript is selected, it creates a file called renderX.eps where
X is 0 for the master’s graphics processor or the slave number for the slaves’
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graphics processors (note there cannot be more than 9 slaves for this to work
properly). The location of this file is compiler dependent, but it usually ends
up in the directory where the master program was started or in the user’s home
directory. You may have to modify this file slightly in two ways. First, rename
it to something more meaningful! Second, some printers need to have showpage

added as the last command in the file, but that confuses some viewers. If you
try to print the file and nothing happens, add this line.

3.6 Post-solution utilities

3.6.1 Store and Restore

There are times when it may be useful to save a PHAML solution and use
it in some subsequent program. For example, one might solve a problem on
a batch-only system and save the solution, and then later run a program on
an interactive system that reads the solution and displays it with PHAML’s
graphics capability. PHAML provides a routine that writes the entire contents of
a phaml solution type variable to a set of files (one file for the master and one
for each slave), and a routine that reads those files into a phaml solution type

variable. The files should be connected to a unit number using phaml popen

and phaml pclose as described in section 3.4.1.
phaml store takes two arguments: a phaml solution type variable and an

integer specifying the unit to write to. phaml restore also takes a phaml solution type

variable (which should first be created with phaml create, but otherwise be
empty) and a unit to read from. It also takes two optional logical arguments.
do draw grid indicates whether or not you want to invoke graphical output im-
mediately after reading the file, and pause indicates whether or not to pause af-
ter the graphics. A program that reads files with phaml restore must have the
same number of slaves as the program that created the files with phaml store.

3.6.2 Store Matrix

One might wish to store the linear system that represents the discretized PDE in
a file for processing external to PHAML, for example solving the linear system
with Matlab. Subroutine phaml store matrix does this. This routine stores
the discretized PDE in phaml solution so that it can be processed by an exter-
nal program. In addition to a phaml solution type variable, it takes four op-
tional arguments, stiffness unit, rhs unit, mass unit, and inc quad order.
inc quad order increases the order of the quadrature rule used for computing
the matrix and right hand side entries, the same as in phaml solve pde.

For an elliptic boundary value problem, the discrete problem is a linear
system of equations, Ax = b. phaml store matrix can store the stiffness ma-
trix, A, and/or the right hand side, b. The presence of the optional arguments
stiffness unit and rhs unit determines whether or not the stiffness matrix
and right hand side will be stored, respectively. Either or both can be present.
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mass unit should not be present.
Two details about the stored matrix: First, the matrix is stored with-

out static condensation. Second, the Dirichlet boundary conditions are pre-
eliminated from the stored linear system, although the corresponding rows of
the matrix are kept to maintain the same indexing of the unknowns. A row in
the matrix corresponding to a Dirichlet point is replaced by an identity row,
i.e. 1 on the diagonal and 0 elsewhere, and the corresponding right hand side
is replaced with the Dirichlet value. To maintain symmetry, the corresponding
column is replaced with an identity column and the right hand side is adjusted
by subtracting the eliminated column entries times the Dirichlet values.

For an elliptic eigenvalue problem, the discrete problem is a generalized
eigenvalue problem Ax = λMx. phaml store matrix can store the stiffness
matrix, A, and/or the mass matrix, M . The presence of the optional arguments
stiffness unit and mass unit determines whether or not the stiffness matrix
and mass matrix will be stored, respectively. Either or both can be present.
rhs unit should not be present.

When present, stiffness unit, rhs unit and mass unit should contain
the I/O unit of a file. It is the responsibility of the calling program to open the
unit for formatted, sequential writing before calling phaml store matrix and
closing it after. This is done with the usual Fortran open and close statements,
not the PHAML phaml popen and phaml pclose statements. If more than one
is present, they must not be the same file.

The matrices are written in the Matrix Market exchange format. See http:

//math.nist.gov/MatrixMarket/ for a description of the format and routines
for reading the format in Fortran, C and Matlab. They are written in the real,
general, coordinate format. The right hand side vector is written as an N × 1
matrix in the real, general, coordinate Matrix Market format.

3.6.3 Store Grid

The grid, and optionally solution, can be stored to data files using phaml store grid.
In 2D, the files can be stored in triangle’s .poly format (see http://www.cs.

cmu.edu/~quake/triangle.poly.html) by specifying fmt=GRIDFILE POLY to
store it without the solution, or GRIDFILE POLY SOLN to store it with the so-
lution. The solution is stored as attributes of the vertices, so for high order
solutions only the linear part is stored. The other triangle files (.node, .neigh,
etc.) can be created from the .poly file using
triangle -pneQY filename.poly.
If the domain has holes, then the boundary routines (Sect. 3.2.3) must be
available, i.e., the initial grid cannot be specified by triangle files.

In 2D or 3D, the files can be stored in Gmsh’s .msh format (see http://

geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format) by speci-
fying fmt=GRIDFILE MSH to store it without the solution, or GRIDFILE MSH SOLN

to store it with the solution. The solution is stored as a NodeData section, so for
high order solutions only the linear part is stored. If there are any tags attached
to the grid entities, they are included in the .msh file unless notags is present
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and .true. The Elements section contains not only the grid elements (trian-
gles in 2D and tetrahedra in 3D), but also the boundary vertices, boundary
edges, and, in 3D, boundary faces unless noboundary or only gmsh is present
and .true. (only gmsh only applies to 3D grids.) If noboundary is .true.,
boundary entities are not included. If noboundary is .false. or not present,
and only gmsh is .true., then vertices, edges and faces that were “elements”
in the original geo or msh file, and their descendants, are included, but no other
boundary entities. For boundary entities, the first tag is set to the boundary
marker (Sects 3.2.2, 3.2.3). This tag is included even if notags is .true.

comp and eigen are optional arguments to control which components of a
multicomponent solution and which eigenfunctions of an eigenvalue problem
with multiple eigenvalues are stored. If comp is present, then it indicates which
component to store. If it is not present, then all components are stored. If eigen
is present, then it indicates with eigenfunction to store. If it is not present, then
all eigenfunctions are stored. If neither comp nor eigen is present in a mul-
ticomponent, multieigenvalue problem with n components and m eigenvalues,
then the order of the solution values in the data file is (comp 1, eigen 1), (comp
2, eigen 1), ..., (comp n, eigen 1), (comp 1, eigen 2), (comp 2, eigen 2), ... (comp
n, eigen m).

In this release, storing the grid is restricted to one processor, i.e., PHAML
must be built for sequential or OpenMP execution, or, if it is built for hybrid
or MPI execution, you must specify nproc=1.

3.6.4 Query

PHAML provides for the recovery of many quantities of interest through subrou-
tine phaml query, which can be called after returning from phaml solve pde.
This includes information about the grid, such as number of elements, number
of vertices, minimum and maximum polynomial degree, etc. Most of them can
be for the whole grid or for the grid that each slave has. A second category
includes error estimates in various norms, and, if the true solution is provided,
the norms of the error and true solution. The norms of the error are absolute
error; you can get the relative error by dividing by the norm of the solution. A
third category provides interesting quantities related to eigenvalue problems.

For a complete list of the quantities that can be recovered through phaml query,
see Section 6.4.12.

3.6.5 Solution evaluation

PHAML provides for evaluating the computed solution and its derivatives at
a point in the domain through subroutine phaml evaluate (see Section 6.4.6).
After returning from phaml solve pde, you can pass the phaml solution type

variable to phaml evaluate to obtain the solution and/or first and second
derivatives. You can request any subset of them. You also pass two arrays,
x and y, containing the points at which to evaluate the solution. The solution
is returned in the arrays u, ux, uy, uxx and uyy, which must have the same
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dimension as x and y. These are all optional arguments, and which ones are
present determines which ones are evaluated. If you are solving a system of
equations or an eigenvalue problems, there are optional arguments to specify
which component or eigenfunction you want to evaluate. If a point outside the
domain is given, the solution is returned as 0.

Another way to obtain the solution for post processing is through the subrou-
tine phaml get grid soln (see Section 6.4.7). This routine returns the vertices
of the triangles in the grid in two arrays, x and y, and the solution at the vertices
in the array u. The vertices are not returned in any particular order relative to
their placement in the domain. If you are solving a system of equations or an
eigenvalue problem, there are optional arguments to specify which component
or eigenfunction you want to evaluate.

There is also a subroutine to evaluate an “old” solution, which can be used
for time dependent and nonlinear problems. See Section 4.3 for information on
this routine.

3.6.6 Functionals

In this context, a functional of the solution is some form of integral of the
computed solution. Subroutine phaml integrate (see Section 6.4.9) computes∫∫

Ω

k(x, y) upi (x, y) uqj(x, y) dx dy.

ui and uj are two components of the solution of a system of equations, or
two eigenfunctions of an eigenvalue problem, or ui is a solution and uj is 1. p
and q are integer powers. k is a kernel function defined by the user in function
phaml integral kernel (Section 6.3.7). In addition to a point at which to
evaluate the kernel, the function takes an integer, kernel, which allows for the
definition of several kernel functions in the same subroutine.
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Chapter 4

Problem Extensions

4.1 Eigenvalue Problems

In addition to elliptic boundary value problems, PHAML can solve elliptic eigen-
value problems of the form
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Note that the boundary conditions must be homogeneous. Usually the func-
tion f is identically 1. However there are some occasions where other f are
useful. For example, to put the Laplacian operator in polar coordinates into the
form of Equation 4.1, one may multiply the canonical form of the equation by
x (a.k.a. r in polar coordinates) which results in f = x.

You indicate that an eigenvalue problem is being solved by specifying eq type

= EIGENVALUE in subroutine phaml create. The solution returns eigenfunc-
tions, u, and the corresponding eigenvalues λ. More than one eigenpair can
be computed. The number of desired eigenpairs is specified through the argu-
ment num eval to subroutine phaml solve pde. Subroutines phaml evaluate,
phaml evaluate old, phaml integrate, phaml query, and phaml scale take
an optional integer argument, eigen, which specifies which eigenfunction to use.
Subroutine phaml query returns the entire set of eigenvalues in the real(my real)

array argument eigenvalues. Printed output prints all of the eigenpairs.
The discrete eigenvalue problem is solved using SLEPc or one of the ex-

ternal packages supported by SLEPc (ARPACK and BLOPEX). You should
read the SLEPc User’s Guide [11] to understand the arguments that effect the
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SLEPc solvers. Not all methods are valid for all problems, and not all combina-
tions of arguments are valid. The method to use for solving the eigenproblem
is specified by eigensolver. Valid values are SLEPC POWER, SLEPC SUBSPACE,
SLEPC ARNOLDI, SLEPC LANCZOS, SLEPC KRYLOV SCHUR, SLEPC GEN DAVIDSON, SLEPC JACOBI DAVIDSON,
SLEPC LAPACK, SLEPC ARPACK, and SLEPC BLOPEX.

By default PHAML computes the smallest eigenvalue(s). You can com-
pute eigenvalues in the interior of the spectrum by using the argument lambda0
to phaml solve pde. PHAML will compute the eigenvalues that are closest
to lambda0. Convergence to an interior eigenvalue can be accelerated by us-
ing harmonic extraction, specified by harmonic extraction=.true., or by us-
ing a spectral transformation, specified by transformation. Valid values are
ST NONE, ST SHIFT ORIGIN, ST SHIFT INVERT and ST CAYLEY. The transforma-
tions use a shift which, by default, is lambda0, but can be specified to be a
different number using st shift. The Cayley spectral transform also has an
antishift which, by default, is the same as the shift, but can be specified with
st antishift.

Some solvers (e.g., Krylov solvers) can avoid computing the residual by using
a cheap estimate of the residual norm, but this may sometimes give inaccurate
results, especially if a spectral transform is being used. If this is a problem, you
can force computation of the true residual with slepc true residual=.true..

PHAML’s default size of the subspace used by the solvers, a.k.a. number
of column vectors, is the same as SLEPc’s default. A different size can be
specified with eigen ncv. Termination of the eigensolver is controlled by two
parameters, eigen tol and eigen maxit. eigen tol is a tolerance for the error
estimate of the eigenvalues and has a default value of 10−10. eigen maxit gives
the maximum number of iterations allowed and has the same default value as
SLEPc.

If u is a solution of Equation 4.1, then so is αu for any scalar number
α. Thus the solution must be scaled to meet some condition to be unique.
PHAML provides three options for how to scale the eigenfunctions through the
argument scale evec to subroutine phaml solve pde. SCALE LINF requests
that the `∞ norm of the eigenvector, x, of the discrete problem be 1. With linear
elements, this is the same as the L∞ norm of the eigenfunction u. SCALE L2

scales such that the `2 norm of x is 1. SCALE M scales such that the M norm of
the eigenvector,

√
xTMx where M is the mass matrix, or equivalently the L2

norm of the eigenfunction, is 1.
The eigensolver requires the use of a linear system solver and sometimes

a preconditioner. These are specified through solver and preconditioner.
They must be solvers and preconditioners that are available through PETSc, in-
cluding the PETSC MUMPS and PETSC SUPERLU solvers and the NO PRECONDITION

preconditioner. The default is the same as SLEPc’s default.
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subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)

use phaml

real(my_real), intent(in) :: x,y

real(my_real), intent(out), dimension(:,:) :: cxx,cxy,cyy,cx,cy,c

real(my_real), intent(out), dimension(:) :: rs

cxx(1,1) = 1.0_my_real; cxx(1,2) = 0.0_my_real

cxx(2,1) = 0.0_my_real; cxx(2,2) = 1.0_my_real

cyy(1,1) = 1.0_my_real; cyy(1,2) = 0.0_my_real

cyy(2,1) = 0.0_my_real; cyy(2,2) = 1.0_my_real

c(1,1) = 0.0_my_real; c(1,2) = 1.0_my_real

c(2,1) = 1.0_my_real; c(2,2) = 0.0_my_real

rs(1) = -(2.0_my_real*exp(x-y) - (x+y)**4/8.0_my_real)

rs(2) = -(3.0_my_real*(x+y)**2 - exp(x-y))

cxy=0

cx=0

cy=0

end subroutine pdecoefs

Figure 4.1: pdecoefs for a coupled system.

4.2 Coupled Systems or Multicomponent Solu-
tions

PHAML provides for the solution of certain types of coupled systems of elliptic
PDEs, either boundary value problems or eigenvalue problems. These problems
are also referred to as multicomponent problems if you prefer to think of it as
a vector equation, rather than a system of equations, with a multicomponent
solution, rather than multiple solutions. For these problems, Equations 1.1 - 1.3
are the same except the functions cxx, cxy, cyy, cx, cy, cu and cbc are n×n arrays
and the functions u, f and g are vectors of length n, where n is the number
of equations in the coupled system. An example of subroutine pdecoefs for a
coupled system is given in Figure 4.1 for the equations

−∇2u + v = f1

−∇2v + u = f2

The number of equations is specified by the argument system size to sub-
routine phaml create. Subroutines phaml evaluate, phaml evaluate old, phaml integrate,
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phaml query, and phaml scale take an optional integer argument comp which
specifies which component to use.

If any of the matrices cxx, cyy, cu or cbc is nonsymmetric, or cxy, cx or cy is
nonzero, then you must use a nonsymmetric solver like LAPACK INDEFINITE SOLVER
(single processor only) or a nonsymmetric solver from PETSC, including PETSC MUMPS GEN SOLVER
and PETSC SUPERLU SOLVER, if so configured. Do not use the built-in hier-
archical basis multigrid method (the default) as a solver or as a preconditioner.

4.3 Parabolic, Nonlinear, Etc. Problems

PHAML can be used to solve parabolic (time dependent) and nonlinear PDEs,
but the user has to provide the iteration control in the main program. See
the example examples/parabolic for an example of solving a time depen-
dent parabolic problem using an implicit finite difference scheme in time, and
examples/nonlinear for solving a nonlinear PDE using a simple Picard itera-
tion.

The feature of PHAML that facilitates these problems is the storage of an
“old” solution. You create an old solution with subroutine phaml copy soln to old

(Section 6.4.3). This copies the current solution component of the phaml solution type

variable to another component called the old solution. This would normally be
done at the beginning or end of each iteration. To use the old solution, call
phaml evaluate old (Section 6.4.8). You can evaluate the solution and/or the
first derivatives and/or the second derivatives. This would normally be called
from subroutine pdecoefs.

PHAML only provides for saving one “old” solution. You would think this
would prohibit the use of methods that require more than one old solution.
However, in many cases such problems can be reformulated as a coupled system
of equations. See examples/waveeq for an example of solving a problem with
a second order time derivative, which requires two old solutions, as a coupled
system of two first order equations. An example of a second order backward
difference scheme, which requires two old solutions, implemented as a coupled
system of two equations is given in examples/bdf2. And examples/irk4 con-
tains a fourth order 6-stage implicit Runge Kutta method implemented as a
coupled system of six equations.

A time dependent problem requires setting an initial condition to start the
solution. Similarly, a nonlinear problem requires an initial guess of the solution.
These initial functions are set by calling phaml solve pde with task=SET INITIAL

and an appropriate termination criterion. The solution will be set to be the func-
tion in subroutine iconds (Section 6.3.5). It should then be copied to the old
solution before starting the iteration.

If the solution does not change very much from one time step (or itera-
tion) to the next, it may be possible to take several steps without changing
the grid. In this case, the matrix does not change from one step to the next
(provided the differential operator is linear). By default, PHAML destroys the
linear system before returning from phaml solve pde. Setting the parame-
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ter keep linear system=.true. prevents this destruction so the matrix can
be reused in the next call to phaml solve pde without recomputing it. Since
the right hand side is likely to change, it is always recomputed. If the grid
changes through refinement or load balancing, the kept linear system is auto-
matically destroyed and recomputed. Also, the kept linear system is destroyed
in phaml destroy. See examples/keeplinsys for an example of how to use
this feature.

4.4 3D Problems

The 3D version of PHAML does not support these features:

• next3p, hp bigger errind, refsoln edge, and refsoln elem hp-adaptive strate-
gies

• local problem h and equilibrated residual error indicator

• multigrid, CG and GMRES native solvers

• native multigrid preconditioner

• MPI parallelism

• OpenMP parallelism

Except for those unsupported features, the 3D version of PHAML works
exactly like the 2D version, with a few minor differences to handle the third
dimension. The 3D version of the differential equation 1.1 is
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The 2D and 3D versions of PHAML use common source code for most of
the source files, with runtime selection of code sections that differ depending
on the dimensionality. But there are a few files that have 2D and 3D versions,
like the grid data structure module, and are selected at compile time. Thus
PHAML is compiled for either 2D or 3D problems, but not both. To compile
for 3D, use tetrahedron or tetrahedron fixdeg for PHAML ELEMENT when run-
ning mkmkfile.sh. tetrahedron fixdeg will use a data structure with a fixed
polynomial degree for the solution, and will save a considerable amount of mem-
ory when using h-refinement or hp-adaptive refinement with a small limit on
the degree, as given by the argument max deg of subroutine phaml solve pde.
For p-refinement and hp-adaptive refinement with a large limit on the degree,
use tetrahedron, in which the size of the solution component varies with the
degree of the element.

The differences in the user interface for 3D are:
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• Subroutine pdecoefs has additional arguments for the third dimension.
The type specification for these arguments, and how they fit into the defini-
tion of the 3D PDE should be obvious from the 2D routine in Section 6.3.6.
The argument list is x,y,z,cxx,cyy,czz,cxy,cxz,cyz,cx,cy,cz,c,rs.

• Subroutines bconds, trues, truexs, trueys, phaml integral kernel

and regularity have an argument z that follows x,y.

• An additional subroutine truezs must be supplied, in the same manner
as truexs.

• Subroutines boundary point, boundary npiece and boundary param are
not needed.

• Default values of some input parameters are different. See the Reference
Manual 6.4.15.

There are also many differences in the graphics menu. You are encouraged
to experiment with it.

triangle files in phaml create is still used to define the initial grid, but
the input formats are different than the one used in 2D. For 3D, PHAML uses
files in the formats of the 3D mesh generator Gmsh [19, 20]. There are two
types of files used by PHAML: geometry files with a geo suffix, and mesh files
with a msh suffix. One normally defines the domain and boundary markers (to
be passed to bcond, see Section 6.3.1) in a geometry file. A mesh file is usually
created by applying Gmsh to a geometry file. There are examples of both types
of files in examples/domains3D. For a full description of these file types, see
the Gmsh reference manual at http://geuz.org/gmsh. The character string
in triangle files can take one of three forms. If it is filename.msh then the
given filename with msh suffix is a mesh file. Mesh files can only be used for
domains with planar faces and straight line edges, because geometry information
is required to properly refine curved boundary edges. If it is filename.geo
then the file is a geometry file. PHAML will run Gmsh, putting the output
in phaml filename.msh. If it is filename.geomsh then both the geometry file
filename.geo and mesh file filename.msh exist and the mesh file was created
from the geometry file. (Note that .geomsh is not the suffix of a file name.)
PHAML will use the mesh file to generate the initial grid and the geometry file
when refining curved boundary edges. The default value for triangle files is
domain.msh.

PHAML supports a limited form of Gmsh’s geometry files. It allows domains
that have edges that are straight line segments, circle arcs, or ellipse arcs, and
faces that are planar with an arbitrary number of edges, or a ruled surface with
3 or 4 edges. Planar faces can have holes. In general, a ruled surface is defined
by transfinite interpolation of the edges. The exception is that if all the edges
of a ruled surface are circle arcs with the same center, Gmsh has a hack to make
that surface a segment of a sphere. The following features of a geometry file are
supported:
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• C and C++ style comments

• numeric expressions involving numbers (integer, fixed point, and exponen-
tial with e, E, d or D), variables, parentheses, and the operators +, -, *,
/, ˆand %.

• variable = expression

• Include

• geometry commands: Point, Physical Point, Circle, Ellipse, Line, Phys-
ical Line, Line Loop, Plane Surface, Ruled Surface (Gmsh before 3.0.0),
Surface (Gmsh 3.0.0 and later), Physical Surface, Volume, and Physical
Volume

It does not support character expressions, operators not listed above, built-
in functions (Log, Sin, etc.), user-defined functions, loops and conditionals,
predefined expression identifiers (Pi, newp, etc.), general commands not listed
above, Spline, BSpline, Compound Line, Compound Surface, the “In Sphere”
clause of a Ruled Surface or Surface statement, extrusions, transformations and
mesh commands. Also, an expression cannot be split over more than one line
and cannot contain an embedded comment. For an Include statement, the char-
expression must be a string enclosed in double quotes which gives a file name
that can be passed to a Fortran OPEN statement. A ruled surface can only have
one line loop, i.e. no holes. Note that most unsupported features are simply
ignored, which may or may not produce the desired effect, but some might cause
the parser to fail.

Objects (vertices, edges, faces) on the boundary have an associated boundary
marker, which can be used in subroutine bconds to determine which boundary
condition to return. The boundary markers are defined by “Physical” objects
in geometry files, and tags in mesh files. For example, a geometry file could
define vertex 2 as a point at the origin by
Point(2) = {0,0,0};
and then define a physical point by
Physical Point(5) = {2};.
Here 2 is the point index; 5 is the index of the physical point and will be the
boundary marker for that point. When Gmsh processes the geometry file to
create a mesh file, it will create an “element” for that physical point with 5 as
the first tag and an indication it is vertex 2.

It is recommended that you assign a nonzero boundary marker (zero is used
to indicate interior objects) to every boundary object, unless your boundary
conditions are defined by a single equation so that you don’t need boundary
markers. However, if there are boundary objects that do not appear in the
mesh file as a Physical object or do not have tags, PHAML will assign a default
boundary marker to it. The default boundary marker is the smallest positive
integer that does not appear in the mesh file as a first tag. Boundary markers
are assigned as follows:
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Figure 4.2: Assignment of boundary markers in unitcube.msh

• The boundary marker is set to 0 for interior vertices, edges and faces.

• If a boundary vertex, edge or face is in the mesh file with tags, the first
tag is used as the boundary marker. By Gmsh’s default, this is the index
of the physical region containing the entity.

• If a boundary face is not in the mesh file or has no tags, it is assigned the
default boundary marker.

• If a boundary edge is not in the mesh file or has no tags, it is assigned
the boundary marker of one of the two faces that share the edge. If one
of the faces has the default boundary marker, the edge gets the boundary
marker of the other face (which could be the default boundary marker).
Otherwise, if one face has Dirichlet boundary conditions and the other does
not, the edge gets the boundary marker of the Dirichlet face. Otherwise,
it gets the smaller of the two boundary markers.

• If a boundary vertex is not in the mesh file or has no tags, it is assigned
the boundary marker of one of the edges that contains it. If any edges
have Dirichlet boundary conditions, it is assigned the smallest boundary
marker of those edges. Otherwise, it is assigned the smallest boundary
marker of all the edges.

If you are solving a problem on the unit cube, you can use examples3D/domains/unitcube.msh
as your mesh file. You might want to rename it domain.msh, which is the de-
fault value for triangle files. Figure 4.2 shows the boundary markers for this
mesh. Vertex boundary markers are shown in red, edge boundary markers in
green, and face boundary markers in blue. For a more general parallelepiped,
use examples3D/domains/parpipe.geo.

Periodic boundary conditions are supported only for parallelepipeds with
faces parallel to the axes. They can be periodic in x, periodic in y and/or
periodic in z. Since it is known what the matching periodic side is, you do not
need to use the matching positive/negative boundary markers as in 2D, but you
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must indicate both sides are PERIODIC in subroutine bconds. Boundary edges
and vertices that are at the intersection of a periodic side and a nonperiodic
side can set the boundary condition type to either PERIODIC or whatever the
type is on the nonperiodic side.
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Chapter 5

Examples

Several examples of using PHAML are provided in directory phaml-x.x.x/examples.
These can be used as tutorials to understand how PHAML works, or as tem-
plates for starting the implementation of your application. Depending on your
set up, you might have to edit master.f90 (or spmd.f90 if you are using the
SPMD model) slightly before running them, to change the termination criterion,
number of processors, graphics choice, etc. The examples include:

simple – a trivial program that should be the first one you try.

elliptic – contains several linear scalar elliptic boundary value problems
selected by a case statement.

rectangle – defines a rectangular domain with an N ×M grid by writing a
Triangle .poly file.

L-domain – the classic L shaped domain with a singular solution commonly
used for testing adaptive refinement codes.

domains – contains several domains defined by Triangle .poly files.

curved – defines a domain with curved boundaries.

holes – defines a domain with holes.

periodic – periodic boundary conditions.

eigenvalue – an elliptic eigenvalue problem.

parabolic – solves a time-dependent parabolic PDE by an implicit finite dif-
ference scheme in t.

keeplinsys – solves a parabolic PDE without recomputing the matrix at every
time step.

nonlinear – solves a nonlinear equation by Picard iteration.
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system – solves a coupled system of 2 elliptic PDEs.

all – illustrates the use of all of the phaml * routines.

runtimepde – determine user provided routines at run time

waveeq – solves the second order wave equations as a coupled system of two
first order equations.

bdf2 – solves a parabolic PDE by second order backward differences imple-
mented as a coupled system of two equations.

irk4 – solves a parabolic PDE by a 4th order, 6-stage implicit Runge Kutta
method implemented as a coupled system of six equations.

3D examples are in phaml-x.x.x/examples3D:

simple – a trivial program for a 3D problem.

elliptic – several 3D elliptic boundary value problems.

eigenvalue – a 3D eigenvalue problem.

domains – domains defined by Gmsh .geo and .msh files.

periodic – periodic boundary conditions.

There are also several programs under the testdir and testdir3D directo-
ries, but they do not contain comments to help you understand them.

79



Chapter 6

Reference Manual

6.1 Quick Start

This section provides a minimum of information about getting PHAML up
and running the example programs. For many people, this will be sufficient
to get started using PHAML with your application, as many applications may
be implemented by modifying one of the examples. If you encounter problems,
refer to the appropriate section of the User’s Guide for further details. Also read
the remainder of the User’s Guide for a better understanding of how PHAML
works and what options may be useful to you.

The four steps in getting started with PHAML are

1. obtaining the software,

2. compiling the PHAML library,

3. compiling an example, and

4. running the example.

For this brief tutorial, we will build and run the simple example as a mas-
ter/slave message passing MPI program with the master spawning the slave
processes, and without graphics.

6.1.1 Obtaining the software

PHAML can be obtained from the PHAML web page http://math.nist.gov/

phaml by following the Software link. It comes as a gzipped tar file for Unix-like
systems. (It has not yet been tested on MS Windows systems, but since it is
written in standard Fortran 90, the adventurous may find that it works on MS
Windows, too.) When unpacked, it will place everything in a new directory
called phaml-x.x.x, where x.x.x is the current version number.

PHAML requires the BLAS and LAPACK libraries. You will probably find
these are already installed on your computer, but if not, see Section 2.1.3.
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For parallelism, you need an MPI library. You will probably find that Open
MPI, LAM, MPICH, or a commercial MPI library is already installed on your
computer, but if not see Section 2.1.4.

6.1.2 Compiling the PHAML library

The first step in compiling the PHAML library is to create the Makefile. This
is done with the shell script mkmkfile.sh in the top PHAML directory. Since
PHAML allows so many options in terms of what compilers and libraries to use,
it would be difficult to auto-locate these files. So, you must modify mkmkfile.sh

to specify some paths, command names, and defaults for your computer system.
Instructions for modifying it can be found within the file.

Now create the Makefile with
./mkmkfile.sh PARALLEL messpass spawn PARLIB mpi GRAPHICS none

You should replace mpi with mpich, mpich2, openmpi, or lam if you use an
MPICH, Open MPI, or LAM library. You may omit some of the arguments if
your defaults are already set to these values; defaults can be determined with
mkmkfiles.sh help.

make should now compile the library and place it in the lib subdirectory.

6.1.3 Compiling an Example

Go to the directory examples/simple and type make. (The Makefiles for the
examples were also created by mkmkfile.sh.) This should create the executables
phaml and phaml slave.

6.1.4 Running the Example

The details of running an MPI program vary with the different MPI libraries.
You may need to check your MPI documentation to find the correct command(s).
It may also require starting some daemon before running the execution com-
mand.

Note that you should specify one process, because you are running the mas-
ter processes which will spawn the slave processes. The number of slaves is
specified in the main program, master.f90.

If you are using LAM, try
lamboot

mpirun -np 1 phaml

If you are using MPICH, try
mpirun -np 1 phaml

If you are using MPICH2, try
mpiexec -n 1 phaml

If you are using Open MPI, try
mpiexec -np 1 phaml
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6.1.5 Now what?

If you have successfully run the first example, you are ready to install the
graphics and any other optional software you desire (Section 2.1), run the other
examples, and begin working on your own application!

6.2 Public Entities in PHAML

The statement use phaml in a program unit provides access to the public enti-
ties in PHAML. These consist of a derived type, variables for the user to use,
symbolic constants, and procedures. The procedures are described in Section
6.4. The other entities are described in this section.

6.2.1 phaml solution type

phaml solution type is a type that contains all the data used for solving the
PDE (grid, etc.). The type is public, but the contents are private. You can
declare one or more variables of this type and pass them to the PHAML proce-
dures.

6.2.2 my real

my real is a symbolic constant that determines the kind of real numbers used in
PHAML. This is defined in global.f90. You can change that definition there
to select the kind to use, either single or double precision. Other kinds of real,
if supported by your Fortran compiler, are not supported by PHAML because
of the reliance on BLAS and LAPACK routines, which only come in single and
double precision. Currently my real is set for default double precision. To
be sure that your program is using the same kind values, you should declare
your variables as real(kind=my real) and attach the kind to constants, e.g.
0.0 my real.

6.2.3 pde and my pde id

pde is a rank 1 allocatable array of type phaml solution type. If you are going
to use more than one pde and they must communicate with each other, then you
must use this array for your phaml solution variables. It must be allocated
before using phaml create, and should be deallocated when you are done with
it.

my pde id is an identifier for which pde a phaml solution is associated with,
usually the index into the array pde described above. It is usually used as the
case statement variable in the user provided routines that define the PDE and
boundary conditions.

See examples/system ss for an example of the use of pde and my pde id.
However, having multiple phaml solution type variables communicate with
each other is very slow, so use of this capability is discouraged.
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6.2.4 symbolic constants

Except for my real, the symbolic constants are used as values for the arguments
of the procedures. In this document and in the PHAML source code they are
written in capital letters, but Fortran is not case sensitive so this is not necessary.
They are defined as they arise in the description of the PHAML procedures. You
can find a list of them by looking at the public statements at the beginning of
phaml.f90. If you have a problem with one of the names conflicting with an
entity in your code, you can use Fortran’s renaming capability to circumvent it,
for example

use phaml, MY EVAL NAME => EIGENVALUE

6.3 User Provided Routines

The specifics of the problem to be solved are defined through a set of external
subroutines that the user must provide. They must be external subroutines
(i.e., not module or internal subroutines) because these are called from within
PHAML and are compiled after the PHAML library has been built. They
should contain a use phaml statement to get access to my real and possibly
other entities from PHAML.

This section describes the purpose of each of these routines and defines
the interface of each. Also see pde.f90 in each subdirectory of the PHAML
examples directory for examples of these routines.

6.3.1 bconds

Subroutine bconds returns the boundary conditions at a given point. At each
point, the boundary conditions are of the form

u = g

or (
cxx

∂u

∂x
+ cxy

∂u

∂y

)
∂y

∂s
− cyy

∂u

∂y

∂x

∂s
+ cbcu = g

as described in Section 3.2.2.
subroutine bconds(x,y,bmark,itype,c,rs)

real(my real), intent(in) :: x,y – the point at which to evaluate the
boundary conditions.

integer, intent(in) :: bmark – the boundary marker assigned in the Tri-
angle data files.

integer, intent(out) :: itype(:) – the type of boundary condition at
this point, given by symbolic constants from module phaml. It must be
one of DIRICHLET (the first form above), NATURAL (the second form with c
identically 0.0), or MIXED (the second form with c nonzero). The dimension
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of itype is system size. The ith value is the type of boundary condition
for the ith component.

real(my real), intent(out) :: c(:,:) – the function cbc in the bound-
ary condition. The dimension is system size by system size. The
(i, j)th entry is the coefficient of the jth component in the boundary con-
dition for the ith component.

real(my real), intent(out) :: rs(:) – the function g in the boundary
condition. The dimension is system size. The ith entry is the right side
of the boundary condition for the ith component.

6.3.2 boundary point

Subroutine boundary point defines the boundary of the domain, if it is given
by subroutines rather than triangle data files.

subroutine boundary point(ipiece,s,x,y)

integer, intent(in) :: ipiece – the piece of the boundary from which
to return a point.

real(my real), intent(in) :: s – the parameter for the point to be de-
termined.

real(my real), intent(out) :: x,y – the point (x(s), y(s)) on piece ipiece
of the boundary.

6.3.3 boundary npiece

If the boundary of the domain is defined by the boundary subroutines, function
boundary npiece returns the number of boundary pieces in the definition. If
the domain is defined by triangle data files, it returns 0 or a negative number.
If the domain contains holes, it returns the number of pieces in the requested
hole.

function boundary npiece(hole)

integer, intent(in) :: hole – the hole for which to return the number
of pieces, or 0 for the outer boundary. Holes are numbered consecutively
starting with 1.

integer :: boundary npiece – the number of boundary pieces in the re-
quested hole or in the outer boundary if hole is 0.

6.3.4 boundary param

Subroutine boundary param gives the range of parameter values for each bound-
ary piece.

subroutine boundary param(start,finish)
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real(my real), intent(out) :: start(:), finish(:) – start(i) and
finish(i) are the beginning and ending parameter values for the ith

piece of the boundary, i=1,number of boundary pieces.

6.3.5 iconds

Subroutine iconds is used for setting the solution to a given function. For
example, it can used for initial conditions for a time dependent problem or the
initial guess for a nonlinear problem.

function iconds(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the
function.

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: iconds – the function value.

6.3.6 pdecoefs

Subroutine pdecoefs returns the values of the PDE coefficient functions and
right side. The PDE is given by

− ∂

∂x

(
cxx

∂u

∂x

)
− ∂

∂x

(
cxy

∂u

∂y

)
− ∂

∂y

(
cyy

∂u

∂y

)
+ cx

∂u

∂x
+ cy

∂u

∂y
+ cuu = f in Ω

as described in Section 3.2.1.
subroutine pdecoefs(x,y,cxx,cxy,cyy,cx,cy,c,rs)

real(my real), intent(in) :: x,y – the point at which to evaluate the
PDE.

real(my real), intent(out) :: cxx(:,:), cxy(:,:), cyy(:,:), cx(:,:),

cy(:,:), c(:,:) – the functions cxx, cxy, cyy, cx, cy and cu respectively.
The dimension is system size by system size. The (i, j)th entry is the
coefficient of the jth component in the PDE for the ith component.

real(my real), intent(out) :: rs(:) – the function f . The dimension
is system size. The ith value is the right side of the PDE for the ith

component.
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6.3.7 phaml integral kernel

Subroutine phaml integrate described in Sections 3.6.6 and 6.4.9 computes
functionals of the computed solution of the form∫∫

Ω

k(x, y) upi (x, y) uqj(x, y) dx dy

where k is a kernel function defined in phaml integral kernel. In addition to
a point at which to evaluate the kernel, the function takes an integer, kernel,
which allows for the definition of several kernel functions in the same subroutine.

function phaml integral kernel(kernel,x,y)

integer, intent(in) :: kernel – an integer passed through phaml integrate

to allow a choice of different kernels.

real(my real), intent(in) :: x,y – the point at which to evaluate the
kernel.

real(my real) :: phaml integral kernel – the kernel value, k(x, y).

6.3.8 regularity

One strategy for hp-adaptive refinement is to provide a priori knowledge about
the singular nature of the solution. Then h refinement is done near singularities
and p refinement is done where the solution is smooth. This strategy is selected
with HP APRIORI, and the function regularity provides the user’s a priori
knowledge.

In theory, this routine should return the largest value of m such that the
solution is in Hm(T ), i.e. the derivatives up to order m are in L2, where T is
the triangle whose vertices are given as input to the function. For multicom-
ponent solutions, it should return the worst (i.e. smallest) such m among the
components.

In practice, it can be used to guide refinement in other a priori known trouble
areas, such as sharp peaks, boundary layers and wave fronts. The actual use is
that p refinement is performed if the current degree of the triangle is less than
the returned value, and h refinement is performed otherwise. So, for example, if
you know some region contains a boundary layer, you could return 3.1 for any
triangle that intersects that region to perform h-refinement with cubic elements
over the boundary layer.

function regularity(x,y)

real(my real), intent(in) :: x(3),y(3) – the x and y coordinates of
the three vertices of the triangle.

real(my real) :: regularity – the returned regularity.

86



6.3.9 trues

If the true solution of the PDE is known, you can provide it in function trues.
This is used for printing norms of the error and for graphical display of the error
and true solution. If you do not know the true solution, returning huge(0.0 my real)

will prevent printing and plotting of a bogus error.
function trues(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the
true solution

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: trues – the return value.

6.3.10 truexs

If the true solution of the PDE is known, you can provide the x derivative of it
in function truexs. This is used for printing the energy norm, H1 norm, and
H1 semi-norm of the error. If trues does not return huge(0.0 my real) and
you request the energy norm of the error, then you must provide the x derivative
of the true solution in truexs or an incorrect value of these norms of the error
will be printed.

function truexs(x,y,comp,eigen)

real(my real), intent(in) :: x,y – the point at which to evaluate the x
derivative of the true solution

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: truexs – the return value.

6.3.11 trueys

If the true solution of the PDE is known, you can provide the y derivative of it
in function trueys. This is used for printing the energy norm, H1 norm, and
H1 semi-norm of the error. If trues does not return huge(0.0 my real) and
you request the energy norm of the error, then you must provide the y derivative
of the true solution in trueys or an incorrect value of these norms of the error
will be printed.

function trueys(x,y,comp,eigen)
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real(my real), intent(in) :: x,y – the point at which to evaluate the y
derivative of the true solution

integer, intent(in) :: comp – for multicomponent solutions, which com-
ponent to return.

integer, intent(in) :: eigen – for eigenvalue problems in which more
than one eigenvalue is computed, which eigenfunction to return.

real(my real) :: trueys – the return value.

6.3.12 update usermod

The application can include a module called phaml user mod to provide ac-
cess to global variables in the user provided subroutines. However, values as-
signed to these variables in the main program are only available in the master
process. Subroutine update usermod passes the current value of these vari-
ables from the master to the slaves. For an example use of this facility, see
examples/parabolic where it is used to pass the time step to the slaves. A
working version of this subroutine is shown in Figure 6.1, or can be copied
from examples/parabolic/pde.f90. In the example, the integer variable
ivar and the real(my real) variables rvar1 and rvar2 are declared in module

phaml user mod. If you do not use this facility, you can copy a dummy version
of the subroutine from examples/simple/pde.f90.

6.4 PHAML procedures

6.4.1 phaml compress

phaml compress compresses the phaml solution type data by moving all the
unused elements, edges and vertices after the used ones. If considerable dere-
finement has occurred, this can significantly reduce the size of files created by
phaml store.

subroutine phaml compress(phaml solution)

type(phaml solution type), intent(inout) :: phaml solution – the so-
lution to compress.

6.4.2 phaml connect

phaml connect connects two phaml solution type variables so they can com-
municate. If one will request that another evaluate its solution, then they must
be connected. See examples/system ss and Section 6.2.3. However, having
multiple phaml solution type variables communicate with each other is very
slow, so use of this capability is discouraged.

subroutine phaml connect(pde1, pde2)
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subroutine update_usermod(phaml_solution)

!----------------------------------------------------

! This routine updates the module variables on the slave processes by

! sending them from the master process

!----------------------------------------------------

use phaml

use phaml_user_mod

!----------------------------------------------------

! Dummy arguments

type(phaml_solution_type), intent(in) :: phaml_solution

!----------------------------------------------------

! Local variables:

! Declare these arrays big enough to hold the variables to be sent

integer :: iparam(1)

real(my_real) :: rparam(2)

!----------------------------------------------------

! Begin executable code

! Copy the module variables into the arrays, putting integer variables

! into iparam and real variables into rparam.

iparam(1) = ivar

rparam(1) = rvar1

rparam(2) = rvar2

! Call the routine that performs the actual exchange. Don’t change this line.

call master_to_slaves(phaml_solution,iparam,rparam)

! Copy the arrays into the module variables, using the same correspondence

! between module variable and array index as was used above.

ivar = iparam(1)

rvar1 = rparam(1)

rvar2 = rparam(2)

end subroutine update_usermod

Figure 6.1: An example of subroutine update usermod.
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integer, intent(in) :: pde1, pde2 – indices into the pde array in mod-
ule phaml.

6.4.3 phaml copy soln to old

phaml copy soln to old makes a copy of the solution in phaml solution which
can be evaluated by phaml evaluate old (Section 6.4.8). The main purpose of
this is to provide the “old” solution and derivatives for time stepping in time
dependent problems and iterating in nonlinear problems.

subroutine phaml copy soln to old(phaml solution)

type(phaml solution type), intent(inout) :: phaml solution – the phaml
solution in which to make a copy of the solution.

6.4.4 phaml create

phaml create creates a variable to contain a phaml solution, i.e., it initializes
the internals of a variable of type phaml solution type. It also spawns the
associated slave and graphics processes. This should be called with each variable
of type phaml solution type in your program.

All arguments except phaml solution are optional.

subroutine phaml create(phaml solution, nproc, nthread, draw grid who,

spawn form, debug command, display, graphics host, output unit, error unit,

output now, id, system size, eq type, max blen, triangle files, update umod,

init alloc)

type (phaml solution type) phaml solution – the variable to initialize.

integer nproc – the number of processes working in parallel. The default is
1.

integer nthread – the number of OpenMP threads in each process. The de-
fault is whatever is set outside of PHAML, for example via OMP NUM THREADS.

draw grid who – which processes should display grid graphics. The grid graph-
ics are not just the grid, but also the computed solution and many other
useful displays. Valid values are:

MASTER – the graphics process associated with the master process draws
a grid that is a consolidation of the slave’s grids.

SLAVES – each slave has an associated graphics process, which draws
the grid as known to that slave. Note that there will be a graphics
window for each slave.

EVERYONE – both MASTER and SLAVES.

NO ONE – no graphics are drawn.
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The default is NO ONE.

spawn form – whether or not to provide debugging capability with spawned
processes. An xterm running the slave under the debugger given by
debug command is brought up. Valid values are:

NORMAL SPAWN – no debugging.

DEBUG SLAVE – spawn the slave processes under the debugger.

DEBUG GRAPHICS – spawn the graphics processes under the debugger.

DEBUG BOTH – spawn both slaves and graphics under the debugger.

The default is NORMAL SPAWN.

character(len=*) debug command – the command name of the debugger to
use in an xterm when spawn form is not NORMAL SPAWN and MPI is used.
Limited to 64 characters. The default is "gdb".

character(len=*) display – in some environments, the -display argument
is needed for xterm when spawn form is not NORMAL SPAWN. This value is
used for that argument. If it is "default" then the -display argument is
not used for xterm. Limited to 64 characters. The default is "default".

character(len=*) graphics host – the name of the host on which to spawn
the graphics processes. This is useful if you want to force the graphics
processes to run on the workstation whose display is in front of you, or
if you want graphics to run on a particular architecture. This is a “hint”
which may be obeyed or ignored depending on the implementation of MPI.

integer output unit – the unit number for printed output. It should either
be a pre-connected unit (e.g. standard output) or be opened as FORMATTED
with a call to phaml popen immediately after call phaml create. The
default is 6.

integer error unit – the unit number for error messages. It should either
be a pre-connected unit (e.g. standard error) or be opened as FORMATTED

with a call to phaml popen immediately after call phaml create. The
default is 0.

integer output now – since output unit and error unit may not be avail-
able until after phaml create is complete, a unit must be provided for any
output (i.e. error messages) that occurs from subroutine phaml create.
This should be a pre-connected unit. The default is 6.

integer id – an identifier for the PDE, simply for use by the user in sub-
routines pdecoefs, bconds, etc. It is available as my pde id in module
phaml. See Section 6.2.3. The default is 0.

integer system size – number of equations in a coupled system of PDEs, or
equivalently, number of components in a multicomponent solution. The
default is 1.
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integer eq type – type of equation to create. Valid values are:

ELLIPTIC – solve an elliptic boundary value PDE.

EIGENVALUE – solve an elliptic eigenvalue PDE.

The default is ELLIPTIC.

real(my real) max blen – maximum length of a boundary segment if the
domain is defined by the boundary subroutines.

The default is ∞, defined to be huge(0.0 my real).

character(len=*) triangle files – in 2D, the root name of the .node,
.ele, .neigh, .poly and .edge triangle data files. If the domain is defined
by triangle data files and the file names include Triangle’s iteration number
(usually .1), include the iteration number. If the domain is defined by
the boundary subroutines, this is used as the root of the created triangle
data files, and, if run MPI parallel, it must reside on a file system that is
shared by all processes. In 3D, indicates the name of a .msh and/or .geo
file to define the domain and initial grid (see Sect. 4.4)

The default is "domain" in 2D and "domain.msh" in 3D.

logical update umod – run update usermod as soon as the communication
has been initialized. This is needed if phaml user mod has any parameters
that affect the definition of the domain, or need to be set before the first
solution on the initial grid.

The default is .false.

integer init alloc – initially allocate the grid to be big enough for init alloc
vertices per processor. Using a number as large as possible will reduce the
time spent in reallocation as the grid grows.

6.4.5 phaml destroy

phaml destroy destroys a variable of type phaml solution type, i.e., frees the
memory contained in it. It also terminates the slave and graphics processes.
If you have multiple phaml solution type variables that are not needed si-
multaneously, you should destroy those no longer needed before creating those
not yet used, to reduce the possibility of running out of memory. Also, if a
phaml solution type variable is used more than once and is to be recreated to
give it a fresh start, it should be destroyed before being created again to avoid
a memory leak.

subroutine phaml destroy(phaml solution, finalize mpi)

type (phaml solution type) phaml solution – the variable to destroy

logical finalize mpi – if .false., do not call mpi finalize from the mas-
ter. It should be .true. if and only if this is the last call to phaml destroy.

The default is .true.
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6.4.6 phaml evaluate

phaml evaluate evaluates the computed solution and/or derivatives of it at the
given points.

subroutine phaml evaluate(phaml solution, x, y, u, ux, uy, uxx, uyy,

comp, eigen, z, uz, uzz)

type(phaml solution type), intent(in) :: phaml solution – the solu-
tion to evaluate.

real(my real), intent(in) :: x(:), y(:) – array of x and y coordinates
at which to evaluate the solution.

real(my real), intent(out), optional :: u(:), ux(:), uy(:), uxx(:),

uyy(:) – returned as the computed solution and derivatives at the given
points. Those that are present determine what is evaluated. Must have
size(u) == size(x), etc.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to evaluate. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to evaluate. The default is 1.

real(my real), intent(in), optional :: z(:) – array of z coordinates
at which to evaluate the solution. Must be present if and only if PHAML
was compiled for 3D problems.

real(my real), intent(out), optional :: uz(:), uzz(:) – returned as
the derivatives at the given points. Those that are present determine what
is evaluated. Must have size(uz) == size(x), etc.

6.4.7 phaml get grid soln

phaml get grid soln returns the vertices of the grid and the solution at those
vertices.

subroutine phaml get grid soln(phaml solution, x, y, u, comp, eigen,

z)

type(phaml solution type), intent(in) :: phaml solution – the solu-
tion from which to get the grid and solution.

real(my real), pointer :: x(:), y(:), u(:) – x and y are returned as
the coordinates of the vertices of the triangles (tetrahedra in 3D) of the
grid; u is the computed solution at those vertices. They should be dis-
associated on input and will be allocated to the correct size. You should
deallocate them when done with them. To determine the number of points
returned, use size(x).
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integer, intent(in), optional :: comp – for multicomponent solutions,
which component to return. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to return. The default is 1.

real(my real), pointer, optional :: z(:) – returned as the z coordi-
nates of the tetrahedra. Must be present if and only if PHAML was
compiled for 3D problems.

6.4.8 phaml evaluate old

phaml evaluate old evaluates the “old” solution and/or derivatives at the
given point(s). Unlike all the other phaml subroutines, it should not be called
from the main program. It is intended to be called from the user routines that
define the problem (pdecoefs, etc.) to provide the “old” solution and deriva-
tives for time stepping in time dependent problems and iterating in nonlinear
problems.

subroutine phaml evaluate old(x, y, u, ux, uy, uxx, uyy, comp, eigen,

z, uz, uzz)

real(my real), intent(in) :: x, y – x and y coordinates of the point at
which to evaluate the solution.

real(my real), intent(out), optional :: u, ux, uy, uxx, uyy – re-
turned as the old solution, x derivative, y derivative, second x derivative
and second y derivative at the given point. Any combination of the five
may be present.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to evaluate. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to evaluate. The default is 1.

real(my real), intent(in), optional :: z – z coordinate at which to
evaluate the solution. Must be present if and only if PHAML was compiled
for 3D problems.

real(my real), intent(out), optional :: uz, uzz – returned as the first
and second z derivative at the given point. May be present only if PHAML
was compiled for 3D problems.

6.4.9 phaml integrate

phaml integrate returns a functional of the computed solution, i.e. an integral
of a computed solution or product of two computed solutions or powers of
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computed solutions, weighted by a kernel function. It computes∫∫
Ω

k(x, y) upcomp1,eigen1(x, y) uqcomp2,eigen2(x, y) dx dy

where k is a kernel function defined in phaml integral kernel (see Section
6.3.7).

function phaml integrate(phaml solution, kernel, comp1, eigen1, comp2,

eigen2, p, q)

type(phaml solution type), intent(in) :: phaml solution – the solu-
tion to integrate.

integer, intent(in) :: kernel – allows you to select among different ker-
nel functions. It is passed to phaml integral kernel where it can be
used, for example, in a case statement to determine the kernel to use.

integer, intent(in), optional :: comp1, eigen1, comp2, eigen2 – which
component(s) of a multicomponent solution and which eigenfunction(s) of
an eigenvalue problem to use. All of them default to 1. If comp1 is omitted
then comp2 must also be omitted, and likewise for eigen1 and eigen2. If
comp2 and eigen2 are both omitted, then ucomp2,eigen2 is omitted from
the integral.

integer, intent(in), optional :: p, q – the powers to which to raise
the computed solutions in the integral. The default is 1.

6.4.10 phaml pclose

phaml pclose closes unit number unit on all processors in phaml solution.

See also phaml popen in Section 6.4.11.

subroutine phaml pclose(phaml solution, unit)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution for which the files are being closed.

integer, intent(in) :: unit – the unit number to close.

6.4.11 phaml popen

phaml popen opens unit number unit on all processors in phaml solution. If
file is of the form “root.suffix” then the actual filenames are rootXXXX.suffix
for processor number XXXX, where the number of digits in XXXX is the minimum
needed for the number of processors in phaml solution. The master processor
is number 0. If there is no “.” in file, then there is no suffix and XXXX is
appended to the filename. The filename is limited to 1024 characters and the
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number of processors is limited to 9999. If the filename does not contain the
full path, the location of the file is compiler dependent. Good places to look for
it are the current working directory and the user’s home directory.

subroutine phaml popen(phaml solution, unit, file, form, iostat)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution for which the files are being opened.

integer, intent(in) :: unit – unit number to open.

character(len=*), intent(in) :: file – base file name for the files.

character(len=*), intent(in), optional :: form – must take the value
"FORMATTED" or "UNFORMATTED" to determine the type of file to open.
Default is "FORMATTED".

integer, intent(out), optional :: iostat – 0 if the file was successfully
opened on all processors. -10 if form is present with a value other than
"FORMATTED" or "UNFORMATTED". -11 if unit is negative. Any other value
is the value of iostat returned by the Fortran OPEN statement.

6.4.12 phaml query

phaml query returns values of interest about the grid and solution. All ar-
guments except phaml solution, comp, eigen and error estimator are op-
tional and intent(out). Include those you wish to receive as keyword ar-
guments. phaml solution is mandatory and intent(in). comp, eigen and
error estimator are optional and intent(in).

subroutine phaml query(phaml solution, nvert, nvert proc, nvert own,

nelem, nelem proc, nelem own, neq, neq proc, neq own, nlev, min degree,

max degree, linf error, energy error, h1 error, h1 seminorm error, l2 error,

max error indicator, linf error estimate, energy error estimate, h1 error estimate,

h1 seminorm error estimate, l2 error estimate, linf solution, l2 solution,

energy solution, linf u, l2 u, energy u, h1 u, h1 seminorm u, linf true,

l2 true, energy true, h1 true, h1 seminorm true, eigenvalues, eigenvalue error estimate,

eigensolver eval errest, eigensolver l2 residual, eigensolver niter,

eigensolver nconv, comp, eigen, error estimator)

type(phaml solution type) :: phaml solution – the solution to query

integer :: nvert – the number of vertices in the grid

integer, dimension(nproc) :: nvert proc – the number of vertices in the
grid of each processor

integer, dimension(nproc) :: nvert own – the number of vertices owned
by each processor
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integer :: nelem – the number of elements in the grid

integer, dimension(nproc) :: nelem proc – the number of elements in
the grid of each processor

integer, dimension(nproc) :: nelem own – the number of elements owned
by each processor

integer :: neq – the number of equations in the linear system

integer, dimension(nproc) :: neq proc – the number of equations in the
linear system of each processor

integer, dimension(nproc) :: neq own – the number of equations owned
by each processor

integer :: nlev – the number of levels of refinement

integer :: min degree – the smallest polynomial degree of an element

integer :: max degree – the largest polynomial degree of an element

real(my real) :: linf error – the L∞ norm of the error (at the vertices
and quadrature points of a sixth order quadrature rule), if the true solution
is known

real(my real) :: energy error – the energy norm of the error (approx-
imated by a sixth order quadrature rule), if the true solution and its
derivatives are known

real(my real) :: h1 error – the H1 norm of the error (approximated by
a sixth order quadrature rule), if the true solution and its derivatives are
known

real(my real) :: h1 seminorm error – the H1 semi-norm of the error (ap-
proximated by a sixth order quadrature rule), if the true solution and its
derivatives are known

real(my real) :: l2 error – the L2 norm of the error (approximated by a
sixth order quadrature rule), if the true solution is known

real(my real) :: max error indicator – the largest error indicator

real(my real) :: linf error estimate – an estimate of the L∞ norm of
the error

real(my real) :: energy error estimate – an estimate of the energy norm
of the error

real(my real) :: h1 error estimate – an estimate of the H1 norm of the
error
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real(my real) :: h1 seminorm error estimate – an estimate of the H1

semi-norm of the error

real(my real) :: l2 error estimate – an estimate of the L2 norm of the
error

real(my real) :: linf solution – the discrete `∞ norm of the solution
vector

real(my real) :: l2 solution – the discrete `2 norm of the solution vector

real(my real) :: energy solution – the discrete energy norm of the solu-
tion vector

real(my real) :: linf u – the continuous L∞ norm of the solution, ap-
proximated using the vertices and the quadrature points of a sixth order
quadrature rule

real(my real) :: l2 u – the continuous L2 norm of the solution, approxi-
mated with a sixth order quadrature rule

real(my real) :: energy u – the continuous energy norm of the solution,
approximated with a sixth order quadrature rule

real(my real) :: h1 u – the continuous H1 norm of the solution, approxi-
mated with a sixth order quadrature rule

real(my real) :: h1 seminorm u – the continuous H1 semi-norm of the
solution, approximated with a sixth order quadrature rule

real(my real) :: linf true – the continuous L∞ norm of the true solution,
approximated using the vertices and the quadrature points of a sixth order
quadrature rule

real(my real) :: l2 true – the continuous L2 norm of the true solution,
approximated with a sixth order quadrature rule

real(my real) :: energy true – the continuous energy norm of the true
solution, approximated with a sixth order quadrature rule

real(my real) :: h1 true – the continuous H1 norm of the true solution,
approximated with a sixth order quadrature rule

real(my real) :: h1 seminorm true – the continuous H1 semi-norm of the
true solution, approximated with a sixth order quadrature rule

real(my real), dimension(num eval) :: eigenvalues – the computed eigen-
values, for eigenvalue problems

real(my real), dimension(num eval) :: eigenvalue error estimate –
an estimate of the error in each eigenvalue in the continuous problem
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real(my real), dimension(num eval) :: eigensolver eval errest – an
estimate of the error in each eigenvalue in the discrete eigenvalue problem

real(my real), dimension(num eval) :: eigensolver l2 residual – the
`2 norm of the residual of the discrete eigenvalue problem for each eigen-
pair

integer :: eigensolver niter – number of iterations used by the eigen-
solver

integer :: eigensolver nconv – number of converged eigenvalues

integer :: comp – for multicomponent solutions, which component to re-
port. Energy and H1 norms and H1 semi-norms cover all components
in a single norm. L∞ and L2 norms cover each component in individual
norms. The default is 1.

integer :: eigen – for eigenvalue problems, which eigenfunction to report.
The default is 1.

integer :: error estimator – which error indicator to use for error esti-
mates and error indicators. The default is EXPLICIT ERRIND.

6.4.13 phaml restore

phaml restore restores information for phaml solution from files created by
subroutine phaml store (see Section 6.4.16.

subroutine phaml restore(phaml solution, unit, do draw grid, pause)

type (phaml solution type), intent(inout) :: phaml solution – the
solution into which the data will be read. If phaml solution was pre-
viously used, it should be destroyed first with phaml destroy (see Section
6.4.5) to avoid a memory leak. Whether or not it was previously used, it
must be created with phaml create (see Section 6.4.4) before passing it
to phaml restore.

integer, intent(in) :: unit – the unit number to read from, which should
have been opened with phaml popen using the same form as was used when
phaml store created the files.

logical, intent(in), optional :: do draw grid – whether or not to draw
the solution immediately after reading it.

logical, intent(in), optional :: pause – if do draw grid is true, whether
or not to pause after drawing the grid.
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6.4.14 phaml scale

phaml scale scales the computed solution by multiplying by factor.

subroutine phaml scale(phaml solution, factor, comp, eigen)

type(phaml solution type), intent(inout) :: phaml solution – the so-
lution to scale.

real(my real), intent(in) :: factor – the factor by which to multiply.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to scale. The default is 1.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to scale. The default is 1.

6.4.15 phaml solve pde

phaml solve pde solves the PDE. All arguments are optional, except phaml solution,
so you only need to provide those for which you do not want to take the default.
All arguments are intent(in) except phaml solution which is intent(inout)
and iterm and grid modified which are intent(out). It is recommended that
the call use keyword arguments for all arguments except possibly phaml solution.
Since there is such a large number of arguments to this routine, they are placed
into subsections by category.

subroutine phaml solve pde(phaml solution, iterm, grid modified,

max elem, max vert, max eq, max lev, max deg, stop on maxlev, stop on maxdeg,

max refsolveloop, min elem size, term energy err, term Linf err, term L2 err,

term H1 err, term H1 seminorm err, term eigenvalue err, task, print grid when,

print grid who, print error when, print error who, print energy norm error,

print H1 norm error, print H1 seminorm error, print Linf norm error, print L2 norm error,

print energy norm errest, print H1 norm errest, print H1 seminorm errest,

print Linf norm errest, print L2 norm errest, print linsys when, print linsys who,

print solver when, print solver who, print time when, print time who,

print eval when, print eval who, print header who, print trailer who,

print warnings, clocks, draw grid when, pause after draw, pause after phases,

pause at start, pause at end, solve init, keep linear system, sequential vert,

inc factor, error estimator, errtype, reftype, refterm, reftol, reftol factor,

coarsentol, coarsentol factor, reftol scale energy, refmaxloop, recoarsen limit,

recoarsen tol, hp strategy, t3s gamma, t3s eta, t3s nunif, t3s maxref,

t3s maxdeginc, tp gamma, sp gamma h, sp gamma p, pbias, hp patch mult,

hp patch add, derefine, partition method, edge rule, p compatibility,

max p diff, zoltan param file, prebalance, postbalance, petsc matrix free,

solver, preconditioner, mg cycles, mg tol, mg prerelax, mg postrelax,

mg prerelax ho, mg postrelax ho, krylov iter, krylov restart, krylov tol,

mg comm, ignore quad err, eigensolver, num eval, lambda0, st shift, st antishift,
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harmonic extraction, slepc true residual, scale evec, eigen ncv, eigen maxit,

eigen tol, degree, inc quad order, pde has first order terms, pde has cross derivative,

laplacian operator, isosceles right triangles, bc changed, hypre BoomerAMG tol,

hypre BoomerAMG trunc factor, hypre BoomerAMG strong threshold, hypre BoomerAMG max row sum,

hypre BoomerAMG relax weight, hypre BoomerAMG outer relax weight, hypre BoomerAMG cycle type,

hypre BoomerAMG max levels, hypre BoomerAMG max iter, hypre BoomerAMG P max elmts,

hypre BoomerAMG agg num levels, hypre BoomerAMG agg num paths, hypre BoomerAMG num sweeps all,

hypre BoomerAMG num sweeps down, hypre BoomerAMG num sweeps up, hypre BoomerAMG num sweeps coarsest,

hypre BoomerAMG relax type all, hypre BoomerAMG relax type down, hypre BoomerAMG relax type up,

hypre BoomerAMG relax type coarsest, hypre BoomerAMG relax order, hypre BoomerAMG measure type,

hypre BoomerAMG coarsen type, hypre BoomerAMG interp type, hypre BoomerAMG print statistics,

hypre BoomerAMG print debug, hypre Pilut tol, hypre Pilut maxiter, hypre Pilut factorrowsize,

hypre ParaSails thresh, hypre ParaSails filter, hypre ParaSails loadbal,

hypre ParaSails nlevels, hypre ParaSails sym, hypre ParaSails logging,

hypre ParaSails reuse, petsc richardson damping factor, petsc chebychev emin,

petsc chebychev emax, petsc gmres max steps, petsc rtol, petsc atol,

petsc dtol, petsc maxits, petsc ilu levels, petsc icc levels, petsc sor omega,

petsc sor its, petsc sor lits, petsc eisenstat nodiagscaling, petsc eisenstat omega,

petsc asm overlap)

6.4.15.1 Miscellaneous arguments

type (phaml solution type) phaml solution – the variable that contains
the main data structures. It must be created by subroutine phaml create

before passing it to phaml solve pde.

integer task – what task to perform. Valid values are:

BALANCE REFINE SOLVE – go through a loop repeatedly doing load bal-
ance, refinement and solution phases.

SET INITIAL – loop through the phases, but for the solution phase use
interpolation of the function in iconds.

BALANCE ONLY – just do one load balancing phase.

REFINE ONLY – just do one refinement phase.

SOLVE ONLY – just do one solution phase.

The default is BALANCE REFINE SOLVE.

logical solve init – determines whether or not to compute the solution on
the initial grid. Sometimes you might not want to if the grid comes from
a previous call.

The default is .true.

logical keep linear system – don’t destroy the last linear system before
returning.

The default is .false.
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logical pde has first order terms – indicates whether or not one of cx or
cy is not identically zero.

The default is .true. if either cx or cy is nonzero at the midpoint of one of
the initial elements, and .false. otherwise.

logical pde has cross derivative – indicates whether or not cxy is not
identically zero.

The default is .true. if cxy is nonzero at the midpoint of one of the initial
elements, and .false. otherwise.

logical laplacian operator – indicates whether or not the PDE opera-
tor is the Laplacian, i.e. cxx and cyy are identically one while all other
coefficients are identically zero (the right side can be anything).

The default is .true. if cxx and cyy are 1.0 at the midpoint of every initial
element and cxy, cx, cy and c are 0.0 at the midpoint of every initial
element, and .false. otherwise.

logical isosceles right triangles – indicates whether or not every tri-
angle in the initial grid is an isosceles right triangle with the peaks at the
right angles.

The default is .true. if every initial triangle appears to be an isosceles
right triangle with the right angle at the third vertex, within roundoff
error, and .false. otherwise.

bc changed – on calls after the first, setting this to false can save time if it is
known that the boundary conditions and true solution (if provided) have
not changed since the previous call.

The default is .true.

6.4.15.2 Termination arguments

integer iterm – termination code. If positive, a termination criterion was
met. If negative, an error occurred. For the current meaning of the codes,
see global.f90 and look for the string termination.

logical grid modified – True if and only if changes were made to the grid
in this call, excluding changes in the solution value and load balancing.

integer max elem – the maximum number of elements to use (termination
criterion).

The default is ∞, defined to be huge(0).

integer max vert – maximum number of vertices to use (termination crite-
rion).

The default is ∞, defined to be huge(0).
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integer max eq – maximum number of equations in the linear system (a.k.a.
degrees of freedom) to use (termination criterion).

The default is ∞, defined to be huge(0).

integer max lev – the maximum number of h refinement levels to use. If
an element is flagged for h refinement and the number of levels would
exceed max lev, then the element is quietly not refined, except for some
hp strategies where it is p-refined instead. The number of levels is also
limited by the size of the hash keys, which is set at the time the PHAML
library is compiled (see Section 2.2.1) and the number of element in the
initial grid. For 32 bit integers and a very coarse initial grid the maximum
is about 25-30 for PHAML HASHSIZE=1 and 55-60 for PHAML HASHSIZE=2.
If h refinement would cause the hash to overflow, the element is quietly
not refined, except for some hp strategies where it is p-refined instead.

The default is the largest number that prevents overflow in the hash keys.

integer max deg – the maximum polynomial degree for the approximation
space. If an element is flagged for p refinement and the degree would
exceed max deg, then the element is quietly not refined, except for some
hp strategies where it is h-refined instead.

In most cases the default is 22, which corresponds to the maximum degree
for which the currently implemented quadrature rules will give the exact
solution if the solution is a polynomial of degree max deg. If reftype is
HP ADAPTIVE and hp strategy is HP NEXT3P, the default is 19. Otherwise,
if error estimator is LOCAL PROBLEM P or EQUILIBRATED RESIDUAL, or
reftype is HP ADAPTIVE and hp strategy is HP REFSOLN ELEM or HP REFSOLN EDGE,
the default is 21. If the element kind from running mkmkfile.sh is tetrahe-
dron then the default is 10. If the element kind from running mkmkfile.sh
is tetrahedron fixdeg then if degree is present, then the default is degree,
and if degree is not present, then the default is the maximum degree in
the current grid.

logical stop on maxlev – if .true., then max lev is used as one of the ter-
mination criteria.

The default is .false.

logical stop on maxdeg – if .true., then max deg is used as one of the
termination criteria.

The default is .false.

integer max refsolveloop – number of times to go through the refine/solve
loop (termination criteria).

The default is ∞, defined to be huge(0).

real(my real) min elem size – minimum element size; an element whose
size is less than min elem size is treated the same as an element whose
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level is greater than or equal to max lev. In 2D the size of an element is
the square root of the area of the triangle. In 3D the size of an element is
the cube root of the volume of the tetrahedron.

The default is 0.0.

real(my real) term energy err – terminate when the energy error estimate
is less than this value (termination criteria).

The default is 0.0.

real(my real) term Linf err – terminate when the L∞ error estimate is less
than this value (termination criteria).

The default is 0.0.

real(my real) term L2 err – terminate when the L2 error estimate is less
than this value (termination criteria).

The default is 0.0.

real(my real) term H1 err – terminate when the H1 error estimate is less
than this value (termination criteria). Cannot be used with the hierarchi-
cal coefficient and explicit error estimators.

The default is 0.0.

real(my real) term H1 seminorm err – terminate when the H1 semi-norm
error estimate is less than this value (termination criteria). Cannot be
used with the hierarchical coefficient and explicit error estimators.

The default is 0.0.

real(my real) term eigenvlaue err – terminate when the eigenvalue error
estimate is less than this value (termination criteria).

The default is 0.0.

6.4.15.3 Output control arguments

integer print grid when – how often to produce a printed summary of the
grid (number of vertices and elements, etc.). Valid values are:

NEVER – don’t print.

PHASES – after each refinement phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print grid who – which processes should print the summary of the
grid. Valid values are:
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NO ONE – don’t print.

SLAVES – slave processes print a summary of the grid as they know it.

MASTER – master process prints the composite grid.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual grids of each slave process.

The default is NO ONE.

integer print linsys when – how often to produce a printed summary of
the linear system (number of equations, sparsity, etc.). Valid values are:

NEVER – don’t print.

PHASES – after each linear system assembly.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print linsys who – which processes should print the summary of
the linear system. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes print a summary of the system as they know it.

MASTER – master process prints the composite linear system.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual systems of each slave process.

The default is NO ONE.

integer print solver when – how often to produce a printed summary of
the solver performance (number of iterations, residual, etc.). Valid values
are:

NEVER – don’t print.

PHASES – after each linear system solution phase.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print solver who – which processes should print the summary of
the solver performance. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes.

MASTER – master process.

EVERYONE – both SLAVES and MASTER.
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MASTER ALL – master process.

The default is NO ONE.

integer print error when – how often to print the norms of the error (de-
fined to be the difference between the computed solution and the function
defined in function true) and error estimates. It also prints the factor by
which they have been reduced since the last time they were printed, and
the effectivity index of the error estimate (ratio of the error estimate to the
error) if both the error and error estimate are printed. If trues returns
huge(0.0 my real) to indicate that the true solution is not known, then
the error is not printed. If truexs or trueys return huge(0.0 my real)

and trues does not, then the energy norm, H1 norm, and H1 semi-norm
of the error (if requested) is printed as huge(0.0 my real). Valid values
are:

NEVER – don’t print.

PHASES – after each solution phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).
With the hierarchical basis multigrid solver, built in conjugate gra-
dient and GMRES solvers, and the PETSc solvers, this causes an
estimate of the `2 norm of the residual to be printed after each it-
eration. See KSPDefaultMonitor in the PETSc documentation. For
GMRES SOLVER it is only printed at the restarts.

TOO MUCH – possibly more often than FREQUENTLY. Also this sets the so-
lution to 0.0 before the solution phase as well as printing the residual
after each iteration of some solvers as with FREQUENTLY.

The default is NEVER.

integer print error who – which processes should print the error. Individual
processor energy norms of the error cannot be computed, so the energy
norm of the error is printed only by the master. Valid values are:

NO ONE – don’t print.

SLAVES – slave processes print the error over the grid as they know it.

MASTER – master process prints the error over the composite grid.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual errors of each slave process.

The default is NO ONE.

logical print energy norm error – if .true. and norms of the error are
printed, include the energy norm.

The default is .false.
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logical print H1 norm error – if .true. and norms of the error are printed,
include the H1 norm.

The default is .false.

logical print H1 seminorm error – if .true. and norms of the error are
printed, include the H1 semi-norm.

The default is .false.

logical print Linf norm error – if .true. and norms of the error are printed,
include the L∞ norm.

The default is .false.

logical print L2 norm error – if .true. and norms of the error are printed,
include the L2 norm.

The default is .false.

logical print energy norm errest – if .true. and error estimates are printed,
include the energy norm.

The default is .false.

logical print H1 norm errest – if .true. and error estimates are printed,
include the H1 norm. Cannot be used with the hierarchical coefficient and
explicit error estimators.

The default is .false.

logical print H1 seminorm errest – if .true. and error estimates are printed,
include the H1 semi-norm. Cannot be used with the hierarchical coeffi-
cient and explicit error estimators.

The default is .false.

logical print Linf norm errest – if .true. and error estimates are printed,
include the L∞ norm.

The default is .false.

logical print L2 norm errest – if .true. and error estimates are printed,
include the L2 norm.

The default is .false.

integer errtype – type of error and error estimates to use in printed output.
Valid values are:

ABSOLUTE ERROR – absolute error.

RELATIVE ERROR – relative error. Norms of the error are scaled by the
norm of the true solution. Error estimates are scaled by the norm of
the computed solution.

The default is ABSOLUTE ERROR.
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integer print time when – how often to print the amount of time used by
the program. Valid values are:

NEVER – don’t print.

PHASES – after each refinement/solve loop.

LAST – the time for the last cycle.

FINAL – only at the end.

LAST AND FINAL – the time of the last cycle, and the total time.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

integer print time who – which processes should print the time. Valid values
are:

NO ONE – don’t print.

SLAVES – slave processes print their own times.

MASTER – master process prints maximum time over all slaves.

EVERYONE – both SLAVES and MASTER.

MASTER ALL – master prints the individual times of each slave process.

The default is NO ONE.

integer clocks – which clock(s) (cpu and/or wall) to use for timing. Valid
values are:

CLOCK C – cpu clock.

CLOCK W – wall clock.

CLOCK CW – both cpu and wall clock.

The default is CLOCK W.

integer print eval when – for eigenvalue problems, how often to print the
eigenvalues. Valid values are:

NEVER – don’t print.

PHASES – after each refinement/solve loop.

FINAL – only at the end.

The default is NEVER.

integer print eval who – for eigenvalue problems, which processes should
print the eigenvalues. Valid values are:

NO ONE – don’t print.

SLAVES – slaves print the eigenvalues.
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MASTER – master process prints the eigenvalues.

EVERYONE – both SLAVES and MASTER.

The default is NO ONE.

integer print header who – which processes should print a header message
and the values of the parameters when the subroutine starts. Valid values
are:

NO ONE – don’t print.

SLAVES – slaves print the header.

MASTER – master prints the header.

EVERYONE – both SLAVES and MASTER.

The default is MASTER.

integer print trailer who – which processes should print a trailer message
when the subroutine completes. Valid values are:

NO ONE – don’t print.

SLAVES – slaves print the trailer.

MASTER – master prints the trailer.

EVERYONE – both SLAVES and MASTER.

The default is MASTER.

logical print warnings – if .false., warning messages are not printed.

The default is .true.

integer draw grid when – how often to update the graphics. Valid values
are:

NEVER – don’t draw.

PHASES – after each refinement and solve phase.

FINAL – only at the end.

FREQUENTLY – possibly more often than PHASES (used for debugging).

The default is NEVER.

logical pause after draw – if .true., the program will prompt for keyboard
input after updating the graphics.

The default is .false.

logical pause after phases – if .true., the program will prompt for key-
board input after each refinement/solve loop.

The default is .false.
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logical pause at start – if .true., the program will prompt for keyboard
input before starting subroutine phaml solve pde.

The default is .false.

logical pause at end – if .true., the program will prompt for keyboard
input before returning from subroutine phaml solve pde.

The default is .false.

6.4.15.4 Refinement arguments

integer degree – sets the initial degree of the polynomials in the finite ele-
ment space. If no p refinement is performed, it is the fixed degree of the
space.

In most cases the default is to use the existing degree in each element.
In phaml create, all elements are initialized to have degree 1. If the
element kind from running mkmkfile.sh is tetrahedron fixdeg and max deg
is present, then the default is max deg.

logical derefine – if .true., perform derefinement as well as refinement
during adaptive refinement.

The default is .true.

integer error estimator – select what to use for an error estimate to guide
adaptive refinement and estimate global norms of the error. Valid values
are:

EXPLICIT ERRIND – error indicator based on the norm of the residual and
jump.

LOCAL PROBLEM H – computes an estimate over a pair of elements by per-
forming one h refinement and solving a local Diriclet residual prob-
lem.

LOCAL PROBLEM P – computes an estimate over a triangle by performing
one p refinement and solving a local Neumann residual problem.

EQUILIBRATED RESIDUAL – computes an estimate over a triangle by per-
forming one p refinement and solving a local Neumann residual prob-
lem with an equilibrated residual.

HIERARCHICAL COEFFICIENT – use the coefficient of the h-hierarchical
basis for linear elements, or the highest order p-hierarchical bases for
high order elements. It is significantly faster than the local problem
estimates, but of lower quality.

TRUE DIFF – use the difference between the true solution at the newest
vertex of the element and surrounding vertices of the parent element.
Can only be used if the true solution is known and supplied, and only
for h refinement of linear elements.
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INITIAL CONDITION – an error estimate based on interpolation of the
function in subroutine iconds (Section 6.3.5). If task is SET INITIAL

then it must be INITIAL CONDITION.

The default is EXPLICIT ERRIND, but it is always set to INITIAL CONDITION

if task is SET INITIAL.

integer reftype – type of refinement to perform. Valid values are:

H UNIFORM – uniform h refinement.

H ADAPTIVE – adaptive h refinement.

P UNIFORM – uniform p refinement.

P ADAPTIVE – adaptive p refinement.

HP ADAPTIVE – adaptive h and p refinement.

The default is H ADAPTIVE.

integer refterm – termination criteria for a refinement phase (DOUBLE or
HALVE really mean to multiply or divide by inc factor). Valid values
are:

DOUBLE NVERT – double the number of vertices.

DOUBLE NELEM – double the number of elements.

DOUBLE NEQ – double the number of equations.

HALVE ERREST – reduce the maximum error indicator by half.

KEEP NVERT – keep the same number of vertices or, if max vert is present,
try to make it close to max vert.

KEEP NELEM – keep the same number of elements or, if max elem is
present, try to make it close to max elem.

KEEP NEQ – keep the same number of equations or, if max eq is present,
try to make it close to max eq.

ONE REF – (with default parameters) refine all elements with an error indi-
cator larger than reftol/

√
n where n is the number of elements, but

refine each element only once (just h or p, and don’t refine children).

ONE REF HALF ERRIND – (with default parameters) perform one refine-
ment of all elements with an error indicator larger than half (or
1/inc factor) of the maximum error indicator.

MATCH TOL – repeat the coarsen-refine loop until the error indicator of all
coarsenable elements is larger than the coarsen cutoff and the error
indicator of all refinable elements is less than the refine cutoff.

The default is DOUBLE NEQ
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real(my real) inc factor – usually the factor by which to increase the size
of the grid during one refinement phase. For hp-adaptive refinement with
REFSOLN EDGE or REFSOLN ELEM, it is the factor by which the max-
imum error indicator is divided to get the error indicator cut-off that de-
termines which elements are refined.

The default is usually 2.0. For hp-adaptive refinement with REFSOLN EDGE
or REFSOLN ELEM it is 10.0.

real(my real) reftol – tolerance for determining the refine cutoff. If refterm
is ONE REF then at least one of reftol, or term energy err must be given.
In addition to positive real numbers, valid values are:

MAX ERRIND OVER FACTOR – base the refine cutoff on the maximum error
indicator.

The default is term energy err if refterm is ONE REF, and MAX ERRIND OVER FACTOR

otherwise.

real(my real) reftol factor – factor by which to divide reftol.

The default is 1.0 if reftol is given as a number, otherwise 2.0 if refterm
is ONE REF, inc factor if refterm is ONE REF HALF ERRIND, and 4.0 oth-
erwise.

real(my real) coarsentol – tolerance for determining the coarsen cutoff. In
addition to positive real numbers, valid values are:

MAX ERRIND OVER FACTOR – base the coarsen cutoff on the maximum error
indicator.

REFCUTOFF OVER FACTOR – base the coarsen cutoff on the refine cutoff.

REFCUTOFF TIMES CONVERGENCE – base the coarsen cutoff on the refine
cutoff and the asymptotic convergence rate.

The default is REFCUTOFF OVER FACTOR if reftol is given as a number or
refterm is ONE REF, and MAX ERRIND OVER FACTOR otherwise.

real(my real) coarsentol factor – factor by which to divide coarsentol.

The default is 1.0 if coarsentol is given as a number, and 100.0 otherwise.

integer recoarsen limit – if refterm is MATCH TOL then the ban on coars-
ening an element whose parent was rerefined after it’s children were coars-
ened is carried over from the previous refinement phase after the recoarsen limitth

time through the refine-solve loop if the change in the number of elements
in the previous refinement phase was less than recoarsen tol times the
number of elements in the grid.

The default is 3.

real(my real) recoarsen tol – see recoarsen limit.

The default is 0.01.
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logical reftol scale energy – whether or not to scale reftol by the square
root of the number elements and, if errtype is RELATIVE ERROR, the en-
ergy norm of the computed solution.

The default is .true. if refterm is ONE REF, and .false. otherwise.

integer refmaxloop – maximum number of times through the coarsen-refine
loop within a refinement phase.

The default is 10.

integer hp strategy – select strategy for reftype=HP ADAPTIVE. See Section
3.3.2. Valid values are:

HP APRIORI – use h refinement around a priori known trouble spots,
and p refinement elsewhere. The regularity, m, of the solution is
given by the user in function subroutine regularity (Sect. 6.3.8). h
refinement is used if the degree of the element is larger than m.

HP NEXT3P – hp strategy in which the regularity is estimated using error
estimators computed with spaces of degree p+ 1, p+ 2, and p+ 3.

HP PRIOR2P E – hp strategy in which the regularity is estimated using
energy norm error estimators computed with spaces of degree p − 1
and p− 2.

HP PRIOR2P H1 – hp strategy in which the regularity is estimated using
H1 error estimators computed with spaces of degree p− 1 and p− 2.

HP TYPEPARAM – the type parameter strategy.

HP BIGGER ERRIND – compute both LOCAL PROBLEM H and LOCAL PROBLEM P

error indicators and refine an element by h or p depending on which
is bigger.

HP PATCH – solve the residual problem on a patch of elements refined by
each of several candidates.

HP COEF DECAY – strategy based on the decay rate of the p-hierarchical
coefficients.

HP COEF ROOT – strategy that estimates the regularity using a root test
with the p-hierarchical coefficients.

HP SMOOTH PRED – a strategy that compares the local a posteriori error
estimate with a predicted error estimate under the assumption that
the solution is smooth.

HP REFSOLN ELEM – a strategy that considers several possible refinements
of an element and picks one that reduces the difference from a refer-
ence solution the most.

HP REFSOLN EDGE – a strategy that considers several possible refinements
of an edge and picks one that reduces the difference from a reference
solution the most, and refines elements to be consistent with the
chosen edge refinement.
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The default is HP COEF DECAY.

real(my real) tp gamma – the type parameter γ for HP TYPEPARAM.

The default is 0.8 for 2D and 1.2 for 3D, but it is recommended that for
problems where the solution has a singularity you use 0.15 for 2D and 0.6
for 3D.

real(my real) sp gamma h – parameter γh for SMOOTH PRED.

The default is 10.0 in 2D and 4.0 in 3D.

real(my real) sp gamma p – parameter γp for SMOOTH PRED.

The default is 0.4.

real(my real) pbias – bias the HP REFSOLN ELEM or HP BIGGER ERRIND
strategy toward p-refinement. Recommended values for 2D problems are
2.0 for singular or nearly singular solutions and 4.0 for smooth solutions or
moderately strong features, and for 3D problems 1.0, although a smaller
value like 0.3 may be better for strong features. 1.0 is no bias.

The default is 4.0 in 2D and 1.0 in 3D.

real(my real) hp patch mult, and integer hp patch add – candidate re-
finements for the HP PATCH strategy; see 3.3.2

The default is HP PATCH H P CANDIDATES.

integer edge rule – the rule for determining how to assign the polynomial
degree for edges. Valid values are:

MINIMUM RULE – use the minimum of the degrees of the triangles sharing
the edge.

MAXIMUM RULE – use the maximum of the degrees of the triangles sharing
the edge.

The default is MINIMUM RULE.

integer p compatibility – determines how to enforce p compatibility of the
grid. Valid values are:

PCOMPAT NONE – no p compatibility, i.e. there is no limit on how large
the difference between the degrees of neighboring elements can be.

PCOMPAT INCREASE – if the degrees of neighboring elements differ by more
than max p diff, increase the smaller one to the larger degree minus
max p diff.

PCOMPAT DECREASE – if the degrees of neighboring elements differ by more
than max p diff, decrease the bigger one to the smaller degree plus
max p diff.

The default is PCOMPAT NONE.
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integer max p diff – if p compatibility is not PCOMPAT NONE, this is the
maximum difference allowed in the degrees of neighboring elements.

The default is 1.

6.4.15.5 Load balancing arguments

integer sequential vert – number of vertices in the grid before it starts
running in parallel.

The default is 100.

integer prebalance – what to balance when partitioning the grid before
refinement. Valid values are:

BALANCE NONE – do not partition the grid before refinement.

BALANCE ELEMENTS – equal number of elements in each partition.

BALANCE VERTICES – equal number of vertices in each partition.

BALANCE EQUATIONS – equal number of equations in each partition.

The default is BALANCE ELEMENTS.

integer postbalance – what to balance when partitioning the grid after re-
finement. Valid values are:

BALANCE NONE – do not partition the grid after refinement.

BALANCE ELEMENTS – equal number of elements in each partition.

BALANCE VERTICES – equal number of vertices in each partition.

BALANCE EQUATIONS – equal number of equations in each partition.

The default is BALANCE NONE.

integer partition method – what method to use for partitioning the grid.
Valid values are:

RTK – the k-way refinement tree method implemented in PHAML.

ZOLTAN RCB – recursive coordinate bisection, from Zoltan.

ZOLTAN OCT – RPI’s Octree method, from Zoltan.

ZOLTAN METIS – the local diffusion method from ParMETIS via Zoltan.

ZOLTAN REFTREE – the refinement tree method, from Zoltan.

ZOLTAN RIB – recursive inertial bisection, from Zoltan.

ZOLTAN HSFC – Hilbert space filling curve, from Zoltan.

ZOLTAN FILE – give Zoltan method and parameters in a file.

The default is RTK.

character(len=*) zoltan param file – name of the file containing param-
eters for ZOLTAN FILE. The default is zoltan.params.
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6.4.15.6 Assembly arguments

integer inc quad order – increment the order of the quadrature rules by this
amount.

The default is 0.

logical ignore quad err – if .true., when setting up the linear system,
ignore the quadrature errors in the large triangles outside the owned re-
gion. This is acceptable (and reduces computation and communication)
when the PDE coefficients and right hand side are constant (for example,
Laplace’s equation), or when using a solver other than HBMG, but will
reduce the convergence of the discretization error otherwise.

The default is .false. if the solver is HBMG and .true. otherwise.

6.4.15.7 Solver arguments

integer solver – what method to use as the solver. Valid values are:

MG SOLVER – the hierarchical basis multigrid method implemented in
PHAML.

CG SOLVER – conjugate gradient sovler implemented in PHAML.

GMRES SOLVER – GMRES solver implemented in PHAML.

PETSC RICHARDSON SOLVER – Richardson solver from PETSc.

PETSC CHEBYCHEV SOLVER – Chebychev solver from PETSc.

PETSC CG SOLVER – Conjugate Gradients from PETSc.

PETSC GMRES SOLVER – Generalized Minimal Residual (GMRES) from
PETSc.

PETSC TCQMR SOLVER – Transpose-Free Quasi-Minimal Residual (QMR)
from PETSc.

PETSC BCGS SOLVER – BiConjugate Gradients Stabilized (BiCGSTAB)
from PETSc.

PETSC CGS SOLVER – Conjugate Gradient Squared from PETSc.

PETSC TFQMR SOLVER – Transpose-Free Quasi-Minimal Residual (QMR)
from PETSc.

PETSC CR SOLVER – Conjugate Residual from PETSc.

PETSC LSQR SOLVER – Least Squares from PETSc.

PETSC BICG SOLVER – BiConjugate Gradients from PETSc.

PETSC MUMPS GEN SOLVER – Nonsymmetric direct solver from MUMPS.

PETSC MUMPS SPD SOLVER – Symmetric positive definite direct solver from
MUMPS.

PETSC SUPERLU SOLVER – Direct solver from SuperLU.
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PETSC HYPRE BOOMERAMG SOLVER – BoomerAMG algebraic multigrid from
hypre.

LAPACK INDEFINITE SOLVER – the indefinite solver from LAPACK. This
is available for certain debugging and testing operations, and can only
be used for very small problem sizes and only with one processor.

LAPACK SPD SOLVER – the LAPACK solver for symmetric positive definite
band matrices. This is available for certain debugging and testing
operations, and can only be used for very small problem sizes and
only with one processor.

The default is MG SOLVER in 2D and PETSC CG SOLVER in 3D.

integer preconditioner – what method to use as a preconditioner for the
Krylov methods. Valid values are:

NO PRECONDITION – no preconditioning.

MG PRECONDITION – a hierarchical basis multigrid V-cycle preconditioner.

PETSC JACOBI PRECONDITION – Jacobi preconditioner from PETSc.

PETSC BJACOBI PRECONDITION – Block Jacobi preconditioner from PETSc.

PETSC SOR PRECONDITION – SOR (and SSOR) preconditioner from PETSc.

PETSC EISENSTAT PRECONDITION – SOR with Eisenstat trick from PETSc.

PETSC ICC PRECONDITION – Incomplete Cholesky preconditioner from
PETSc.

PETSC ILU PRECONDITION – Incomplete LU preconditioner from PETSc.

PETSC ASM PRECONDITION – Additive Schwarz preconditioner from PETSc.

PETSC GAMG PRECONDITION – Algebraic multigrid preconditioner from PETSc.

PETSC TRILINOS ML PRECONDITION – Algebraic multigrid preconditioner
from the ML package from Trilinos.

PETSC HYPRE BOOMERAMG PRECONDITION – BoomerAMG algebraic multi-
grid from hypre.

PETSC HYPRE PARASAILS PRECONDITION – ParaSails preconditioner from
hypre.

PETSC HYPRE PILUT PRECONDITION – Pilut preconditioner from hypre.

Note: For solver=CG SOLVER and solver=GMRES SOLVER, the precondi-
tioner must be one of NO PRECONDITION or MG PRECONDITION.

The default is:

NO PRECONDITION – when not applicable

PETSC SOR PRECONDITION – in 3D

MG PRECONDITION – otherwise
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integer mg cycles – number of multigrid V-cycles to use in one solution
phase or as a preconditioner.

If HBMG is the solver, then the default is 1 if mg tol is MG NO TOL and
infinite otherwise. If HBMG is the preconditioner, then the default is 2.

real(my real) mg tol – perform multigrid cycles until the `2 norm of the
scaled linear system residual is less than mg tol (up to a maximum of
mg cycles cycles). In addition to positive real numbers, it can have the
following values:

MG NO TOL – do not use the tolerance test for ending the multigrid cycles,
use a fixed number of cycles given by mg cycles instead.

MG ERREST TOL – reduce the residual to some fraction of the error esti-
mate, currently 1/1000.

The default is MG ERREST TOL if HBMG is the solver, and MG NO TOL if
HBMG is the preconditioner.

integer mg prerelax – number of half red-black relaxation sweeps to make
before coarse grid correction in the h-hierarchical linear bases.

The default is 1.

integer mg postrelax – number of half red-black relaxation sweeps to make
after coarse grid correction in the h-hierarchical linear bases.

The default is 2.

integer mg prerelax ho – number of relaxation sweeps to make on each level
of the high order p-multigrid cycle before coarse grid correction.

The default is 1.

integer mg postrelax ho – number of relaxation sweeps to make on each
level of the high order p-multigrid cycle after coarse grid correction.

The default is 1.

integer mg comm – selects how much communication to do in the parallel
hierarchical basis multigrid method. Permitted values are

MGCOMM FUDOP – the full domain partition approach with two messages
per cycle.

MGCOMM CONVENTIONAL – conventional communication at each level.

MGCOMM NONE – no communication. Should only be used as a precondi-
tioner.

The default is MGCOMM FUDOP if HBMG is the solver and MGCOMM NONE if
HBMG is the preconditioner.
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integer krylov iter – the maximum number of iterations to use with the
native Krylov space solvers CG SOLVER and GMRES SOLVER.

The default is 100.

integer krylov restart – the GMRES restart parameter for GMRES SOLVER.

The default is 20.

real(my real) krylov tol – convergence tolerance on the `2 norm of the
linear system residual for the native Krylov space solvers. In addition to
positive real numbers, it can have the following values:

KRYLOV ERREST TOL – reduce the residual to some fraction of the error
estimate, currently 1/100.

The default is KRYLOV ERREST TOL.

logical petsc matrix free – if the solver is one of the PETSc methods and
this parameter is .true., memory is saved by using a matrix-free approach
that does not copy the matrix to a PETSc data structure. If .true., then
you cannot use the PETSc preconditioners.

The default is .false.
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The following parameters are passed to subroutines in PETSc. See the
documentation for PETSc for explanations and default values.

real(my real) petsc richardson damping factor

real(my real) petsc chebychev emin

real(my real) petsc chebychev emax

integer petsc gmres max steps

real(my real) petsc rtol

real(my real) petsc atol

real(my real) petsc dtol

integer petsc maxits

integer petsc ilu levels

integer petsc icc levels

real(my real) petsc sor omega

integer petsc sor its

integer petsc sor lits

logical petsc eisenstat nodiagscaling

real(my real) petsc eisenstat omega

integer petsc asm overlap
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The following parameters are passed to subroutines in hypre. See the docu-
mentation for hypre for explanations and default values.

real(my real) hypre BoomerAMG tol

real(my real) hypre BoomerAMG trunc factor

real(my real) hypre BoomerAMG strong threshold

real(my real) hypre BoomerAMG max row sum

real(my real) hypre BoomerAMG relax weight

real(my real) hypre BoomerAMG outer relax weight

integer hypre BoomerAMG cycle type

integer hypre BoomerAMG max levels

integer hypre BoomerAMG max iter

integer hypre BoomerAMG P max elmts

integer hypre BoomerAMG agg num levels

integer hypre BoomerAMG agg num paths

integer hypre BoomerAMG num sweeps all

integer hypre BoomerAMG num sweeps down

integer hypre BoomerAMG num sweeps up

integer hypre BoomerAMG num sweeps coarsest

integer hypre BoomerAMG relax type all

integer hypre BoomerAMG relax type down

integer hypre BoomerAMG relax type up

integer hypre BoomerAMG relax type coarsest

integer hypre BoomerAMG relax order

integer hypre BoomerAMG measure type

integer hypre BoomerAMG coarsen type

integer hypre BoomerAMG interp type

logical hypre BoomerAMG print statistics

logical hypre BoomerAMG print debug

real(my real) hypre Pilut tol

integer hypre Pilut maxiter

integer hypre Pilut factorrowsize

real(my real) hypre ParaSails thresh

real(my real) hypre ParaSails filter

real(my real) hypre ParaSails loadbal

integer hypre ParaSails nlevels

integer hypre ParaSails sym

logical hypre ParaSails logging

logical hypre ParaSails reuse

6.4.15.8 Eigenvalue arguments

integer eigensolver – What method to use to solve the discrete eigenprob-
lem. Valid values are:

SLEPC POWER – SLEPc power iteration

SLEPC SUBSPACE – SLEPc subspace iteration
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SLEPC ARNOLDI – SLEPc Arnoldi method

SLEPC LANCZOS – SLEPc Lanczos method

SLEPC KRYLOV SCHUR – SLEPc Krylov-Schur method

SLEPC GEN DAVIDSON – SLEPc generalized Davidson

SLEPC JACOBI DAVIDSON – SLEPc Jacobi-Davidson

SLEPC LAPACK – SLEPc wrapper to LAPACK

SLEPC ARPACK – SLEPc wrapper to ARPACK

SLEPC BLOPEX – SLEPc wrapper to BLOPEX

The default is SLEPC KRYLOV SCHUR.

integer num eval – The number of eigenvalues to find.

The default is 1.

real(my real) lambda0 – Find the eigenvalues closest to lambda0.

The default is -huge(0.0 my real), i.e., find the smallest eigenvalues.

integer transformation – What spectral transformation to use. Valid values
are:

ST NONE – no spectral transformation

ST SHIFT ORIGIN – shift of origin

ST SHIFT INVERT – shift and invert

ST CAYLEY – generalized Cayley

The default is ST NONE.

real(my real) st shift – the shift for the SLEPc spectral transformations

The default is lambda0.

real(my real) st antishift – the antishift for the ST CAYLEY spectral
transformations

The default is to be the same as st shift.

integer scale evec – The eigenvectors can be multiplied (scaled) by an ar-
bitrary constant. These are the choices for scaling:

SCALE LINF – scale so the (discrete) `∞ norm is 1. For linear elements,
this is also the L∞ norm.

SCALE L2 – scale so the (discrete) `2 norm is 1.

SCALE M – scale so the M norm,
√
xTMx, is 1, where M is the mass

matrix. The M norm is also the (continuous) L2 norm.

The default is SCALE LINF.
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integer eigen ncv – The number of column vectors to use in the eigensolver

The default is given in the SLEPc user’s guide.

integer eigen maxit – The maximum number of iterations to use in the
eigensolver

The default is given in the SLEPc user’s guide.

real(my real) eigen tol – The tolerance on the residual of the eigensystem

The default is 10−10.

logical harmonic extraction – If true, use harmonic extraction to acceler-
ate convergence of interior eigenvalues.

The default is .false.

logical slepc true residual – For Krylov solvers use the true residual in-
stead of a cheap approximation.

The default is .false.

6.4.16 phaml store

phaml store stores information from phaml solution into files for later use.

subroutine phaml store(phaml solution, unit)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution to store.

integer, intent(in) :: unit – the unit number to write to, which should
have been opened as either FORMATTED or UNFORMATTED with sub-
routine phaml popen. UNFORMATTED is likely to be faster and create
smaller data files. FORMATTED may be required if you will be restoring
with a different compiler or architecture, and might not reproduce floating
point numbers exactly.

6.4.17 phaml store grid

phaml store grid stores the grid, and optionally the solution, to data files.

subroutine phaml store grid(phaml solution, unit, fmt, comp, eigen,

noboundary, notags, only gmsh)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution containing the grid to store.

integer, intent(in) :: unit – the I/O unit number to which to write the
grid. It should be open for formatted sequential writing prior to calling
phaml store grid and closed afterwards.
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integer, intent(in) :: fmt – the format for the output file. Valid values
are:

GRIDFILE POLY – for 2D, store just the grid in triangle’s .poly format,
http://www.cs.cmu.edu/~quake/triangle.poly.html

GRIDFILE POLY SOLN – for 2D, store both the grid and the solution in
triangle’s .poly format.

GRIDFILE MSH – for 2D or 3D, store just the grid in Gmsh’s .msh format,
http://geuz.org/gmsh/doc/texinfo/gmsh.html#MSH-ASCII-file-format

GRIDFILE MSH SOLN – for 2D or 3D, store both the grid and the solution
in Gmsh’s .msh format.

integer, intent(in), optional :: comp – for multicomponent solutions,
which component to store. The default is all of them.

integer, intent(in), optional :: eigen – for eigenvalue problems, which
eigenfunction to store. The default is all of them.

logical, intent(in), optional :: noboundary – if .true., only the el-
ements are saved, not the boundary entities. The default is .false.

logical, intent(in), optional :: notags – if .true., tags are not saved,
except for a tag containing bmark for boundary entities. The default is
.false.

logical, intent(in), optional :: only gmsh – in 3D msh format, if .true.,
only the elements plus the vertices, edges and faces that were “elements”
in the original geo or msh file, and their descendants, are saved. The
default is .false.

6.4.18 phaml store matrix

phaml store matrix stores the stiffness matrix, right hand side, and/or mass
matrix in a file in Matrix Market exchange format (http://math.nist.gov/
MatrixMarket/formats.html). For details, see Section 3.6.2.

subroutine phaml store matrix(phaml solution, stiffness unit, rhs unit,

mass unit, inc quad order)

type (phaml solution type), intent(in) :: phaml solution – the so-
lution containing the linear system to store.

integer, intent(in), optional :: stiffness unit, rhs unit, mass unit

– the I/O unit numbers for writing the stiffness matrix, right hand side,
and mass matrix, respectively. They should be open for formatted se-
quential writing prior to calling phaml store matrix and closed afterwards.
Which ones are present determines which are written.
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integer, intent(in), optional :: inc quad order – increase the order
of the quadrature rule by this amount. Default is 0.
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[47] B. Szabo and I. Babuška, Finite Element Analysis, John Wiley and Sons,
New York, 1991.

129

http://math.nist.gov/~WMitchell
http://math.nist.gov/~WMitchell
http://www.cs.cmu.edu/~quake/triangle.html


[48] J.D. Teresco, J. Faik, and J.E. Flaherty, Resource-Aware Scientific Compu-
tation on a Heterogeneous Cluster, Computing in Science & Engineering,
7 (2), (2005), 40–50.

[49] J.D. Teresco, zoltanParams: Library for Parsing Zoltan Parameters, http:
//www.cs.williams.edu/~terescoj/research/zoltanParams/

[50] Trilinos web page, http://trilinos.sandia.gov/

[51] E.L. Wilson, The static condensation algorithm, Int. J. Num. Meth. Engrg.,
8, (1974), pp. 198–203.

130

http://www.cs.williams.edu/~terescoj/research/zoltanParams/
http://www.cs.williams.edu/~terescoj/research/zoltanParams/
http://trilinos.sandia.gov/

	Introduction
	Software
	Obtaining Software
	PHAML
	Fortran 90 and C Compilers
	BLAS and LAPACK
	MPI
	OpenGL (or Mesa), GLUT and f90gl
	Triangle
	Gmsh
	SLEPc
	ARPACK
	BLOPEX
	PETSc
	MUMPS
	SuperLU
	hypre
	ML
	Zoltan

	Compiling PHAML
	Creating the Makefiles
	Compiling the Library

	Testing the Library
	Compiling and Running the Examples

	Scalar Linear Elliptic Boundary Value Problems
	Main program
	Parallelism
	Program structure
	Master/slave and Sequential
	SPMD


	Defining the problem
	Defining the PDE
	Defining the boundary conditions
	Defining the domain and initial grid
	The true solution

	Solution method
	Discretization
	Refinement
	Error indicator
	Linear system solver
	Hierarchical basis multigrid solver
	Krylov space solvers
	Alternative direct solvers
	Alternative iterative solvers

	Load balancing
	Termination

	I/O
	I/O files
	Printed I/O
	Pausing

	Graphics
	Overview
	Example visualizations
	View modifier
	Colors
	Functions
	Lights
	Contour plots
	Multiple solutions
	Miscellaneous features
	Development aids
	Postscript

	Post-solution utilities
	Store and Restore
	Store Matrix
	Store Grid
	Query
	Solution evaluation
	Functionals


	Problem Extensions
	Eigenvalue Problems
	Coupled Systems or Multicomponent Solutions
	Parabolic, Nonlinear, Etc. Problems
	3D Problems

	Examples
	Reference Manual
	Quick Start
	Obtaining the software
	Compiling the PHAML library
	Compiling an Example
	Running the Example
	Now what?

	Public Entities in PHAML
	phaml_solution_type
	my_real
	pde and my_pde_id
	symbolic constants

	User Provided Routines
	bconds
	boundary_point
	boundary_npiece
	boundary_param
	iconds
	pdecoefs
	phaml_integral_kernel
	regularity
	trues 
	truexs
	trueys
	update_usermod

	PHAML procedures
	phaml_compress
	phaml_connect
	phaml_copy_soln_to_old
	phaml_create
	phaml_destroy
	phaml_evaluate
	phaml_get_grid_soln
	phaml_evaluate_old
	phaml_integrate
	phaml_pclose
	phaml_popen
	phaml_query
	phaml_restore
	phaml_scale
	phaml_solve_pde
	Miscellaneous arguments
	Termination arguments
	Output control arguments
	Refinement arguments
	Load balancing arguments
	Assembly arguments
	Solver arguments
	Eigenvalue arguments

	phaml_store
	phaml_store_grid
	phaml_store_matrix



