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Abstract

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a
particularly efficient method for solving partial differential equations because it can achieve a convergence
rate that is exponential in the number of degrees of freedom. hp-FEM allows for refinement in both the
element size, h, and the polynomial degree, p. Like adaptive refinement for the h version of the finite
element method, a posteriori error estimates can be used to determine where the mesh needs to be refined,
but a single error estimate can not simultaneously determine whether it is better to do the refinement by h

or by p. Several strategies for making this determination have been proposed over the years. In this paper
we summarize these strategies and present the results of a numerical experiment to study the convergence
properties of these strategies.

Keywords: elliptic partial differential equations, finite elements, hp-adaptive strategy, hp-FEM

1 Introduction

The numerical solution of partial differential equations (PDEs) is the most compute-intensive part of a wide
range of scientific and engineering applications. Consequently the development and application of faster and
more accurate methods for solving partial differential equations has received much attention in the past fifty
years. Many of the applications at the cutting edge of research are extraordinarily challenging. For these
problems it is necessary to allocate computing resources in an optimal way in order to have any chance at
solving the problem. Determining the best grid and approximation space on which to compute the solution
is a central concern in this regard. Unfortunately, it is rarely possible to determine an optimal grid in
advance. Thus, developing self-adaptive techniques which lead to optimal resource allocation is critical for
future progress in many fields.

Self-adaptive methods have been studied for over 30 years now. They are often cast in the context of
finite element methods, where the domain of the PDE is partitioned into a mesh consisting of a number of
elements (in two dimensions, usually triangles or rectangles), and the approximate solution is a polynomial
over each element. Most of the work has focused on h-adaptive methods. In these methods, the mesh size,

∗Contribution of NIST, not subject to copyright.
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h, is adapted locally by means of a local error estimator with the goal of placing the smallest elements in the
areas where they will do the most good. In particular, elements that have a large error estimate get refined
so that ultimately the error estimates, and presumably the error, are approximately equal over all elements.
h-adaptive methods are quite well understood now, and are beginning to be used in practice.

Recently, the research community has begun to focus more attention on hp-adaptive methods. In these
methods, one not only locally adapts the size of the mesh, but also the degree of the polynomials, p. The
attraction of hp-adaptivity is that the error converges at an exponential rate in the number of degrees of
freedom, as opposed to a polynomial rate for fixed p. Much of the theoretical work showing the advantages
of hp-adaptive methods was done in the 1980’s, but it wasn’t until the 1990’s that practical implementation
began to be studied. The new complication is that the local error estimator is no longer sufficient to guide
the adaptivity. It tells you which elements should be refined, but it does not indicate whether it is better to
refine the element by h or by p. A method for making that determination is called an hp-adaptive strategy.
A number of strategies have been proposed, but it is not clear which ones perform best under different
situations, or even if any of the strategies are good enough to be used as a general purpose solver. In this
paper we present an experimental comparison of several hp-adaptive strategies.

Any study of this type is necessarily limited in scope. The comparison will be restricted to steady-state
linear elliptic partial differential equations on bounded domains in two dimensions with Dirichlet, natural
or mixed boundary conditions. The standard Galerkin finite element method will be used with the space
of continuous piecewise polynomial functions over triangles that are refined by the newest node bisection
method.

The remainder of the paper is organized as follows. In Section 2 we define the equation to be solved, present
the finite element method, and give some a priori error estimates. In Section 3 we give the details of the
hp-adaptive finite element algorithm used in the experiments. Section 4 defines the hp-adaptive strategies to
be compared. Section 5 contains the results of the experiments. Finally, we draw our conclusions in Section
6.

2 The Finite Element Method

We consider the elliptic partial differential equation

Lu = − ∂

∂x

(

p(x, y)
∂u

∂x

)

− ∂

∂y

(

q(x, y)
∂u

∂y

)

+ r(x, y)u = f(x, y) in Ω (1)

u = gD(x, y) on ∂ΩD (2)

Bu = p(x, y)
∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = gN (x, y) on ∂ΩN (3)

where Ω is a bounded, connected, polygonal, open region in R
2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩

∂ΩN = ∅. Differentiation with respect to s is with respect to a counterclockwise parameterization of the
boundary (x(s), y(s)) with ‖(dx/ds dy/ds)‖ = 1. If c = 0 Equation 3 is the natural boundary condition.
If, in addition, p = q = 1 or ∂ΩN consists of line segments that are parallel to the axes, Equation 3 is
the Neumann boundary condition. We assume the data in Equations 1-3 satisfy the usual ellipticity and
regularity assumptions. In one of the test problems, we extend the equation to a system of two equations
containing a cross derivative term ∂2u/∂x∂y, and in another test problem we include first order derivative
terms.
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As usual, define the space L2 by

L2(Ω) = {v(x, y) :

∫∫

Ω

v2 dx dy < ∞}

with inner product

〈u, v〉2 =

∫∫

Ω

uv dx dy

and norm
||v||22 = 〈v, v〉2.

We denote by Hm(Ω) the usual Sobolov spaces

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ m}

where

Dαv =
∂|α|v

∂α1x∂α2y
, α = (α1, α2), αi ∈ N, |α| = α1 + α2.

The Sobolov spaces have inner products

〈u, v〉Hm(Ω) =

∫∫

Ω

∑

|α|≤m

DαuDαv dx dy

and norms
||v||2Hm(Ω) = 〈v, v〉Hm(Ω).

We will also refer to the seminorm |v|Hm(Ω) where the sum is over |α| = m.
Let Hm

0 (Ω) = {v ∈ Hm(Ω) : v = 0 on ∂ΩD}. Let ũD be a lift function satisfying the Dirichlet boundary
conditions in Equation 2 and define the affine space ũD +H1

0 (Ω) = {ũD +v : v ∈ H1
0 (Ω)}. Define the bilinear

form

B(u, v) =

∫∫

Ω

p
∂u

∂x

∂v

∂x
+ q

∂u

∂y

∂v

∂y
+ ruv dx dy +

∫

∂ΩN

cuv ds

and the linear form

L(v) =

∫∫

Ω

fv dx dy +

∫

∂ΩN

gNv ds

Then the variational form of the problem is to find the unique u ∈ ũD + H1
0 (Ω) that satisfies

B(u, v) = L(v) ∀v ∈ H1
0 (Ω).

The energy norm of v ∈ H1
0 is defined by ||v||2E(Ω) = B(v, v).

The finite element space is defined by partitioning Ω into a grid (or mesh), Ghp, consisting of a set of NT

triangular elements, {Ti}NT

i=1 with Ω̄ = ∪NT
i=1T̄i. If a vertex of a triangle is contained in the interior of an

edge of another triangle, it is called a hanging node. We only consider compatible grids with no hanging
nodes, i.e. T̄i ∩ T̄j , i 6= j, is either empty, a common edge, or a common vertex. The diameter of the element
is denoted hi. With each element we associate an integer degree pi ≥ 1. The finite element space Vhp is
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the space of continuous piecewise polynomial functions on Ω such that over element Ti it is a polynomial
of degree pi. The degree of an edge is determined by applying either a minimum rule or a maximum rule
over Ghp in which the edge is assigned the minimum or maximum of the degrees of the adjacent elements,
respectively.

The finite element solution is the unique function uhp ∈ ũD + Vhp that satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp.

The error is defined by ehp = u − uhp.

The finite element solution is expressed as a linear combination of basis functions {φi}N
i=1 that span

ũD + Vhp,

uhp =

N
∑

i=1

αiφi(x, y)

For high order elements, there are a number of basis sets used in practice. A number of the hp strategies of
Section 4 rely on the basis being a p-hierarchical basis in which the basis functions for a space of degree p
are a subset of the basis functions for a space of degree p + 1. In the results of Section 5 the p-hierarchical
basis of Szabo and Babuška [33], which is based on Legendre polynomials, is used. Regardless of the choice
of basis set, for an element of degree pi with edge degrees pi,j , j = 1, 2, 3, there is one linear basis function
associated with each vertex, pi,j − 1 basis functions (one each of degree 2, 3 . . . pi,j) associated with edge j,
and q − 2 basis functions of degree q for q = 3, 4 . . . pi (for a total of (pi − 1)(pi − 2)/2) whose support is the
interior of the triangle.

The discrete form of the problem is a linear system of algebraic equations

Ax = b (4)

where the matrix A is given by Aij = B(φi, φj) and the right hand side is given by bi = L(φi).
If h and p are uniform over the grid, u ∈ Hm(Ω), and the other usual assumptions are met, then the a

priori error bound is [6, 7]

||ehp||H1(Ω) ≤ C
hµ

pm−1
||u||Hm(Ω) (5)

where µ = min(p, m − 1) and C is a constant that is independent of h, p and u, but depends on m. The
same references show that under certain conditions, such as Laplace’s equation on a domain with reentrant
corners, the exponent on p can be doubled to −2(m − 1), i.e., the p-version of the finite element method
converges twice as fast as the h-version.

With a suitably chosen hp mesh, and other typical assumptions, the error can be shown [14] to converge
exponentially in the number of degrees of freedom,

||ehp||H1(Ω) ≤ C1e
−C2N1/3

(6)

for some C1 and C2 > 0 independent of N .

3 hp-Adaptive Refinement Algorithm

One basic form of an hp-adaptive algorithm is given in Figure 1. If the algorithm is run on a parallel
computer, a load balancing step is performed either before or after the coarsening/refinement part of the
algorithm.

There are a number of approaches to each of the steps of the algorithm. In particular:
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begin with a very coarse grid
form and solve the linear system
repeat

determine which elements to coarsen and whether to coarsen by h or p
coarsen elements
repeat

determine which elements to refine and whether to refine by h or p
refine elements

until some criterion on amount of refinement is met
form and solve the linear system

until some termination criterion is met

Figure 1: Basic form of an hp-adaptive algorithm.

• How is an element h-refined?

• How is an element p-refined?

• What error indicator is used to guide adaptive refinement?

• When is the program terminated?

• How is an element coarsened?

• How do you determine which elements should be coarsened?

• How do you determine which elements should be refined?

• How much refinement should occur before the linear system is formed and solved again?

• Should an element be refined by h or p?

Other considerations, that are beyond the scope of this paper, include how to create the initial grid, and
how to solve the linear system.

Complete coverage of the possible answers to these questions is beyond the scope of this paper. We
will focus on the choices used for the results given in Section 5, and in some cases briefly mention other
possibilities or give a reference, but this is not intended to be exhaustive. Note that some of the hp strategies
in Section 4 require a different choice, or even a modification of the basic algorithm. These exceptions will
be noted in Section 4.

There are several ways to refine triangles [19]. In this paper, the newest node bisection method [20] is
used. Briefly, a parent triangle is h-refined by connecting one of the vertices to the midpoint of the opposite
side to form two new child triangles. The most recently created vertex is chosen as the vertex to use in this
bisection. Triangles are always refined in pairs (except when the edge to be refined is on the boundary) to
maintain compatibility of the grid. This may require first refining a neighbor triangle to create the second
triangle of the pair. The h-refinement level, li, of a triangle Ti is one more than the h-refinement level of
the parent, with level 0 assigned to the triangles of the initial coarse grid. p-refinement is fairly universally
accepted as increasing the degree of the element by one, followed by enforcing either the minimum rule or
maximum rule for the edges. We will use the minimum rule.
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Adaptive refinement is guided by a local a posteriori error indicator computed for each element. There
are several choices of error indicators; see for example [2, 34]. For this paper, the error indicator for element
Ti is given by solving a local Neumann residual problem:

Lei = f − Luhp in Ti (7)

ei = 0 on ∂Ti ∩ ∂ΩD (8)

Bei = gN − Buhp on ∂Ti ∩ ∂ΩN (9)

Bei = −1

2

[

∂uhp

∂n

]

on (∂Ti \ ∂ΩD) \ ∂ΩN (10)

where L, B, f , gN , ∂ΩD, and ∂ΩN are defined in Equations 1-3,
[

∂uhp

∂n

]

is the jump in the outward normal

derivative of uhp across the element boundary, including the coefficients of the natural boundary conditions,
and in Equation 10 B is modified by setting c(x, y) = 0. If the degree of Ti is pi, the approximate solution,
ei,hp of Equations 7-10 is computed using the hierarchical bases of exact degree pi + 1. The error indicator
for element Ti is then given by

ηi = ||ei,hp||E(Ti)

A global energy norm error estimate is given by

η =

(

NT
∑

i=1

η2
i

)1/2

.

One criterion for program termination is that η be smaller than some prescribed error tolerance τ , or,
to base it on the relative error rather than the absolute error, η < τ ||uhp||E(Ω). Other possibilities are
to terminate when some quantity, such as number of elements, number of degrees of freedom, amount of
memory, amount of computation time, etc., is reached, or combinations of criteria. In this paper, the primary
termination criterion is a relative error tolerance, with number of degrees of freedom as a secondary criterion.

Coarsening of elements may be performed to reverse bad decisions about what refinements to perform,
or to allow the grid to follow the behavior of the solution in a time dependent problem. Elements are
h-coarsened by reversing the h-refinement, i.e., joining the child triangles back together to form the parent
triangle. p-coarsening means decreasing the degree of the element by one, and enforcing the minimum or
maximum rule for the edges. For steady state problems, one choice of which elements to coarsen is the
empty set, i.e., don’t perform coarsening. Other than that choice, the most common approach is to coarsen
elements that have a sufficiently small error indicator, subject to any requirements for compatibility of the
grid. In the numerical results of this paper, an element is coarsened if ηi < maxi ηi/100. The value 100 is
arbitrary.

The elements that are refined are usually those that have a sufficiently large error indicator. Perhaps the
most common approach is to refine those with an error indicator that is larger than some fraction, typically
between 1/4 and 1/2, of the maximum error indicator. Another approach, which is used in this paper, is
to refine those with ηi > τ ||uhp||E(Ω)/

√
NT . Note that if every element had ηi = τ ||uhp||E(Ω)/

√
NT then

η/||uhp||E(Ω) = τ , hence the
√

NT factor.
There are many ways to determine how much refinement to do before forming and solving the linear

system. One could refine until the global error estimate has been reduced by some factor, such as 1/2
or 1/4, or one could refine until some quantity, e.g. number of elements or degrees of freedom, has been
increased by some factor, such as 2 or 4. Both of these require that reasonable error indicators can be
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computed on the child elements. The approach taken in this paper is to perform the refine loop once. The
downside of this approach is that it requires more passes through the outer loop, which means forming
and solving the linear system more times. But for the purpose of this paper, which is to determine the
convergence rate of various hp-adaptive strategies with respect to number of degrees of freedom, the excess
computation time is not important.

The method for determining whether an element should be refined by h or by p is called an hp-adaptive
strategy. Several strategies have been proposed over the years. Many of them will be described in the next
section.

4 The hp-Adaptive Strategies

In this section, the hp-adaptive strategies that have been proposed in the literature are presented. In some
cases, these strategies were developed in the context of 1D problems, rectangular elements, or other settings
that are not fully compatible with the context of this paper. In those cases, the strategy is appropriately
modified for 2D elliptic PDEs and newest node bisection of triangles.

4.1 Use of a priori Knowledge of Solution Regularity

It is well known that for smooth solutions p-refinement will produce an exponential rate of convergence, but
near singularities p-refinement is less effective than h-refinement. This is a consequence of the a priori error
bound in Equation 5. For this reason, many of the hp strategies use h-refinement in areas where the solution
is irregular (i.e., locally fails to be in Hm for some finite m, also called nonsmooth) or nearly irregular,
and p-refinement elsewhere. The simplest strategy is to use any a priori knowledge about irregularities. For
example, it is known that linear elliptic PDEs with smooth coefficients and piecewise analytic boundary data
will have point singularities only near reentrant corners of the boundary and where boundary conditions
change [4]. Another example would be a situation where one knows the approximate location of a shock in
the interior of the domain.

An hp-adaptive strategy of this type was presented by Ainsworth and Senior [4]. In this approach they
simply flag vertices in the initial mesh as being possible trouble spots. During refinement an element is
refined by h if it contains a vertex that is so flagged, and by p otherwise. We will refer to this strategy by
the name APRIORI.

We extend this strategy to allow more general regions of irregularity, and to provide the strength of the
irregularity. The user provides a function that, given an element Ti as input, returns a regularity value for
that element. For true singularities, it would ideally return the maximum value of m such that u ∈ Hm(Ti).
But it can also indicate that a triangle intersects an area that is considered to be nearly irregular, like a
boundary layer or sharp wave front. Based on the definition of µ in Equation 5, if the current degree of the
triangle is pi and the returned regularity value is mi, we do p-refinement if pi ≤ mi − 1 and h-refinement
otherwise. The same approach is used in all the following strategies that estimate the local regularity mi.

4.2 Estimate Regularity Using Smaller p Estimates

Süli, Houston and Schwab [32] presented a strategy based on Equation 5 and an estimate of the convergence
rate in p using error estimates based on pi − 2 and pi − 1. We will refer to this strategy as PRIOR2P. This
requires pi ≥ 3, so we always use p-refinement in elements of degree 1 and 2.
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Suppose the error estimate in Equation 5 holds on individual elements and that the inequality is an
approximate equality. Let ηi,pi−2 and ηi,pi−1 be a posteriori error estimates for partial approximate solutions
over triangle Ti using the bases up to degree pi − 2 and pi − 1, respectively. Then

ηi,pi−1

ηi,pi−2
≈
(

pi − 1

pi − 2

)−(mi−1)

and thus the regularity is estimated by

mi ≈ 1 − log(ηi,pi−1/ηi,pi−2)

log((pi − 1)/(pi − 2))

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.
Thanks to the p-hierarchical basis, the computation of the error estimates is very inexpensive. For 1 ≤

j < pi,

uhp|Ti
=

∑

supp(φk)∩Ti 6=∅

αkφk =
∑

supp(φk)∩Ti 6=∅
deg(φk)≤pi−j

αkφk +
∑

supp(φk)∩Ti 6=∅
deg(φk)>pi−j

αkφk

where supp(φk) is the support of φk and deg(φk) is the degree of φk. The last sum is the amount by which
the solution changed when the degree of the element was increased from pi−j to pi, and provides an estimate
of the error in the partial approximate solution of degree pi − j given in the next to last sum. (Indeed, the
local Neumann error estimator of Equations 7-10 approximates this quantity for the increase from degree pi

to pi + 1.) Thus the error estimates are

ηi,pi−j = ||
∑

supp(φk)∩Ti 6=∅
deg(φk)>pi−j

αkφk||H1(Ti)

which only involves computing the norm of known quantities.

4.3 Type parameter

Gui and Babuška [13] presented an hp-adaptive strategy using what they call a type parameter, γ. This
strategy is also used by Adjerid, Aiffa and Flaherty [1]. We will refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi and ηi,pi−1, define

R(Ti) =

{

ηi,pi

ηi,pi−1
ηi,pi−1 6= 0

0 ηi,pi−1 = 0

By convention, ηi,0 = 0, which forces p-refinement if pi = 1.
R is used to assess the perceived solution smoothness. Given the type parameter, 0 ≤ γ < ∞, element

Ti is said to be of h-type if R(Ti) > γ, and of p-type if R(Ti) ≤ γ. If element Ti is selected for refinement,
then refine it by h-refinement if it is of h-type and p-refinement if it is of p-type. Note that γ = 0 gives pure
h-refinement and γ = ∞ gives pure p-refinement.

For the error estimates, we use the local Neumann error estimate of Equations 7-10 for ηi,pi
, and the

ηi,pi−1 of Section 4.2. For the results of Section 5, we use γ = 0.3 if the solution has a singularity, and
γ = 0.6 otherwise. 1

1The value for this parameter, and the parameters of the other strategies, was determined by a preliminary experiment to
determine a single value (or possibly two values dependent on singularness) that generally works best, using a subset of the
test problems.
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4.4 Estimate Regularity Using Larger p Estimates

Another approach that estimates the regularity is given by Ainsworth and Senior [3]. This strategy uses
three error estimates based on spaces of degree pi + 1, pi + 2 and pi + 3, so we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the local Neumann residual error
estimate given by Equations 7-10 in which Equation 10 is replaced by

Bei = gi on (∂Ti \ ∂ΩD) \ ∂ΩN

where gi is an approximation of Bu that satisfies an equilibrium condition. This is the equilibrated residual
error estimator in [2].

The local problem is solved on element Ti three times using the spaces of degree pi + q, q = 1, 2, 3, to
obtain error estimates ei,q. In contrast to the local Neumann residual error estimate, the whole space over
Ti is used, not just the p-hierarchical bases of degree greater than pi. These approximations to the error
converge to the true solution of the residual problem at the same rate the approximate solution converges
to the true solution of Equations 1-3, i.e.

||ei − ei,q||E(Ti) ≈ C(pi + q)−α

where C and α are positive constants that are independent of q but depend on Ti. Using the Galerkin
orthogonality

||ei − ei,q||2E(Ti)
= ||ei||2E(Ti)

− ||ei,q||2E(Ti)

this can be rewritten
||ei||2E(Ti)

− ||ei,q||2E(Ti)
≈ C2(pi + q)−2α.

We can compute ||ei,q||2E(Ti)
and pi + q for q = 1, 2, 3 from the approximate solutions, so the three constants

||ei||E(Ti), C and α can be approximated by fitting the data. Then, using the a priori error estimate in
Equation 5, the approximation of the local regularity is mi = 1 + α. Use p-refinement if pi ≤ mi − 1 and
h-refinement otherwise.

4.5 Texas 3 Step

The Texas 3 Step strategy [8, 23, 24] first performs h-refinement to get an intermediate grid, and follows
that with p-refinement to reduce the error to some given error tolerance, τ . We will refer to this strategy as
T3S. Note that for this strategy the basic form of the hp-adaptive algorithm is different than that in Figure
1.

The first step is to create an initial mesh with uniform p and nearly uniform h such that the solution is in
the asymptotic range of convergence in h. This may be accomplished by performing uniform h-refinements
of some very coarse initial mesh until the asymptotic range is reached. The resulting grid has N0 elements
with sizes hi, degrees pi and a posteriori error estimates ηi, and approximate solution u0. The results in
Section 5 begin with p = 1 and assume the initial grid is sufficiently fine in h.

The second step is to perform adaptive h-refinement to reach an intermediate error tolerance γτ where γ
is a given parameter. In the references, γ is in the range 5 − 10, usually 6 in the numerical results. This
intermediate grid is created by computing a desired number of children for each element Ti by the formula

ni =

(

Λ2
i NIh

2µi

i

p
2(mi−1)
i η2

I

)
1

βµi+1

(11)
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where NI =
∑

ni is the number of elements in the intermediate grid, mi is the local regularity of the solution,
µi = min(pi,mi − 1), ηI = γτ ||u0||E , β = 1 for 2D problems, η2

0 =
∑

η2
i and

Λi =
ηiΛ

η0

where

Λ =
η0p

mi−1
i

hµi

i

See any of the above references for the derivation of this formula. It is based on the a priori error estimate
in Equation 5. Inserting the expression for Λi into Equation 11 and using β = 1 we arrive at

ni =

(

η2
i NI

η2
I

)

1
µi+1

NI is not known at this point, since it is the sum of the ni. Successive iterations are used to solve for ni and
NI simultaneously. We use 5 iterations, which preliminary experiments showed to be sufficient (convergence
was usually achieved in 3 or 4 iterations). Once the ni have been determined, we perform ⌊0.5 + log2 ni⌋
uniform h-refinements (bisections) of each element Ti to generate approximately ni children, and solve the
discrete problem on the intermediate grid.

The third step is to perform adaptive p-refinement to reduce the error to the desired tolerance τ . The
new degree for each element is given by

p̂i = pi

(

ηI,i

√
NI

ηT

)

1
mi−1

where ηI,i is the a posteriori error estimate for element Ti of the intermediate grid and ηT = τ ||u0||E . Again,
the formula is a simple reduction of the equations derived in the references. p-refinement is performed to
increase the degree of each element Ti to p̂i, and the discrete problem is solved on the final grid.

In the results of Section 5, if ni < 2 or p̂i < pi then refinement is not performed. Also, to avoid excessive
refinement, the number of h-refinements done to any element in step 2 and number of p-refinements in step
3 is limited to 3.

The strategy of performing all the h-refinement in one step and all the p-refinement in one step is adequate
for low accuracy solutions (e.g. 1%), but is not likely to work well with high accuracy solution (e.g. 10−8

relative error) [25]. We extend the Texas 3 Step strategy to high accuracy by cycling through steps 2 and 3
until the final tolerance τfinal is met. τ in the algorithm above is now the factor by which one cycle of steps
2 and 3 should reduce the error. Toward this end, before step 2 the error estimate η0 is computed for the
current grid. The final (for this cycle) and intermediate targets are now given by ηT = τη0 and ηI = γηT .
In the results of Section 5 we use τ = 0.1 and γ = 6. For the local regularity mi we use the same routine as
the APRIORI strategy (Section 4.1).

4.6 Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S that is more like the algorithm
of Figure 1. The difference from T3S is that instead of predicting the number of refinements needed to reduce
the error to the next target, the usual adaptive refinement is performed until the target is reached. Thus in
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step 2 all elements with an error indicator larger than ηI/
√

N0 are h-refined. The discrete problem is solved
and the new error estimate compared to ηI . This is repeated until the error estimate is smaller than ηI .
Step 3 is similar except adaptive p-refinement is performed and the target is ηT . Steps 2 and 3 are repeated
until the final error tolerance is achieved.

4.7 Nonlinear Programming

Patra and Gupta [26] proposed a strategy for hp mesh design using nonlinear programming. We refer to
this strategy as NLP. They presented it in the context of quadrilateral elements with one level of hanging
nodes, i.e., an element edge is allowed to have at most one hanging node. Here it is modified slightly for
newest node bisection of triangles with no hanging nodes. This is another approach that does not strictly
follow the algorithm in Figure 1.

Given a current grid with triangles {Ti}, degrees {pi}, h-refinement levels {li}, error estimates {ηi}, and
element diameters

hi =

(

1√
2

)li

H0,i

where H0,i is the diameter of the element in the initial grid that contains Ti, the object is to determine new

mesh parameters {p̂i} and {l̂i}, i = 1..NT , by solving an optimization problem. The new grid is obtained

by refining Ti l̂i − li times (or coarsening if l̂i < li) and assigning degree p̂i to the 2l̂i−li children. The size
of the children of Ti is

ĥi =

(

1√
2

)l̂i

H0,i.

There are two forms of the optimization problem, which can be informally stated as 1) minimize the
number of degrees of freedom (or some other measure of grid size) subject to the error being less than a
given tolerance and other constraints, and 2) minimize the error subject to the number of degrees of freedom
being less than a given limit and other constraints. We will only consider the first form here; the second
form simply reverses the objective function and constraint.

Computationally, the square of the error is approximated by
∑NT

i=0 η̂2
i where η̂i, to be defined later, is an

estimate of the error in the refined grid over the region covered by Ti. The number of degrees of freedom
associated with a triangle of degree p is taken to be 3/6 (one for each vertex with an average of six triangles
sharing a vertex) plus 3(p−1)/2 (p−1 for each edge with two triangles sharing an edge) plus (p−1)(p−2)/2

(for the interior), which is p2/2. Thus the number of degrees of freedom over the children of Ti is 2l̂i−li p̂2
i /2.
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We can now formally state the optimization problem as

minimize

{l̂i}, {p̂i}
NT
∑

i=1

2l̂i−li
p̂2

i

2
(12)

s.t.

NT
∑

i=1

η̂2
i < τ̂2 (13)

l̂j − 1 ≤ l̂i ≤ l̂j + 1 ∀j such that Tj shares an edge with Ti (14)

0 ≤ l̂i ≤ lmax (15)

1 ≤ p̂i ≤ pmax (16)

li − ∆ldec ≤ l̂i ≤ li + ∆linc (17)

pi − ∆pdec ≤ p̂i ≤ pi + ∆pinc (18)

where τ̂ is the error tolerance for this refinement phase. We use τ̂ = η/4 where η is the global error estimate
on the current grid. The divisor 4 is arbitrary and could be replaced by some other value. In practice,
Equation 13 is divided through by τ2 so that the numbers are O(1). Equation 14 is a necessary condition
for compatibility of the grid (in [26] it enforces one level of hanging nodes). It is not a sufficient condition,
however any violations of compatibility while this condition is met are cases where only one triangle of a
compatibly divisible pair was refined, and it is a slight adjustment to the optimal solution to also refine the
other one to maintain compatibility. Equation 15 insures that coarsening does not go beyond the initial grid,
and that the refinement level of an element does not exceed a prescribed limit lmax. Similarly, Equation 16
insures that element degrees do not go below one or exceed a prescribed limit pmax. Also, because many
quantities are only approximate, it is wise to limit the amount of change that occurs to any element during
one phase of refinement. Equations 17 and 18 restrict the amount of change that can occur at one time, i.e.,
restrict the amount of decrease in l and p to prescribed limits ∆ldec and ∆pdec, and the amount of increase
to ∆linc and ∆pinc. In the results in Section 5 we used ∆ldec = 1, ∆pdec = 1, ∆linc = 3, and ∆pinc = 1.

Since the l̂i and p̂i are naturally integers, the optimization problem is a mixed integer nonlinear program,
which is known to be NP-hard. To make the problem tractable, the integer requirement is dropped to give
a nonlinear program which can be solved by one of several software packages. For the results in Section 5,
we used the program ALGENCAN 2 Version 2.2.1 [5, 9]. Following solution of the nonlinear program, the

l̂i and p̂i are rounded to the nearest integer.

It remains to define η̂i, the estimate of the error in the refined grid over the region covered by Ti. Assuming
approximate equality in the a priori error estimate of Equation 5, we have

ηi ≈ C
hµi

i

pmi−1
i

||u||Hm(Ti)

and

η̂i ≈ C
ĥµi

i

p̂mi−1
i

||u||Hm(Ti)

2The mention of specific products, trademarks, or brand names is for purposes of identification only. Such mention is not to
be interpreted in any way as an endorsement or certification of such products or brands by the National Institute of Standards
and Technology. All trademarks mentioned herein belong to their respective owners.
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where mi is the local regularity over Ti and µi = min(pi,mi − 1). Combining these leads to

η̂i ≈
ĥµi

i

p̂mi−1
i

pmi−1
i

hµi

i

ηi =

(

1√
2

)µi(l̂i−li)(pi

p̂i

)mi−1

ηi

and thus the constraint in Equation 13 is

NT
∑

i=1

(

1

2

)min(pi,mi−1)(l̂i−li)(pi

p̂i

)2(mi−1)

η2
i < τ̂2

in which the only remaining quantity to be determined is mi. Patra and Gupta suggest estimating mi by
using the observed convergence rate from two grids, with a formula very similar to that used in the PRIOR2P
strategy of Section 4.2, so we use the same estimate as PRIOR2P.

4.8 Another Optimization Strategy

Another strategy based on the formulation and solution of an optimization problem is given in Novotny
et al. [22]. However, it turns out that 1) the optimization does not work near singularities, so a priori

knowledge of singularities must be used to force h-refinement near singularities, and 2) for the finite element
method and class of problems considered in this paper, the strategy always chooses p-refinement except for
extremely large elements. Thus, this strategy is (nearly) identical to the APRIORI strategy, and will not be
considered further in this paper.

4.9 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [17] proposed a strategy based on a prediction of what the error should be if the
solution is smooth. We call this strategy SMOOTH PRED.

When refining element Ti, assume the solution is locally smooth and that the optimal convergence rate is
obtained. If h-refinement is performed and the degree of Ti is pi, then the expected error on the two children
of Ti is reduced by a factor of

√
2

pi
as indicated by the a priori error estimate of Equation 5. Thus if ηi

is the error estimate for Ti, predict the error estimate of the children to be γhηi/
√

2
pi

where γh is a user
specified parameter. If p-refinement is performed on Ti, exponential convergence is expected, so the error
should be reduced by some constant factor γp ∈ (0, 1), i.e., the predicted error estimate is γpηi. When the
actual error estimate of a child becomes available, it is compared to the predicted error estimate. If the
error estimate is less than or equal to the predicted error estimate, then p-refinement is indicated for the
child. Otherwise, h-refinement is indicated since presumably the assumption of smoothness was wrong. For
the results in Section 5 we use γh = 2 and γp =

√
0.4.

4.10 Larger of h-Based and p-Based Error Indicators

In 1D, Schmidt and Siebert [28] proposed a strategy that uses two a posteriori error estimates to predict
whether h-refinement or p-refinement will reduce the error more. We extend this strategy to bisected triangles
and refer to it as H&P ERREST.

The local Neumann residual error estimate given by Equations 7-10 is actually an estimate of how much
the norm of the solution will change if Ti is p-refined. This is because the solution of the local problem is
estimated using the p-hierarchical bases that would be added if Ti is p-refined, so it is an estimate of the
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actual change that would occur. Using the fact that the current space is a subspace of the refined space and
Galerkin orthogonality, it can be shown that

||u − ûhp||2 = ||u − uhp||2 − ||ûhp − uhp||2

where ûhp is the solution in the refined space. Thus the change in the solution indicates how much the error
will be reduced.

A second error estimate for Ti can be computed by solving a local Dirichlet problem

Lei = f − Luhp in Ti ∪ Tmate
i (19)

ei = gD − uhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩD (20)

Bei = gN − Buhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩN (21)

ei = 0 on
(

∂(Ti ∪ Tmate
i ) \ ∂ΩD

)

\ ∂ΩN (22)

where Tmate
i is the element that is refined along with Ti in the newest node bisection method [20]. The

solution to this problem is approximated by an h-refinement of the two elements using only the new basis
functions. The error estimate obtained by taking the norm of this approximate solution is actually an
estimate of how much the solution will change, or the error will be reduced, if h-refinement is performed.

Schmidt and Siebert divide the two error estimates by the associated increase in the number of degrees
of freedom to obtain an approximate error reduction per degree of freedom. In addition or instead, one
of the error estimates can be multiplied by a user specified constant to bias the refinement toward h- or
p-refinement. In the results of Section 5 the p-based error estimate is multiplied by 2.

The type of refinement that is used is the one that corresponds to the larger of the two modified error
estimates.

4.11 Legendre coefficient strategies

There are three hp-adaptive strategies that are based on the coefficients in an expansion of the solution
in Legendre polynomials. In one dimension, the approximate solution in element Ti with degree pi can be
written

ui(x) =

pi
∑

j=0

ajPj(x)

where Pj is the jth degree Legendre polynomial scaled to the interval of element Ti.
Mavriplis [16] estimates the decay rate of the coefficients by a least squares fit of the the last four coefficients

aj to Ce−σj . Elements are refined by p-refinement where σ > 1 and by h-refinement where σ ≤ 1. We refer
to this strategy as COEF DECAY. When four coefficients are not available, we fit to whatever is available.
If only one coefficient is available, we use p-refinement.

Houston et al. [15] present the other two approaches which use the Legendre coefficients to estimate the
regularity of the solution. One approach estimates the regularity using the root test yielding

mi =
log
(

2pi+1
2a2

pi

)

2 log pi
.

If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi − 1 and h-refinement if pi > mi − 1. We
refer to this strategy as COEF ROOT.
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They also present a second way of estimating the regularity from the Legendre coefficients using the ratio
test. However, they determined the ratio test is inferior to the root test, so it will not be considered further
in this paper.

Both Mavriplis and Houston et al. presented the strategies in the context of one dimension and use the
Legendre polynomials as the local basis so the coefficients are readily available. In [15] it is extended to 2D
for rectangular elements with a tensor product of Legendre polynomials, and the regularity is estimated in
each dimension separately, so the coefficients are still readily available. Eibner and Melenk [12] extended the
COEF DECAY strategy to quadrisected triangles with an orthogonal polynomial basis. In this study we are
using triangular elements which have a basis that is based on Legendre polynomials [33]. In this basis there
are 3 + max(j − 2, 0) basis functions of exact degree j over an element, so we don’t have a single Legendre
polynomial coefficient to use. Instead, for the coefficients aj we use the ℓ1 norm of the coefficients of the
degree j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 6=∅

|αk|

4.12 Reference Solution Strategies

Demkowicz and his collaborators developed an hp-adaptive strategy over a number of years, presented in
several papers and books, e.g. [10, 11, 27, 31]. In its full glory, the strategy is quite complicated. Here
we present only the basic ideas of the algorithm and how we have adapted it for bisected triangles (it is
usually presented in the context of rectangular elements with some reference to quadrisection triangles), and
refer to the references for further details. We refer to this strategy as REFSOLN EDGE because it relies on
computing a reference solution and bases the refinement decisions on edge refinements. Note that for this
strategy the basic form of the hp-adaptive algorithm is different than that in Figure 1.

The algorithm is first presented for 1D elliptic problems. Given the current existing (coarse) mesh,
Gh,p := Ghp, and current solution, uh,p := uhp, a uniform refinement in both h and p is performed to
obtain a fine mesh Gh/2,p+1. The equation is solved on the fine mesh to obtain a reference solution uh/2,p+1.
The norm of the difference between the current solution and reference solution is used as the global error
estimate, i.e.,

η = ||uh/2,p+1 − uh,p||H1

The next step is to determine the optimal refinement of each element. This is done by considering a
p-refinement and all possible (bisection) h-refinements (i.e., all possible assignments of p to the two children
of an h-refinement) that give the same increase in the number of degrees of freedom as the p-refinement.
In 1D, this means that the sum of the degrees of the two children must be p + 1, resulting in a total of p
h-refinements and one p-refinement to be examined. For each possibility, the error decrease rate is computed
as

|uh/2,p+1 − Πhp,iuh/2,p+1|2H1(Ti)
− |uh/2,p+1 − Πnew,iuh/2,p+1|2H1(Ti)

Nnew − Nhp

where Πhp,iuh/2,p+1 is the projection-based interpolant of the reference solution in element Ti, computed
by solving a local Dirichlet problem, and Πnew,i is the projection onto the resulting elements from any one
of the candidate refinements. The refinement with the largest error decrease rate is selected as the optimal
refinement. In the case of h-refinement, the degrees may be increased further by a process known as following
the biggest subelement error refinement path, which is also used to determine the guaranteed element rate;
see [10] for details.
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Elements that have a guaranteed rate larger than 1/3 the maximum guaranteed rate are selected for
refinement; the factor 1/3 is arbitrary.

The 2D algorithm also begins by computing a reference solution on the globally hp-refined grid Gh/2,p+1.

(For bisected triangles, we should use the subscript h/
√

2, p + 1 for the fine grid and solution, but for
simplicity we will use the original notation.) Then for each edge in the grid, the choice between p- and
h-refinement, the determination of the guaranteed edge rate, and the selection of edges to refine are done
exactly as in 1D, except that a weighted H1 seminorm is used instead of the more natural H1/2 seminorm
which is difficult to work with. In the case of bisected triangles, we only consider edges that would be refined
by the bisection of an existing triangle.

The h-refinement of edges determines the h-refinement of elements. It remains to determine the degree of
each element. As a starting point, element degrees are assigned to satisfy the minimum rule for edge degrees,
using the edge degrees determined in the previous step. Then the biggest subelement error refinement path
is followed to determine the guaranteed element rate and assignment of element degrees. We again refer
to [10] for details. Finally, the minimum rule for edge degrees is enforced by increasing edge degrees as
necessary.

A related, but simpler, approach was developed by Šoĺın et al. [30]. We refer to this strategy as REF-
SOLN ELEM since it also begins by computing a reference solution, uh/2,p+1, on Gh/2,p+1, but bases the
refinement on elements. The basic form of the hp-adaptive algorithm is different than that in Figure 1 for
this strategy, also.

The local error estimate is given by the norm of the difference between the reference solution and the
current solution,

ηi = ||uh/2,p+1 − uh,p||H1(Ti)

and the elements with the largest error estimates are refined. If Ti is selected for refinement, let p0 =
⌊(pi + 1)/2⌋ and consider the following options:

• p-refine Ti to degree pi + 1,

• p-refine Ti to degree pi + 2,

• h-refine Ti and consider all combinations of degrees p0, p0 + 1 and p0 + 2 in the children.

In all cases the minimum rule is used to determine edge degrees. In [30], quadrisection of triangles is used
leading to 83 options to consider. With bisection of triangles, there are only 11 options. Also, since the object
of dividing by two to get p0 is to make the increase in degrees of freedom from h-refinement comparable to
that of p-refinement, we use p0 = ⌊(pi +1)/

√
2⌋ since there are only two children instead of four. Solin et al.

allow an unlimited number of hanging nodes, so they have no issue of how to assign the degrees of children
that were created to maintain compatibility or one level of hanging nodes. For the newest node bisection of
triangles algorithm, we assign ⌊(p + 1)/

√
2⌋ to both children of a triangle of degree p that is refined only for

the sake of compatibility.

For each candidate, the standard H1 projection Π
H1(Ti)
candidate of uh/2,p+1 onto the corresponding space is

performed, and the projection error in the H1 norm, ζcandidate, is computed,

ζcandidate = ||uh/2,p+1 − Π
H1(Ti)
candidateuh/2,p+1||H1(Ti)

as well as the projection error of the projection onto Ti, ζi.
The selection of which candidate to use is not simply the candidate with the smallest projection error

[29]. Let Ni be the number of degrees of freedom in the space corresponding to Ti, and Ncandidate the
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number of degrees of freedom in the space corresponding to a candidate. For simplicity, when computing Ni

and Ncandidate we apply the minimum rule for edge degree ignoring the degrees of the neighbors of Ti, e.g.
Ni = (pi + 1)(pi + 2)/2 regardless of what the actual edge degrees of Ti are.

Candidates with ζcandidate > ζi are discarded. We also discard any of the h-refined candidates for which
the degrees are both greater than pi since the reference solution is (locally) in that space. Let n be the
number of remaining candidates. Compute the average and standard deviation of the base 10 logarithms of
the ζ’s

ζ̄ =
1

n

∑

candidates

log ζcandidate

σ =

√

1

n

∑

candidates

(log ζcandidate)2 − ζ̄2

Finally, to determine which candidate to use, select an above-average candidate with the steepest error
decrease, i.e., from among the candidates with log ζcandidate < ζ̄+σ and Ncandidate > Ni, select the candidate
that maximizes

log ζi − log ζcandidate

Ncandidate − Ni
(23)

Following the refinement that is indicated by the selected candidate, the minimum rule for edge degrees is
applied.

This algorithm can be modified slightly to bias the refinement towards or away from p refinement to
improve the performance. Given a parameter pbias, multiply the value from Equation 23 by it for all the
p-refinement candidates. pbias > 1 will bias the refinement toward doing p-refinement, and pbias < 1 will bias
the refinement toward doing h-refinement. For the results in Section 5 we use pbias = 2 for most problems,
and pbias = 4 for the analytic, mild wave front and both peak problems, which are the easiest problems.

5 Numerical Results

This section contains the results of a numerical experiment to compare the hp-adaptive strategies’ perfor-
mance on a suite of 21 test problems with various difficulties that adaptive refinement should locate. The
primary criteria for comparing the strategies is the convergence of the relative error in the energy norm as a
function of the number of degrees of freedom, N . The results for each problem are given in Sections 5.1-5.21,
and summary results for comparison of the strategies are given in Section 5.23. We also give some indication
of the relative amount of time required to obtain the solution in Section 5.22.

The full details of the test problems can be found in a separate report [21]. Here we just give a brief
description of each problem and an image of the solution, both as a color map and as a surface in perspective.
Recall that Poisson’s equation is uxx+uyy = f(x, y) and Laplace’s equation is Poisson’s equation with f = 0.

Each problem is solved with each hp strategy using the hp-adaptive algorithm of Section 3, except for
those strategies that dictate using a variation on that algorithm, as indicated in Section 4. To examine
the convergence of the error as a function of N , each problem is solved using each strategy several times
with different values of the termination tolerance τ . The relative energy norm of the error and N are
recorded at the end of each run to give a set of points for the convergence data. In most cases we used
τ = 0.1, 0.05, 0.02, 0.01, 0.005 . . . 2x10−8, 10−8, although some of the more difficult problems required
ending the sequence earlier.
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Figure 2: The initial grid for problems on square domains.

The initial grid for problems on a square domain is shown in Figure 2. The initial grid for the reentrant
corner problems is obtained by removing the unneeded elements from the grid in Figure 2. The initial grid
for the battery problem is shown in Section 5.11.

In the following subsections for each problem, we present the following results of the computations.
We begin with a sample grid for each strategy, to show the wide variation in the different strategies’ choice

between h and p refinement. In all of the grid images, the color indicates the degree of the polynomial over
each element. To obtain the grid, we pick one particular value of the termination relative error tolerance τ
and run each strategy to that tolerance. In cases where there is strong h-refinement in a small area we also
zoom in on that area to show the detail at the fine level.

Second we present a plot of N vs. the error on a log-log scale. These graphs have a curvature indicating the
exponential rate of convergence. The black circles and connecting lines show the convergence data obtained
by solving the problem with a sequence of termination tolerances. Points that were obvious outliers were
omitted. The red and green curves are exponential least squares fits to the data. According to Equation 6

the error should converge like AeBN1/3

. The red curve is a least squares fit to this form. As will be seen,
this fit is not always close to the data. Often the data exhibit exponential convergence, but with a different

exponent on N than 1/3. The green curve is a least squares fit to the form AeBNC

. This 3-parameter least
squares fit will be the primary means of comparing the performance of the strategies.

Following the individual strategy convergence plots is a composite plot containing the 3-parameter least
squares fit curves of all strategies on a single graph.

Some papers on hp-adaptive refinement present the convergence plots using a cube root of N vs. logarithm

of error scale. This is because, if the error converges like AeBN1/3

, then the convergence plot will be a straight
line using this scale. To illustrate this, we present the cube root vs. log plots for one problem, the L-shaped
domain problem (Section 5.4), along with the 2-parameter least squares fit.

The parameters obtained by the 3-parameter and 2-parameter least squares fits are given in tables. In
the 3-parameter fit, C (the power on N , theoretically 1/3) indicates the curvature of the curve on a log-log
plot. Very small values indicate the exponential nature of the convergence is weak. Larger values indicate a
larger curvature, which asymptotically gives faster convergence rates. In the 2-parameter fit, B is the slope
of the line on the cube root vs. log convergence plot. Strategies with smaller values of B (larger magnitude,
since B is negative) will have steeper slopes, and asymptotically be the better strategies.
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Figure 3: Computation of the factor by which N for a particular strategy is larger than N for the best
strategy. In this illustration, for an accuracy of 10−6 the factor for ALTERNATE is 53730/7787 ≈ 6.90.

The performance of the strategies are compared on each problem at two accuracy requirements. For low
accuracy, which is typical in engineering applications, we use 10−2, or 1% relative error, for most problems.
For high accuracy, which is of interest mathematically and useful in some scientific applications, we use 10−6

for most problems.

To compare the strategies, consider the 3-parameter least squares fit. For each strategy, compute the
value of N that gives the desired accuracy according to the formula for the 3-parameter least squares fit,
as illustrated in Figure 3. Let Nbest be the minimum such value over all the strategies. For each strategy
compute the factor by which N is larger than the best strategy, Nstrategy/Nbest. For example, in Figure 3
the factor for ALTERNATE is 53730/7787 ≈ 6.90. The final tables of each subsection contain these factors
at low and high accuracy, with the accuracy requirement given in the caption. The strategies are ordered
by increasing value of the factor, implicitly giving the rank (first, second, etc.) of each strategy.

These computations were performed using the adaptive finite element code PHAML Version 1.8.1 [18]
on a single processor. During the period of this investigation there were changes to the available hardware
and software, but we do not believe any of these changes would effect the outcome of these computations,
except in Section 5.22 where a consistent computational environment is used. The computers were 32-bit
and 64-bit x86-class computers operating under CentOS 5.x distributions of Linux. PHAML was compiled
with the Intel Fortran compiler.
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Figure 4: The solution of the analytic problem.

5.1 Analytic Solution

The analytic problem in [21] is Poisson’s equation on the unit square with Dirichlet boundary conditions.
The solution is the polynomial

24pxp(1 − x)pyp(1 − y)p

with p = 10. 24p is a normalization factor so that the L∞ norm is 1.0. The purpose of this test problem
is to see how the methods perform on a smooth, well-behaved problem that does not really need adaptive
refinement at all. For the grid images we used τ = 10−4. For the APRIORI strategy, we choose to always
refine by p, i.e., it is just p-adaptive refinement.
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Figure 5: Example grid for the ALTERNATE strat-
egy with the analytic problem.

Figure 6: Example grid for the APRIORI strategy
with the analytic problem.

Figure 7: Example grid for the COEF DECAY strat-
egy with the analytic problem.

Figure 8: Example grid for the COEF ROOT strat-
egy with the analytic problem.

Figure 9: Example grid for the H&P ERREST strat-
egy with the analytic problem.

Figure 10: Example grid for the NEXT3P strategy
with the analytic problem.
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Figure 11: Example grid for the NLP strategy with
the analytic problem.

Figure 12: Example grid for the PRIOR2P strategy
with the analytic problem.

Figure 13: Example grid for the REFSOLN EDGE
strategy with the analytic problem.

Figure 14: Example grid for the REFSOLN ELEM
strategy with the analytic problem.

Figure 15: Example grid for the SMOOTH PRED
strategy with the analytic problem.

Figure 16: Example grid for the T3S strategy with
the analytic problem.
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Figure 17: Example grid for the TYPEPARAM strat-
egy with the analytic problem.

Figure 18: Log-Log plot of the convergence of the
ALTERNATE strategy with the analytic problem.

Figure 19: Log-Log plot of the convergence of the
APRIORI strategy with the analytic problem.

Figure 20: Log-Log plot of the convergence of the
COEF DECAY strategy with the analytic problem.
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Figure 21: Log-Log plot of the convergence of the
COEF ROOT strategy with the analytic problem.

Figure 22: Log-Log plot of the convergence of the
H&P ERREST strategy with the analytic problem.

Figure 23: Log-Log plot of the convergence of the
NEXT3P strategy with the analytic problem.

Figure 24: Log-Log plot of the convergence of the
NLP strategy with the analytic problem.
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Figure 25: Log-Log plot of the convergence of the
PRIOR2P strategy with the analytic problem.

Figure 26: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the analytic prob-
lem.

Figure 27: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the analytic prob-
lem.

Figure 28: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the analytic prob-
lem.
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Figure 29: Log-Log plot of the convergence of the
T3S strategy with the analytic problem.

Figure 30: Log-Log plot of the convergence of the
TYPEPARAM strategy with the analytic problem.
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Figure 31: Log-Log plot of the convergence of all strategies with the analytic problem.
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strategy A B C
ALTERNATE 139.23 -2.18 0.21
APRIORI 18.38 -0.64 0.38
COEF DECAY 2.48x108 -12.68 0.098
COEF ROOT 501.62 -2.81 0.20
H&P ERREST 2.18x1010 -17.82 0.070
NEXT3P 4.96x1034 -69.95 0.030
NLP 9.58x103 -3.54 0.19
PRIOR2P 7.83x103 -4.91 0.15
REFSOLN EDGE 101.26 -1.49 0.29
REFSOLN ELEM 18.10 -0.82 0.34
SMOOTH PRED 9.57 -0.43 0.40
T3S 9.20x106 -7.67 0.13
TYPEPARAM 559.51 -2.04 0.26

Table 1: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the analytic problem.

strategy factor
REFSOLN EDGE 1.00
NEXT3P 1.01
TYPEPARAM 1.02
APRIORI 1.06
REFSOLN ELEM 1.07
COEF DECAY 1.15
COEF ROOT 1.26
PRIOR2P 1.30
H&P ERREST 1.35
SMOOTH PRED 1.73
ALTERNATE 1.80
NLP 1.86
T3S 2.63

Table 2: Factor by which N is larger than the best
strategy for the analytic problem at low accuracy,
1.0x10−2.

strategy A B
ALTERNATE 0.54 -0.44
APRIORI 107.21 -1.08
COEF DECAY 0.36 -0.47
COEF ROOT 1.50 -0.57
H&P ERREST 0.066 -0.29
NEXT3P 0.098 -0.40
NLP 8.95 -0.66
PRIOR2P 0.44 -0.45
REFSOLN EDGE 13.87 -0.88
REFSOLN ELEM 26.29 -0.92
SMOOTH PRED 84.07 -0.89
T3S 1.01 -0.46
TYPEPARAM 19.80 -0.91

Table 3: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the analytic problem.

strategy factor
APRIORI 1.00
TYPEPARAM 1.23
REFSOLN ELEM 1.29
REFSOLN EDGE 1.32
SMOOTH PRED 1.72
COEF ROOT 3.01
NLP 3.06
COEF DECAY 3.79
NEXT3P 3.91
PRIOR2P 4.48
T3S 4.77
ALTERNATE 5.13
H&P ERREST 8.77

Table 4: Factor by which N is larger than the best
strategy for the analytic problem at high accuracy,
1.0x10−6.
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Figure 32: The solution of the nearly straight reentrant corner problem.

5.2 Reentrant Corner, Nearly Straight

For elliptic partial differential equations, a reentrant (concave) corner in the domain, with interior angle ω,
causes a point singularity that behaves like rα where r is the distance from the corner and α = π/ω. The
larger ω is, the stronger the singularity. The reentrant corner problems of the next five sections are Laplace’s
equation with Dirichlet boundary conditions on (−1, 1) × (−1, 1) with a section of angle 2π − ω removed.
The solution is

rα sin(αθ)

where r =
√

x2 + y2 and θ = tan−1(y/x).
For the nearly straight reentrant corner, ω = π + .01. If ω was π, then there would be no reentrant corner

and the solution would be linear. But with ω = π + .01 there is a very mild singularity. For this problem,
we use τ = 10−6 for the grid images. The APRIORI strategy refines by h if the element contains the origin
and by p otherwise.
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Figure 33: Example grid for the ALTERNATE strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 34: Example grid for the APRIORI strategy
with the nearly straight reentrant corner problem,
including details at the singularity.

Figure 35: Example grid for the COEF DECAY
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 36: Example grid for the COEF ROOT strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 37: Example grid for the H&P ERREST
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 38: Example grid for the NEXT3P strategy
with the nearly straight reentrant corner problem,
including details at the singularity.

Figure 39: Example grid for the NLP strategy with
the nearly straight reentrant corner problem, includ-
ing details at the singularity.

Figure 40: Example grid for the PRIOR2P strategy
with the nearly straight reentrant corner problem,
including details at the singularity.
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Figure 41: Example grid for the REFSOLN EDGE
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 42: Example grid for the REFSOLN ELEM
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 43: Example grid for the SMOOTH PRED
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 44: Example grid for the T3S strategy with
the nearly straight reentrant corner problem, includ-
ing details at the singularity.

Figure 45: Example grid for the TYPEPARAM strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 46: Log-Log plot of the convergence of the
ALTERNATE strategy with the nearly straight reen-
trant corner problem.
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Figure 47: Log-Log plot of the convergence of the
APRIORI strategy with the nearly straight reentrant
corner problem.

Figure 48: Log-Log plot of the convergence of the
COEF DECAY strategy with the nearly straight
reentrant corner problem.

Figure 49: Log-Log plot of the convergence of the
COEF ROOT strategy with the nearly straight reen-
trant corner problem.

Figure 50: Log-Log plot of the convergence of the
H&P ERREST strategy with the nearly straight
reentrant corner problem.
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Figure 51: Log-Log plot of the convergence of the
NEXT3P strategy with the nearly straight reentrant
corner problem.

Figure 52: Log-Log plot of the convergence of the
NLP strategy with the nearly straight reentrant cor-
ner problem.

Figure 53: Log-Log plot of the convergence of the
PRIOR2P strategy with the nearly straight reentrant
corner problem.

Figure 54: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the nearly straight
reentrant corner problem.
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Figure 55: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the nearly straight
reentrant corner problem.

Figure 56: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the nearly straight
reentrant corner problem.

Figure 57: Log-Log plot of the convergence of the
T3S strategy with the nearly straight reentrant cor-
ner problem.

Figure 58: Log-Log plot of the convergence of the
TYPEPARAM strategy with the nearly straight
reentrant corner problem.
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Figure 59: Log-Log plot of the convergence of all strategies with the nearly straight reentrant corner problem.
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strategy A B C
ALTERNATE 0.036 -1.39 0.25
APRIORI 3.04x10−3 -0.14 0.55
COEF DECAY 0.035 -1.07 0.31
COEF ROOT 0.014 -0.64 0.37
H&P ERREST 0.056 -1.42 0.27
NEXT3P 0.29 -2.40 0.22
NLP 2.47 -3.85 0.18
PRIOR2P 0.011 -0.58 0.37
REFSOLN EDGE 0.015 -0.59 0.39
REFSOLN ELEM 4.83x10−3 -0.24 0.49
SMOOTH PRED 2.15x10−3 -0.13 0.52
T3S 5.64x10−3 -0.45 0.36
TYPEPARAM 0.014 -0.64 0.37

Table 5: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the nearly straight reentrant

corner problem.

strategy factor
H&P ERREST 1.00
NEXT3P 1.00
COEF DECAY 1.01
NLP 1.02
COEF ROOT 1.04
REFSOLN EDGE 1.04
TYPEPARAM 1.06
PRIOR2P 1.11
REFSOLN ELEM 1.21
APRIORI 1.25
ALTERNATE 1.30
SMOOTH PRED 1.74
T3S 1.77

Table 6: Factor by which N is larger than the best
strategy for the nearly straight reentrant corner prob-
lem at low accuracy, 1.0x10−4.

strategy A B
ALTERNATE 5.87x10−3 -0.59
APRIORI 0.087 -1.04
COEF DECAY 0.019 -0.84
COEF ROOT 0.030 -0.90
H&P ERREST 0.010 -0.74
NEXT3P 8.17x10−3 -0.70
NLP 5.59x10−3 -0.65
PRIOR2P 0.024 -0.85
REFSOLN EDGE 0.048 -0.97
REFSOLN ELEM 0.089 -1.02
SMOOTH PRED 0.025 -0.76
T3S 9.62x10−3 -0.60
TYPEPARAM 0.027 -0.88

Table 7: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the nearly straight reentrant
corner problem.

strategy factor
APRIORI 1.00
REFSOLN ELEM 1.05
REFSOLN EDGE 1.07
COEF ROOT 1.19
TYPEPARAM 1.27
PRIOR2P 1.36
COEF DECAY 1.36
H&P ERREST 1.65
SMOOTH PRED 1.82
NEXT3P 1.91
NLP 2.14
T3S 3.00
ALTERNATE 3.10

Table 8: Factor by which N is larger than the best
strategy for the nearly straight reentrant corner prob-
lem at high accuracy, 1.0x10−7.
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Figure 60: The solution of the wide angle reentrant corner problem.

5.3 Reentrant Corner, Wide Angle

This is the reentrant corner problem (Section 5.2) with ω = 5π/4. τ = 10−4 for the grid images. The
APRIORI strategy refines by h if the element contains the origin and by p otherwise.
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Figure 61: Example grid for the ALTERNATE strat-
egy with the wide angle reentrant corner problem,
including details at the singularity.

Figure 62: Example grid for the APRIORI strategy
with the wide angle reentrant corner problem, includ-
ing details at the singularity.

Figure 63: Example grid for the COEF DECAY
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 64: Example grid for the COEF ROOT strat-
egy with the wide angle reentrant corner problem,
including details at the singularity.

Figure 65: Example grid for the H&P ERREST
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 66: Example grid for the NEXT3P strategy
with the wide angle reentrant corner problem, includ-
ing details at the singularity.

Figure 67: Example grid for the NLP strategy with
the wide angle reentrant corner problem, including
details at the singularity.

Figure 68: Example grid for the PRIOR2P strategy
with the wide angle reentrant corner problem, includ-
ing details at the singularity.
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Figure 69: Example grid for the REFSOLN EDGE
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 70: Example grid for the REFSOLN ELEM
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 71: Example grid for the SMOOTH PRED
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 72: Example grid for the T3S strategy with
the wide angle reentrant corner problem, including
details at the singularity.

Figure 73: Example grid for the TYPEPARAM strat-
egy with the wide angle reentrant corner problem,
including details at the singularity.

Figure 74: Log-Log plot of the convergence of the
ALTERNATE strategy with the wide angle reentrant
corner problem.
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Figure 75: Log-Log plot of the convergence of the
APRIORI strategy with the wide angle reentrant cor-
ner problem.

Figure 76: Log-Log plot of the convergence of the
COEF DECAY strategy with the wide angle reen-
trant corner problem.

Figure 77: Log-Log plot of the convergence of the
COEF ROOT strategy with the wide angle reentrant
corner problem.

Figure 78: Log-Log plot of the convergence of the
H&P ERREST strategy with the wide angle reen-
trant corner problem.
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Figure 79: Log-Log plot of the convergence of the
NEXT3P strategy with the wide angle reentrant cor-
ner problem.

Figure 80: Log-Log plot of the convergence of the
NLP strategy with the wide angle reentrant cor-
ner problem.

Figure 81: Log-Log plot of the convergence of the
PRIOR2P strategy with the wide angle reentrant cor-
ner problem.

Figure 82: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the wide angle reen-
trant corner problem.
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Figure 83: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the wide angle reen-
trant corner problem.

Figure 84: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the wide angle reen-
trant corner problem.

Figure 85: Log-Log plot of the convergence of the T3S
strategy with the wide angle reentrant corner prob-
lem.

Figure 86: Log-Log plot of the convergence of the
TYPEPARAM strategy with the wide angle reen-
trant corner problem.
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Figure 87: Log-Log plot of the convergence of all strategies with the wide angle reentrant corner problem.
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strategy A B C
ALTERNATE 1.47 -1.22 0.24
APRIORI 0.49 -0.30 0.44
COEF DECAY 6.35 -1.59 0.25
COEF ROOT 2.08 -1.03 0.29
H&P ERREST 5.29 -1.62 0.24
NEXT3P 2.09 -1.16 0.27
NLP 0.19 -0.35 0.37
PRIOR2P 0.47 -0.42 0.38
REFSOLN EDGE 0.42 -0.34 0.42
REFSOLN ELEM 0.43 -0.29 0.44
SMOOTH PRED 0.23 -0.18 0.47
T3S 2.56 -1.40 0.22
TYPEPARAM 0.45 -0.48 0.36

Table 9: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the wide angle reentrant cor-

ner problem.

strategy factor
COEF DECAY 1.00
COEF ROOT 1.05
H&P ERREST 1.07
REFSOLN EDGE 1.10
NEXT3P 1.14
PRIOR2P 1.16
NLP 1.18
REFSOLN ELEM 1.20
APRIORI 1.24
TYPEPARAM 1.27
ALTERNATE 1.35
SMOOTH PRED 1.66
T3S 1.88

Table 10: Factor by which N is larger than the best
strategy for the wide angle reentrant corner problem
at low accuracy, 1.0x10−2.

strategy A B
ALTERNATE 0.13 -0.39
APRIORI 6.37 -0.92
COEF DECAY 0.40 -0.61
COEF ROOT 0.63 -0.65
H&P ERREST 0.27 -0.54
NEXT3P 0.37 -0.55
NLP 0.46 -0.54
PRIOR2P 1.53 -0.73
REFSOLN EDGE 3.97 -0.87
REFSOLN ELEM 7.74 -0.92
SMOOTH PRED 3.38 -0.75
T3S 0.11 -0.34
TYPEPARAM 0.78 -0.62

Table 11: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the wide angle reentrant cor-
ner problem.

strategy factor
APRIORI 1.00
REFSOLN ELEM 1.02
REFSOLN EDGE 1.07
PRIOR2P 1.46
SMOOTH PRED 1.62
COEF ROOT 1.71
COEF DECAY 1.79
TYPEPARAM 2.06
H&P ERREST 2.43
NEXT3P 2.52
NLP 2.70
ALTERNATE 5.49
T3S 8.11

Table 12: Factor by which N is larger than the best
strategy for the wide angle reentrant corner problem
at high accuracy, 1.0x10−6.
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Figure 88: The solution of the L-shaped domain problem.

5.4 Reentrant Corner, L-Shaped Domain

The reentrant corner problem (Section 5.2) with ω = 3π/2 is the classic “L domain” problem which is used
as an example in many papers on adaptive grid refinement. τ = 10−4 for the grid images. The APRIORI
strategy refines by h if the element contains the origin and by p otherwise. For this problem, the cube root
vs. log convergence plots are shown in addition to the log-log plots.
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Figure 89: Example grid for the ALTERNATE strat-
egy with the L-shaped domain problem, including de-
tails at the singularity.

Figure 90: Example grid for the APRIORI strategy
with the L-shaped domain problem, including details
at the singularity.

Figure 91: Example grid for the COEF DECAY
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 92: Example grid for the COEF ROOT strat-
egy with the L-shaped domain problem, including de-
tails at the singularity.

Figure 93: Example grid for the H&P ERREST
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 94: Example grid for the NEXT3P strategy
with the L-shaped domain problem, including details
at the singularity.

Figure 95: Example grid for the NLP strategy with
the L-shaped domain problem, including details at
the singularity.

Figure 96: Example grid for the PRIOR2P strategy
with the L-shaped domain problem, including details
at the singularity.
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Figure 97: Example grid for the REFSOLN EDGE
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 98: Example grid for the REFSOLN ELEM
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 99: Example grid for the SMOOTH PRED
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 100: Example grid for the T3S strategy with
the L-shaped domain problem, including details at
the singularity.

Figure 101: Example grid for the TYPEPARAM
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 102: Log-Log plot of the convergence of
the ALTERNATE strategy with the L-shaped do-
main problem.
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Figure 103: Log-Log plot of the convergence of the
APRIORI strategy with the L-shaped domain prob-
lem.

Figure 104: Log-Log plot of the convergence of
the COEF DECAY strategy with the L-shaped do-
main problem.

Figure 105: Log-Log plot of the convergence of
the COEF ROOT strategy with the L-shaped do-
main problem.

Figure 106: Log-Log plot of the convergence of
the H&P ERREST strategy with the L-shaped do-
main problem.

48



Figure 107: Log-Log plot of the convergence of the
NEXT3P strategy with the L-shaped domain prob-
lem.

Figure 108: Log-Log plot of the convergence of the
NLP strategy with the L-shaped domain problem.

Figure 109: Log-Log plot of the convergence of the
PRIOR2P strategy with the L-shaped domain prob-
lem.

Figure 110: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the L-shaped do-
main problem.
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Figure 111: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the L-shaped do-
main problem.

Figure 112: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the L-shaped do-
main problem.

Figure 113: Log-Log plot of the convergence of the
T3S strategy with the L-shaped domain problem.

Figure 114: Log-Log plot of the convergence of
the TYPEPARAM strategy with the L-shaped do-
main problem.
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Figure 115: Log-Log plot of the convergence of all strategies with the L-shaped domain problem.
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Figure 116: Cube root vs. Log plot of the con-
vergence of the ALTERNATE strategy with the L-
shaped domain problem.

Figure 117: Cube root vs. Log plot of the conver-
gence of the APRIORI strategy with the L-shaped
domain problem.

Figure 118: Cube root vs. Log plot of the conver-
gence of the COEF DECAY strategy with the L-
shaped domain problem.

Figure 119: Cube root vs. Log plot of the con-
vergence of the COEF ROOT strategy with the L-
shaped domain problem.
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Figure 120: Cube root vs. Log plot of the con-
vergence of the H&P ERREST strategy with the L-
shaped domain problem.

Figure 121: Cube root vs. Log plot of the conver-
gence of the NEXT3P strategy with the L-shaped
domain problem.

Figure 122: Cube root vs. Log plot of the conver-
gence of the NLP strategy with the L-shaped do-
main problem.

Figure 123: Cube root vs. Log plot of the conver-
gence of the PRIOR2P strategy with the L-shaped
domain problem.
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Figure 124: Cube root vs. Log plot of the conver-
gence of the REFSOLN EDGE strategy with the L-
shaped domain problem.

Figure 125: Cube root vs. Log plot of the conver-
gence of the REFSOLN ELEM strategy with the L-
shaped domain problem.

Figure 126: Cube root vs. Log plot of the conver-
gence of the SMOOTH PRED strategy with the L-
shaped domain problem.

Figure 127: Cube root vs. Log plot of the conver-
gence of the T3S strategy with the L-shaped do-
main problem.
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Figure 128: Cube root vs. Log plot of the con-
vergence of the TYPEPARAM strategy with the L-
shaped domain problem.
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Figure 129: Cube root vs. Log plot of the convergence of all strategies with the L-shaped domain problem.
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strategy A B C
ALTERNATE 2.86 -1.15 0.24
APRIORI 1.30 -0.35 0.41
COEF DECAY 20.31 -1.85 0.23
COEF ROOT 3.32 -0.95 0.28
H&P ERREST 1.74 -0.74 0.30
NEXT3P 3.40 -1.14 0.25
NLP 0.094 -0.14 0.44
PRIOR2P 0.84 -0.40 0.37
REFSOLN EDGE 0.81 -0.34 0.41
REFSOLN ELEM 0.89 -0.37 0.38
SMOOTH PRED 0.43 -0.17 0.45
T3S 2.76 -1.10 0.23
TYPEPARAM 0.72 -0.40 0.36

Table 13: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the L-shaped domain prob-

lem.

strategy factor
COEF DECAY 1.00
REFSOLN EDGE 1.01
COEF ROOT 1.13
NLP 1.14
APRIORI 1.18
PRIOR2P 1.24
H&P ERREST 1.27
NEXT3P 1.32
REFSOLN ELEM 1.32
TYPEPARAM 1.39
ALTERNATE 1.77
SMOOTH PRED 1.77
T3S 2.54

Table 14: Factor by which N is larger than the best
strategy for the L-shaped domain problem at low ac-
curacy, 1.0x10−2.

strategy A B
ALTERNATE 0.23 -0.33
APRIORI 9.70 -0.81
COEF DECAY 0.44 -0.50
COEF ROOT 0.81 -0.54
H&P ERREST 0.79 -0.51
NEXT3P 0.39 -0.42
NLP 0.70 -0.46
PRIOR2P 2.21 -0.63
REFSOLN EDGE 5.81 -0.79
REFSOLN ELEM 3.28 -0.66
SMOOTH PRED 4.99 -0.64
T3S 0.19 -0.28
TYPEPARAM 1.38 -0.55

Table 15: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the L-shaped domain prob-
lem.

strategy factor
APRIORI 1.00
REFSOLN EDGE 1.00
REFSOLN ELEM 1.54
PRIOR2P 1.61
SMOOTH PRED 1.77
COEF ROOT 2.03
COEF DECAY 2.08
TYPEPARAM 2.09
H&P ERREST 2.48
NLP 3.03
NEXT3P 3.67
ALTERNATE 6.90
T3S 11.55

Table 16: Factor by which N is larger than the best
strategy for the L-shaped domain problem at high
accuracy, 1.0x10−6.
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Figure 130: The solution of the narrow angle reentrant corner problem.

5.5 Reentrant Corner, Narrow Angle

This is the reentrant corner problem (Section 5.2) with ω = 7π/4. τ = 10−4 for the grid images. The
APRIORI strategy refines by h if the element contains the origin and by p otherwise.
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Figure 131: Example grid for the ALTERNATE
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 132: Example grid for the APRIORI strat-
egy with the narrow angle reentrant corner problem,
including details at the singularity.

Figure 133: Example grid for the COEF DECAY
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 134: Example grid for the COEF ROOT
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 135: Example grid for the H&P ERREST
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 136: Example grid for the NEXT3P strategy
with the narrow angle reentrant corner problem, in-
cluding details at the singularity.

Figure 137: Example grid for the NLP strategy with
the narrow angle reentrant corner problem, including
details at the singularity.

Figure 138: Example grid for the PRIOR2P strat-
egy with the narrow angle reentrant corner problem,
including details at the singularity.
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Figure 139: Example grid for the REFSOLN EDGE
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 140: Example grid for the REFSOLN ELEM
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 141: Example grid for the SMOOTH PRED
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 142: Example grid for the T3S strategy with
the narrow angle reentrant corner problem, including
details at the singularity.

Figure 143: Example grid for the TYPEPARAM
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 144: Log-Log plot of the convergence of the
ALTERNATE strategy with the narrow angle reen-
trant corner problem.
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Figure 145: Log-Log plot of the convergence of the
APRIORI strategy with the narrow angle reentrant
corner problem.

Figure 146: Log-Log plot of the convergence of the
COEF DECAY strategy with the narrow angle reen-
trant corner problem.

Figure 147: Log-Log plot of the convergence of the
COEF ROOT strategy with the narrow angle reen-
trant corner problem.

Figure 148: Log-Log plot of the convergence of the
H&P ERREST strategy with the narrow angle reen-
trant corner problem.
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Figure 149: Log-Log plot of the convergence of the
NEXT3P strategy with the narrow angle reentrant
corner problem.

Figure 150: Log-Log plot of the convergence of the
NLP strategy with the narrow angle reentrant cor-
ner problem.

Figure 151: Log-Log plot of the convergence of the
PRIOR2P strategy with the narrow angle reentrant
corner problem.

Figure 152: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the narrow angle
reentrant corner problem.
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Figure 153: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the narrow angle
reentrant corner problem.

Figure 154: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the narrow angle
reentrant corner problem.

Figure 155: Log-Log plot of the convergence of the
T3S strategy with the narrow angle reentrant cor-
ner problem.

Figure 156: Log-Log plot of the convergence of the
TYPEPARAM strategy with the narrow angle reen-
trant corner problem.
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Figure 157: Log-Log plot of the convergence of all strategies with the narrow angle reentrant corner problem.
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strategy A B C
ALTERNATE 2.31 -0.83 0.25
APRIORI 1.75 -0.33 0.41
COEF DECAY 36.40 -1.90 0.22
COEF ROOT 6.61 -1.05 0.27
H&P ERREST 1.28 -0.47 0.33
NEXT3P 2.72 -0.83 0.27
NLP 14.36 -0.99 0.27
PRIOR2P 1.55 -0.45 0.35
REFSOLN EDGE 0.92 -0.29 0.42
REFSOLN ELEM 0.53 -0.13 0.49
SMOOTH PRED 0.45 -0.13 0.47
T3S 0.25 -0.24 0.33
TYPEPARAM 1.39 -0.46 0.34

Table 17: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the narrow angle reentrant

corner problem.

strategy factor
REFSOLN EDGE 1.00
COEF DECAY 1.06
APRIORI 1.18
COEF ROOT 1.19
REFSOLN ELEM 1.28
PRIOR2P 1.29
TYPEPARAM 1.51
H&P ERREST 1.54
NEXT3P 1.57
SMOOTH PRED 1.78
NLP 1.95
ALTERNATE 2.14
T3S 3.66

Table 18: Factor by which N is larger than the best
strategy for the narrow angle reentrant corner prob-
lem at low accuracy, 1.0x10−2.

strategy A B
ALTERNATE 0.35 -0.30
APRIORI 12.03 -0.73
COEF DECAY 0.49 -0.44
COEF ROOT 0.87 -0.47
H&P ERREST 1.17 -0.45
NEXT3P 0.59 -0.38
NLP 2.26 -0.48
PRIOR2P 2.36 -0.55
REFSOLN EDGE 6.93 -0.71
REFSOLN ELEM 11.62 -0.72
SMOOTH PRED 7.64 -0.60
T3S 0.23 -0.22
TYPEPARAM 1.51 -0.48

Table 19: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the narrow angle reentrant
corner problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.00
APRIORI 1.01
SMOOTH PRED 1.69
PRIOR2P 1.74
COEF ROOT 2.25
COEF DECAY 2.28
TYPEPARAM 2.38
NLP 2.68
H&P ERREST 2.69
NEXT3P 3.97
ALTERNATE 7.30
T3S 15.52

Table 20: Factor by which N is larger than the best
strategy for the narrow angle reentrant corner prob-
lem at high accuracy, 1.0x10−6.
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Figure 158: The solution of the slit domain problem.

5.6 Reentrant Corner, Slit

This is the reentrant corner problem (Section 5.2) with ω = 2π. This results in a domain that has a slit
along the positive x axis. τ = 10−4 for the grid images. The APRIORI strategy refines by h if the element
contains the origin and by p otherwise.

66



Figure 159: Example grid for the ALTERNATE
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 160: Example grid for the APRIORI strategy
with the slit domain problem, including details at the
singularity.

Figure 161: Example grid for the COEF DECAY
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 162: Example grid for the COEF ROOT
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 163: Example grid for the H&P ERREST
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 164: Example grid for the NEXT3P strategy
with the slit domain problem, including details at the
singularity.

Figure 165: Example grid for the NLP strategy with
the slit domain problem, including details at the sin-
gularity.

Figure 166: Example grid for the PRIOR2P strategy
with the slit domain problem, including details at the
singularity.
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Figure 167: Example grid for the REFSOLN EDGE
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 168: Example grid for the REFSOLN ELEM
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 169: Example grid for the SMOOTH PRED
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 170: Example grid for the T3S strategy with
the slit domain problem, including details at the sin-
gularity.

Figure 171: Example grid for the TYPEPARAM
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 172: Log-Log plot of the convergence of the
ALTERNATE strategy with the slit domain problem.
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Figure 173: Log-Log plot of the convergence of the
APRIORI strategy with the slit domain problem.

Figure 174: Log-Log plot of the convergence of the
COEF DECAY strategy with the slit domain prob-
lem.

Figure 175: Log-Log plot of the convergence of the
COEF ROOT strategy with the slit domain problem.

Figure 176: Log-Log plot of the convergence of the
H&P ERREST strategy with the slit domain prob-
lem.
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Figure 177: Log-Log plot of the convergence of the
NEXT3P strategy with the slit domain problem.

Figure 178: Log-Log plot of the convergence of the
NLP strategy with the slit domain problem.

Figure 179: Log-Log plot of the convergence of the
PRIOR2P strategy with the slit domain problem.

Figure 180: Log-Log plot of the convergence of
the REFSOLN EDGE strategy with the slit do-
main problem.
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Figure 181: Log-Log plot of the convergence of
the REFSOLN ELEM strategy with the slit do-
main problem.

Figure 182: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the slit domain prob-
lem.

Figure 183: Log-Log plot of the convergence of the
T3S strategy with the slit domain problem.

Figure 184: Log-Log plot of the convergence of the
TYPEPARAM strategy with the slit domain prob-
lem.
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Figure 185: Log-Log plot of the convergence of all strategies with the slit domain problem.
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strategy A B C
ALTERNATE 1.41 -0.49 0.29
APRIORI 1.89 -0.30 0.40
COEF DECAY 44.70 -1.81 0.22
COEF ROOT 10.14 -1.08 0.26
H&P ERREST 1.62 -0.43 0.33
NEXT3P 1.10 -0.31 0.36
NLP 0.11 -0.038 0.53
PRIOR2P 1.74 -0.39 0.35
REFSOLN EDGE 1.17 -0.29 0.40
REFSOLN ELEM 2.17 -0.38 0.36
SMOOTH PRED 0.70 -0.14 0.45
T3S 0.17 -0.086 0.40
TYPEPARAM 6.24 -0.78 0.30

Table 21: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the slit domain problem.

strategy factor
REFSOLN EDGE 1.00
COEF DECAY 1.18
APRIORI 1.18
TYPEPARAM 1.21
COEF ROOT 1.30
REFSOLN ELEM 1.48
PRIOR2P 1.48
H&P ERREST 1.74
NEXT3P 1.86
SMOOTH PRED 1.86
NLP 2.41
ALTERNATE 2.99
T3S 6.11

Table 22: Factor by which N is larger than the best
strategy for the slit domain problem at low accuracy,
1.0x10−2.

strategy A B
ALTERNATE 0.54 -0.27
APRIORI 12.72 -0.67
COEF DECAY 0.57 -0.39
COEF ROOT 0.97 -0.42
H&P ERREST 1.54 -0.41
NEXT3P 1.74 -0.42
NLP 3.08 -0.41
PRIOR2P 2.92 -0.49
REFSOLN EDGE 7.35 -0.65
REFSOLN ELEM 4.92 -0.54
SMOOTH PRED 9.52 -0.55
T3S 0.40 -0.21
TYPEPARAM 1.96 -0.49

Table 23: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the slit domain problem.

strategy factor
REFSOLN EDGE 1.00
APRIORI 1.01
REFSOLN ELEM 1.60
SMOOTH PRED 1.65
TYPEPARAM 1.70
PRIOR2P 1.86
COEF ROOT 2.37
COEF DECAY 2.48
NEXT3P 2.66
H&P ERREST 2.74
NLP 3.18
ALTERNATE 8.05
T3S 15.97

Table 24: Factor by which N is larger than the best
strategy for the slit domain problem at high accuracy,
1.0x10−6.
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Figure 186: The u component of the solution of the mode 1 linear elasticity problem.

Figure 187: The v component of the solution of the mode 1 linear elasticity problem.

5.7 Linear Elasticity, Mode 1

The linear elasticity problem is a coupled system of two equations with a mixed derivative in the coupling
term and different coefficients on the second order x and y terms. The domain is a square with a slit, as in
the reentrant corner slit domain problem (Section 5.6). The boundary conditions are Dirichlet. For further
details, see [21]. We consider two solutions, refered to as mode 1 and mode 2, by using different boundary
conditions. Both solutions have a singularity at the origin, with the mode 1 solution having the stronger
singularity. This section contains the results for the mode 1 solution. τ = 10−3 for the grid images. The
APRIORI strategy refines by h if the element contains the origin and by p otherwise.
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Figure 188: Example grid for the ALTERNATE
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 189: Example grid for the APRIORI strategy
with the mode 1 linear elasticity problem, including
details at the singularity.

Figure 190: Example grid for the COEF DECAY
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 191: Example grid for the COEF ROOT
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 192: Example grid for the H&P ERREST
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 193: Example grid for the NEXT3P strategy
with the mode 1 linear elasticity problem, including
details at the singularity.

Figure 194: Example grid for the NLP strategy with
the mode 1 linear elasticity problem, including details
at the singularity.

Figure 195: Example grid for the PRIOR2P strategy
with the mode 1 linear elasticity problem, including
details at the singularity.
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Figure 196: Example grid for the REFSOLN EDGE
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 197: Example grid for the REFSOLN ELEM
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 198: Example grid for the SMOOTH PRED
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 199: Example grid for the T3S strategy with
the mode 1 linear elasticity problem, including details
at the singularity.

Figure 200: Example grid for the TYPEPARAM
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 201: Log-Log plot of the convergence of the
ALTERNATE strategy with the mode 1 linear elas-
ticity problem.
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Figure 202: Log-Log plot of the convergence of the
APRIORI strategy with the mode 1 linear elastic-
ity problem.

Figure 203: Log-Log plot of the convergence of the
COEF DECAY strategy with the mode 1 linear elas-
ticity problem.

Figure 204: Log-Log plot of the convergence of the
COEF ROOT strategy with the mode 1 linear elas-
ticity problem.

Figure 205: Log-Log plot of the convergence of the
H&P ERREST strategy with the mode 1 linear elas-
ticity problem.
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Figure 206: Log-Log plot of the convergence of the
NEXT3P strategy with the mode 1 linear elastic-
ity problem.

Figure 207: Log-Log plot of the convergence of the
NLP strategy with the mode 1 linear elasticity prob-
lem.

Figure 208: Log-Log plot of the convergence of the
PRIOR2P strategy with the mode 1 linear elastic-
ity problem.

Figure 209: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the mode 1 linear
elasticity problem.
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Figure 210: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the mode 1 linear
elasticity problem.

Figure 211: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the mode 1 linear
elasticity problem.

Figure 212: Log-Log plot of the convergence of the
T3S strategy with the mode 1 linear elasticity prob-
lem.

Figure 213: Log-Log plot of the convergence of the
TYPEPARAM strategy with the mode 1 linear elas-
ticity problem.
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Figure 214: Log-Log plot of the convergence of all strategies with the mode 1 linear elasticity problem.
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strategy A B C
ALTERNATE 2.92 -0.39 0.29
APRIORI 5.11 -0.28 0.38
COEF DECAY 20.25 -1.06 0.24
COEF ROOT 4.27 -0.53 0.29
H&P ERREST 1.97 -0.31 0.33
NEXT3P 9.44x1016 -33.00 0.033
NLP 0.44 -0.068 0.45
PRIOR2P 1.51 -0.26 0.34
REFSOLN EDGE 2.30 -0.23 0.40
REFSOLN ELEM 2.42 -0.19 0.40
SMOOTH PRED 0.94 -0.088 0.45
T3S 0.33 -0.066 0.41
TYPEPARAM 2.91 -0.33 0.33

Table 25: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mode 1 linear elastic-

ity problem.

strategy factor
REFSOLN EDGE 1.00
APRIORI 1.17
COEF DECAY 1.39
REFSOLN ELEM 1.56
COEF ROOT 1.63
NEXT3P 1.69
TYPEPARAM 1.70
H&P ERREST 1.77
PRIOR2P 1.90
SMOOTH PRED 2.06
NLP 2.29
ALTERNATE 3.43
T3S 6.06

Table 26: Factor by which N is larger than the best
strategy for the mode 1 linear elasticity problem at
low accuracy, 1.0x10−2.

strategy A B
ALTERNATE 0.96 -0.21
APRIORI 20.92 -0.50
COEF DECAY 0.71 -0.27
COEF ROOT 1.16 -0.28
H&P ERREST 1.90 -0.30
NEXT3P 0.017 -0.078
NLP 4.74 -0.32
PRIOR2P 1.81 -0.29
REFSOLN EDGE 11.91 -0.49
REFSOLN ELEM 13.58 -0.43
SMOOTH PRED 12.51 -0.39
T3S 1.14 -0.18
TYPEPARAM 2.99 -0.33

Table 27: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mode 1 linear elastic-
ity problem.

strategy factor
REFSOLN EDGE 1.00
APRIORI 1.04
REFSOLN ELEM 1.55
SMOOTH PRED 1.97
TYPEPARAM 2.51
NLP 2.85
H&P ERREST 3.06
COEF DECAY 3.24
PRIOR2P 3.33
COEF ROOT 3.36
ALTERNATE 7.90
T3S 11.93
NEXT3P 46.52

Table 28: Factor by which N is larger than the best
strategy for the mode 1 linear elasticity problem at
high accuracy, 1.0x10−6.
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Figure 215: The u component of the solution of the mode 2 linear elasticity problem.

Figure 216: The v component of the solution of the mode 2 linear elasticity problem.

5.8 Linear Elasticity, Mode 2

This is the mode 2 solution of the linear elasticity problem (Section 5.7). τ = 10−3 for the grid images. The
APRIORI strategy refines by h if the element contains the origin and by p otherwise.
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Figure 217: Example grid for the ALTERNATE
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 218: Example grid for the APRIORI strategy
with the mode 2 linear elasticity problem, including
details at the singularity.

Figure 219: Example grid for the COEF DECAY
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 220: Example grid for the COEF ROOT
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 221: Example grid for the H&P ERREST
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 222: Example grid for the NEXT3P strategy
with the mode 2 linear elasticity problem, including
details at the singularity.

Figure 223: Example grid for the NLP strategy with
the mode 2 linear elasticity problem, including details
at the singularity.

Figure 224: Example grid for the PRIOR2P strategy
with the mode 2 linear elasticity problem, including
details at the singularity.
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Figure 225: Example grid for the REFSOLN EDGE
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 226: Example grid for the REFSOLN ELEM
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 227: Example grid for the SMOOTH PRED
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 228: Example grid for the T3S strategy with
the mode 2 linear elasticity problem, including details
at the singularity.

Figure 229: Example grid for the TYPEPARAM
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 230: Log-Log plot of the convergence of the
ALTERNATE strategy with the mode 2 linear elas-
ticity problem.
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Figure 231: Log-Log plot of the convergence of the
APRIORI strategy with the mode 2 linear elastic-
ity problem.

Figure 232: Log-Log plot of the convergence of the
COEF DECAY strategy with the mode 2 linear elas-
ticity problem.

Figure 233: Log-Log plot of the convergence of the
COEF ROOT strategy with the mode 2 linear elas-
ticity problem.

Figure 234: Log-Log plot of the convergence of the
H&P ERREST strategy with the mode 2 linear elas-
ticity problem.
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Figure 235: Log-Log plot of the convergence of the
NEXT3P strategy with the mode 2 linear elastic-
ity problem.

Figure 236: Log-Log plot of the convergence of the
NLP strategy with the mode 2 linear elasticity prob-
lem.

Figure 237: Log-Log plot of the convergence of the
PRIOR2P strategy with the mode 2 linear elastic-
ity problem.

Figure 238: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the mode 2 linear
elasticity problem.
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Figure 239: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the mode 2 linear
elasticity problem.

Figure 240: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the mode 2 linear
elasticity problem.

Figure 241: Log-Log plot of the convergence of the
T3S strategy with the mode 2 linear elasticity prob-
lem.

Figure 242: Log-Log plot of the convergence of the
TYPEPARAM strategy with the mode 2 linear elas-
ticity problem.
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Figure 243: Log-Log plot of the convergence of all strategies with the mode 2 linear elasticity problem.
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strategy A B C
ALTERNATE 1.63 -0.88 0.24
APRIORI 0.38 -0.15 0.46
COEF DECAY 3.27 -0.96 0.26
COEF ROOT 1.95 -0.74 0.28
H&P ERREST 6.51 -1.29 0.23
NEXT3P 8.60 -1.86 0.18
NLP 0.70 -0.34 0.35
PRIOR2P 0.66 -0.38 0.34
REFSOLN EDGE 0.88 -0.32 0.38
REFSOLN ELEM 0.54 -0.21 0.42
SMOOTH PRED 0.14 -0.063 0.50
T3S 0.69 -0.49 0.29
TYPEPARAM 271.46 -3.90 0.14

Table 29: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mode 2 linear elastic-

ity problem.

strategy factor
REFSOLN EDGE 1.00
TYPEPARAM 1.03
COEF DECAY 1.03
COEF ROOT 1.06
H&P ERREST 1.10
PRIOR2P 1.16
REFSOLN ELEM 1.18
APRIORI 1.19
NLP 1.34
NEXT3P 1.35
ALTERNATE 1.48
SMOOTH PRED 1.87
T3S 1.88

Table 30: Factor by which N is larger than the best
strategy for the mode 2 linear elasticity problem at
low accuracy, 1.0x10−2.

strategy A B
ALTERNATE 0.12 -0.25
APRIORI 5.72 -0.59
COEF DECAY 0.37 -0.38
COEF ROOT 0.49 -0.40
H&P ERREST 0.22 -0.33
NEXT3P 0.11 -0.23
NLP 1.05 -0.43
PRIOR2P 0.86 -0.43
REFSOLN EDGE 3.12 -0.58
REFSOLN ELEM 4.15 -0.56
SMOOTH PRED 2.59 -0.45
T3S 0.21 -0.26
TYPEPARAM 0.070 -0.24

Table 31: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mode 2 linear elastic-
ity problem.

strategy factor
REFSOLN EDGE 1.00
APRIORI 1.03
REFSOLN ELEM 1.14
PRIOR2P 1.84
NLP 1.96
COEF ROOT 2.01
SMOOTH PRED 2.04
COEF DECAY 2.15
H&P ERREST 2.75
TYPEPARAM 5.66
T3S 5.74
ALTERNATE 5.81
NEXT3P 8.76

Table 32: Factor by which N is larger than the best
strategy for the mode 2 linear elasticity problem at
high accuracy, 1.0x10−6.
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Figure 244: The solution of the mild peak problem.

5.9 Mild Peak

The peak problem contains a Gaussian peak in the interior of the domain. It is Poisson’s equation on the
unit square with Dirichlet boundary conditions. The solution is

e−α((x−xc)
2+(y−yc)

2)

where (xc, yc) is the location of the peak, and α determines the strength of the peak. For the easy form
of this problem, we use α = 1000 and (xc, yc) = (0.5, 0.5). For this problem, we used τ = 10−5 for the
grid images. The APRIORI strategy refines by h if the element touches the center of the peak and by p
otherwise.
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Figure 245: Example grid for the ALTERNATE
strategy with the mild peak problem.

Figure 246: Example grid for the APRIORI strategy
with the mild peak problem.

Figure 247: Example grid for the COEF DECAY
strategy with the mild peak problem.

Figure 248: Example grid for the COEF ROOT
strategy with the mild peak problem.

Figure 249: Example grid for the H&P ERREST
strategy with the mild peak problem.

Figure 250: Example grid for the NEXT3P strategy
with the mild peak problem.
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Figure 251: Example grid for the NLP strategy with
the mild peak problem.

Figure 252: Example grid for the PRIOR2P strategy
with the mild peak problem.

Figure 253: Example grid for the REFSOLN EDGE
strategy with the mild peak problem.

Figure 254: Example grid for the REFSOLN ELEM
strategy with the mild peak problem.

Figure 255: Example grid for the SMOOTH PRED
strategy with the mild peak problem.

Figure 256: Example grid for the T3S strategy with
the mild peak problem.
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Figure 257: Example grid for the TYPEPARAM
strategy with the mild peak problem.

Figure 258: Log-Log plot of the convergence of the
ALTERNATE strategy with the mild peak problem.

Figure 259: Log-Log plot of the convergence of the
APRIORI strategy with the mild peak problem.

Figure 260: Log-Log plot of the convergence of the
COEF DECAY strategy with the mild peak problem.
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Figure 261: Log-Log plot of the convergence of the
COEF ROOT strategy with the mild peak problem.

Figure 262: Log-Log plot of the convergence of the
H&P ERREST strategy with the mild peak problem.

Figure 263: Log-Log plot of the convergence of the
NEXT3P strategy with the mild peak problem.

Figure 264: Log-Log plot of the convergence of the
NLP strategy with the mild peak problem.
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Figure 265: Log-Log plot of the convergence of the
PRIOR2P strategy with the mild peak problem.

Figure 266: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the mild peak prob-
lem.

Figure 267: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the mild peak prob-
lem.

Figure 268: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the mild peak prob-
lem.
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Figure 269: Log-Log plot of the convergence of the
T3S strategy with the mild peak problem.

Figure 270: Log-Log plot of the convergence of the
TYPEPARAM strategy with the mild peak problem.
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Figure 271: Log-Log plot of the convergence of all strategies with the mild peak problem.
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strategy A B C
ALTERNATE 1.06 -0.31 0.36
APRIORI 6.34 -0.25 0.50
COEF DECAY 5.52x105 -6.02 0.15
COEF ROOT 33.43 -1.23 0.27
H&P ERREST 7.93x1016 -28.21 0.066
NEXT3P 2.19x1012 -18.60 0.087
NLP 1.80x108 -10.39 0.12
PRIOR2P 3.58x105 -6.34 0.14
REFSOLN EDGE 1.13x104 -3.33 0.23
REFSOLN ELEM 262.43 -0.90 0.39
SMOOTH PRED 9.60 -0.33 0.43
T3S 5.10x106 -5.99 0.18
TYPEPARAM 6.02x103 -1.99 0.29

Table 33: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mild peak problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.13
APRIORI 1.29
TYPEPARAM 1.38
NEXT3P 1.51
H&P ERREST 1.52
NLP 1.92
T3S 2.02
COEF ROOT 2.13
PRIOR2P 2.26
SMOOTH PRED 2.45
COEF DECAY 2.88
ALTERNATE 4.11

Table 34: Factor by which N is larger than the best
strategy for the mild peak problem at low accuracy,
1.0x10−2.

strategy A B
ALTERNATE 2.23 -0.42
APRIORI 2.16x103 -1.41
COEF DECAY 2.53 -0.52
COEF ROOT 3.73 -0.59
H&P ERREST 0.56 -0.53
NEXT3P 0.95 -0.58
NLP 1.32 -0.57
PRIOR2P 1.58 -0.51
REFSOLN EDGE 35.07 -1.07
REFSOLN ELEM 2.26x103 -1.52
SMOOTH PRED 271.26 -0.96
T3S 28.24 -0.84
TYPEPARAM 760.49 -1.29

Table 35: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mild peak problem.

strategy factor
REFSOLN ELEM 1.00
APRIORI 1.25
TYPEPARAM 1.37
REFSOLN EDGE 1.47
T3S 2.88
SMOOTH PRED 2.91
NEXT3P 4.19
H&P ERREST 4.66
NLP 4.88
COEF ROOT 5.67
PRIOR2P 7.09
COEF DECAY 7.60
ALTERNATE 14.36

Table 36: Factor by which N is larger than the best
strategy for the mild peak problem at high accuracy,
1.0x10−6.
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Figure 272: The solution of the sharp peak problem.

5.10 Sharp Peak

This is the hard version of the peak problem (Section 5.9) with α = 100000 and (xc, yc) = (.51, .117). We
used τ = 10−5 for the grid images. The APRIORI strategy refines by h if the element touches the center of
the peak and by p otherwise.
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Figure 273: Example grid for the ALTERNATE
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 274: Example grid for the APRIORI strategy
with the sharp peak problem, including details at the
peak.

Figure 275: Example grid for the COEF DECAY
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 276: Example grid for the COEF ROOT
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 277: Example grid for the H&P ERREST
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 278: Example grid for the NEXT3P strategy
with the sharp peak problem, including details at the
peak.

Figure 279: Example grid for the NLP strategy with
the sharp peak problem, including details at the peak.

Figure 280: Example grid for the PRIOR2P strategy
with the sharp peak problem, including details at the
peak.
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Figure 281: Example grid for the REFSOLN EDGE
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 282: Example grid for the REFSOLN ELEM
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 283: Example grid for the SMOOTH PRED
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 284: Example grid for the T3S strategy with
the sharp peak problem, including details at the peak.

Figure 285: Example grid for the TYPEPARAM
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 286: Log-Log plot of the convergence of the
ALTERNATE strategy with the sharp peak problem.
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Figure 287: Log-Log plot of the convergence of the
APRIORI strategy with the sharp peak problem.

Figure 288: Log-Log plot of the convergence of the
COEF DECAY strategy with the sharp peak prob-
lem.

Figure 289: Log-Log plot of the convergence of the
COEF ROOT strategy with the sharp peak problem.

Figure 290: Log-Log plot of the convergence of the
H&P ERREST strategy with the sharp peak prob-
lem.
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Figure 291: Log-Log plot of the convergence of the
NEXT3P strategy with the sharp peak problem.

Figure 292: Log-Log plot of the convergence of the
NLP strategy with the sharp peak problem.

Figure 293: Log-Log plot of the convergence of the
PRIOR2P strategy with the sharp peak problem.

Figure 294: Log-Log plot of the convergence
of the REFSOLN EDGE strategy with the sharp
peak problem.
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Figure 295: Log-Log plot of the convergence
of the REFSOLN ELEM strategy with the sharp
peak problem.

Figure 296: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the sharp peak prob-
lem.

Figure 297: Log-Log plot of the convergence of the
T3S strategy with the sharp peak problem.

Figure 298: Log-Log plot of the convergence of the
TYPEPARAM strategy with the sharp peak prob-
lem.
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Figure 299: Log-Log plot of the convergence of all strategies with the sharp peak problem.
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strategy A B C
ALTERNATE 15.36 -0.86 0.29
APRIORI 18.05 -0.30 0.41
COEF DECAY 5.19x1010 -14.80 0.097
COEF ROOT 38.27 -1.17 0.28
H&P ERREST 2.05x1030 -49.20 0.058
NEXT3P 1.84x1035 -65.99 0.038
NLP 6.52x1035 -41.09 0.093
PRIOR2P 400.63 -2.36 0.21
REFSOLN EDGE 2.19x107 -6.65 0.18
REFSOLN ELEM 2.05x1034 -56.36 0.061
SMOOTH PRED 0.76 -0.055 0.53
T3S 9.11x1035 -41.24 0.098
TYPEPARAM 8.81 -0.16 0.55

Table 37: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the sharp peak problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.12
TYPEPARAM 1.59
NEXT3P 1.73
COEF DECAY 1.90
PRIOR2P 1.96
COEF ROOT 1.98
H&P ERREST 2.23
ALTERNATE 3.13
T3S 3.73
APRIORI 4.15
NLP 5.67
SMOOTH PRED 6.06

Table 38: Factor by which N is larger than the best
strategy for the sharp peak problem at low accuracy,
1.0x10−2.

strategy A B
ALTERNATE 2.29 -0.46
APRIORI 370.62 -0.77
COEF DECAY 1.19 -0.52
COEF ROOT 4.32 -0.59
H&P ERREST 22.70 -0.77
NEXT3P 0.88 -0.53
NLP 4.47x106 -1.35
PRIOR2P 1.54 -0.51
REFSOLN EDGE 166.16 -1.18
REFSOLN ELEM 627.71 -1.30
SMOOTH PRED 94.68 -0.60
T3S 3.34x107 -1.69
TYPEPARAM 1.34x104 -1.43

Table 39: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the sharp peak problem.

strategy factor
REFSOLN ELEM 1.00
REFSOLN EDGE 1.11
TYPEPARAM 1.21
T3S 1.67
NLP 2.70
H&P ERREST 2.71
NEXT3P 4.06
APRIORI 4.66
COEF ROOT 4.75
COEF DECAY 5.06
PRIOR2P 5.89
SMOOTH PRED 8.22
ALTERNATE 8.62

Table 40: Factor by which N is larger than the best
strategy for the sharp peak problem at high accuracy,
1.0x10−6.
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Figure 300: The solution of the battery problem.

Figure 301: The initial grid for the battery problem.

5.11 Battery

The battery problem is from a model of heat conduction in a battery with nonhomogeneous materials. It
has piecewise constant coefficients and right hand side, and mixed boundary conditions on a rectangular
domain. The initial grid, shown in Figure 301, is aligned to the discontinuities in the data. The solution
has several point singularities in the interior of the domain where three or more materials meet. See [21] for
further details. The exact solution of this problem is not known, so the error estimate η (Section 3) is used
for the convergence results instead of the error. For the grid images, we used τ = 10−2 for most strategies,
and τ = 10−1 for COEF ROOT, REFSOLN EDGE and TYPEPARAM. The APRIORI strategy refines by
h if the element touches any of the singularities, and by p otherwise.
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Figure 302: Example grid for the ALTERNATE
strategy with the battery problem.

Figure 303: Example grid for the APRIORI strategy
with the battery problem.

Figure 304: Example grid for the COEF DECAY
strategy with the battery problem.

Figure 305: Example grid for the COEF ROOT
strategy with the battery problem.

Figure 306: Example grid for the H&P ERREST
strategy with the battery problem.

Figure 307: Example grid for the NEXT3P strategy
with the battery problem.
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Figure 308: Example grid for the NLP strategy with
the battery problem.

Figure 309: Example grid for the PRIOR2P strategy
with the battery problem.

Figure 310: Example grid for the REFSOLN EDGE
strategy with the battery problem.

Figure 311: Example grid for the REFSOLN ELEM
strategy with the battery problem.

Figure 312: Example grid for the SMOOTH PRED
strategy with the battery problem.

Figure 313: Example grid for the T3S strategy with
the battery problem.
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Figure 314: Example grid for the TYPEPARAM
strategy with the battery problem.

Figure 315: Log-Log plot of the convergence of the
ALTERNATE strategy with the battery problem.

Figure 316: Log-Log plot of the convergence of the
APRIORI strategy with the battery problem.

Figure 317: Log-Log plot of the convergence of the
COEF DECAY strategy with the battery problem.
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Figure 318: Log-Log plot of the convergence of the
COEF ROOT strategy with the battery problem.

Figure 319: Log-Log plot of the convergence of the
H&P ERREST strategy with the battery problem.

Figure 320: Log-Log plot of the convergence of the
NEXT3P strategy with the battery problem.

Figure 321: Log-Log plot of the convergence of the
NLP strategy with the battery problem.
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Figure 322: Log-Log plot of the convergence of the
PRIOR2P strategy with the battery problem.

Figure 323: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the battery prob-
lem.

Figure 324: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the battery prob-
lem.

Figure 325: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the battery problem.
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Figure 326: Log-Log plot of the convergence of the
T3S strategy with the battery problem.

Figure 327: Log-Log plot of the convergence of the
TYPEPARAM strategy with the battery problem.

113



Figure 328: Log-Log plot of the convergence of all strategies with the battery problem.
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strategy A B C
ALTERNATE 7.91 -0.91 0.21
APRIORI 4.58x1034 -75.15 0.014
COEF DECAY 93.28 -4.06 0.10
COEF ROOT 0.56 -0.041 0.42
H&P ERREST 1.44x104 -8.18 0.074
NEXT3P 3.19x104 -9.25 0.061
NLP 10.52 -1.70 0.16
PRIOR2P 1.20x103 -6.44 0.074
REFSOLN EDGE 0.15 -0.011 0.53
REFSOLN ELEM 4.83 -1.86 0.15
SMOOTH PRED 71.25 -3.15 0.12
T3S 1.80x105 -10.13 0.062
TYPEPARAM 0.66 -0.22 0.25

Table 41: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the battery problem.

strategy factor
H&P ERREST 1.00
REFSOLN ELEM 1.39
NEXT3P 1.68
COEF DECAY 1.78
APRIORI 1.89
PRIOR2P 1.89
T3S 1.94
SMOOTH PRED 2.66
NLP 3.17
ALTERNATE 8.56
REFSOLN EDGE 19.22
COEF ROOT 31.82
TYPEPARAM 92.09

Table 42: Factor by which N is larger than the best
strategy for the battery problem at low accuracy,
1.0x10−2.

strategy A B
ALTERNATE 0.48 -0.15
APRIORI 0.59 -0.23
COEF DECAY 0.090 -0.12
COEF ROOT 1.25 -0.13
H&P ERREST 0.079 -0.15
NEXT3P 0.10 -0.12
NLP 0.11 -0.14
PRIOR2P 0.087 -0.11
REFSOLN EDGE 0.37 -0.12
REFSOLN ELEM 0.11 -0.16
SMOOTH PRED 0.13 -0.14
T3S 0.050 -0.10
TYPEPARAM 0.34 -0.063

Table 43: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the battery problem.

strategy factor
H&P ERREST 1.00
REFSOLN ELEM 1.34
APRIORI 1.59
NLP 2.10
T3S 2.11
SMOOTH PRED 2.12
COEF DECAY 2.19
NEXT3P 2.56
PRIOR2P 3.12
ALTERNATE 3.81
REFSOLN EDGE 5.97
COEF ROOT 8.97
TYPEPARAM 61.73

Table 44: Factor by which N is larger than the best
strategy for the battery problem at high accuracy,
5.0x10−4.
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Figure 329: The solution of the mild boundary layer problem.

5.12 Boundary Layer, Mild

The boundary layer problem is a convection-diffusion equation with first order terms and Dirichlet boundary
conditions on (−1, 1) × (−1, 1). The solution is

(1 − e−(1−x)/ǫ)(1 − e−(1−y)/ǫ) cos(π(x + y))

where ǫ controls the strength of the boundary layer. In the easy form of this problem we use ǫ = 10−1. For
the grid images, τ = 10−4. In the APRIORI strategy we refine by h if the element touches either of the
boundaries with a boundary layer, and by p otherwise.
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Figure 330: Example grid for the ALTERNATE
strategy with the mild boundary layer problem.

Figure 331: Example grid for the APRIORI strategy
with the mild boundary layer problem.

Figure 332: Example grid for the COEF DECAY
strategy with the mild boundary layer problem.

Figure 333: Example grid for the COEF ROOT
strategy with the mild boundary layer problem.

Figure 334: Example grid for the H&P ERREST
strategy with the mild boundary layer problem.

Figure 335: Example grid for the NEXT3P strategy
with the mild boundary layer problem.
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Figure 336: Example grid for the NLP strategy with
the mild boundary layer problem.

Figure 337: Example grid for the PRIOR2P strategy
with the mild boundary layer problem.

Figure 338: Example grid for the REFSOLN EDGE
strategy with the mild boundary layer problem.

Figure 339: Example grid for the REFSOLN ELEM
strategy with the mild boundary layer problem.

Figure 340: Example grid for the SMOOTH PRED
strategy with the mild boundary layer problem.

Figure 341: Example grid for the T3S strategy with
the mild boundary layer problem.
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Figure 342: Example grid for the TYPEPARAM
strategy with the mild boundary layer problem.

Figure 343: Log-Log plot of the convergence of
the ALTERNATE strategy with the mild boundary
layer problem.

Figure 344: Log-Log plot of the convergence of
the APRIORI strategy with the mild boundary
layer problem.

Figure 345: Log-Log plot of the convergence of
the COEF DECAY strategy with the mild boundary
layer problem.
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Figure 346: Log-Log plot of the convergence of
the COEF ROOT strategy with the mild boundary
layer problem.

Figure 347: Log-Log plot of the convergence of
the H&P ERREST strategy with the mild boundary
layer problem.

Figure 348: Log-Log plot of the convergence of
the NEXT3P strategy with the mild boundary
layer problem.

Figure 349: Log-Log plot of the convergence of the
NLP strategy with the mild boundary layer problem.
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Figure 350: Log-Log plot of the convergence of
the PRIOR2P strategy with the mild boundary
layer problem.

Figure 351: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the mild boundary
layer problem.

Figure 352: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the mild boundary
layer problem.

Figure 353: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the mild boundary
layer problem.
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Figure 354: Log-Log plot of the convergence of the
T3S strategy with the mild boundary layer problem.

Figure 355: Log-Log plot of the convergence of
the TYPEPARAM strategy with the mild boundary
layer problem.
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Figure 356: Log-Log plot of the convergence of all strategies with the mild boundary layer problem.
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strategy A B C
ALTERNATE 2.06x105 -4.10 0.17
APRIORI 8.34x1032 -69.02 0.019
COEF DECAY 31.86 -0.76 0.33
COEF ROOT 90.23 -1.40 0.25
H&P ERREST 1.69x1024 -44.04 0.045
NEXT3P 1.11x105 -5.30 0.16
NLP 90.72 -1.30 0.27
PRIOR2P 9.46x104 -5.24 0.16
REFSOLN EDGE 3.88 -0.11 0.55
REFSOLN ELEM 4.69 -0.21 0.46
SMOOTH PRED 2.50 -0.050 0.62
T3S 1.89x1018 -19.72 0.10
TYPEPARAM 3.24 -0.087 0.59

Table 45: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mild boundary layer prob-

lem.

strategy factor
H&P ERREST 1.00
TYPEPARAM 1.02
REFSOLN EDGE 1.08
NEXT3P 1.14
PRIOR2P 1.14
COEF DECAY 1.18
NLP 1.25
COEF ROOT 1.30
REFSOLN ELEM 1.35
SMOOTH PRED 1.59
ALTERNATE 2.82
T3S 3.13
APRIORI 3.20

Table 46: Factor by which N is larger than the best
strategy for the mild boundary layer problem at low
accuracy, 1.0x10−2.

strategy A B
ALTERNATE 4.63 -0.44
APRIORI 0.065 -0.14
COEF DECAY 23.90 -0.69
COEF ROOT 4.34 -0.53
H&P ERREST 0.22 -0.38
NEXT3P 1.35 -0.47
NLP 7.50 -0.57
PRIOR2P 1.58 -0.48
REFSOLN EDGE 2.01x103 -1.11
REFSOLN ELEM 177.13 -0.83
SMOOTH PRED 9.54x103 -1.10
T3S 607.31 -0.73
TYPEPARAM 4.14x103 -1.21

Table 47: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mild boundary layer prob-
lem.

strategy factor
TYPEPARAM 1.00
REFSOLN EDGE 1.15
SMOOTH PRED 1.51
REFSOLN ELEM 1.96
COEF DECAY 2.41
NLP 3.38
T3S 3.42
COEF ROOT 3.97
NEXT3P 4.05
PRIOR2P 4.14
H&P ERREST 4.75
ALTERNATE 6.80
APRIORI 219.71

Table 48: Factor by which N is larger than the best
strategy for the mild boundary layer problem at high
accuracy, 1.0x10−6.
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Figure 357: The solution of the strong boundary layer problem.

5.13 Boundary Layer, Strong

For the hard version of the boundary layer problem (Section 5.12) we use ǫ = 10−3. For the grid images,
τ = 10−1. In the APRIORI strategy we refine by h if the element touches either of the boundaries with a
boundary layer, and by p otherwise.
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Figure 358: Example grid for the ALTERNATE
strategy with the strong boundary layer problem.

Figure 359: Example grid for the APRIORI strategy
with the strong boundary layer problem.

Figure 360: Example grid for the COEF DECAY
strategy with the strong boundary layer problem.

Figure 361: Example grid for the COEF ROOT
strategy with the strong boundary layer problem.

Figure 362: Example grid for the H&P ERREST
strategy with the strong boundary layer problem.

Figure 363: Example grid for the NEXT3P strategy
with the strong boundary layer problem.
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Figure 364: Example grid for the NLP strategy with
the strong boundary layer problem.

Figure 365: Example grid for the PRIOR2P strategy
with the strong boundary layer problem.

Figure 366: Example grid for the REFSOLN EDGE
strategy with the strong boundary layer problem.

Figure 367: Example grid for the REFSOLN ELEM
strategy with the strong boundary layer problem.

Figure 368: Example grid for the SMOOTH PRED
strategy with the strong boundary layer problem.

Figure 369: Example grid for the T3S strategy with
the strong boundary layer problem.
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Figure 370: Example grid for the TYPEPARAM
strategy with the strong boundary layer problem.

Figure 371: Log-Log plot of the convergence of the
ALTERNATE strategy with the strong boundary
layer problem.

Figure 372: Log-Log plot of the convergence of
the APRIORI strategy with the strong boundary
layer problem.

Figure 373: Log-Log plot of the convergence of the
COEF DECAY strategy with the strong boundary
layer problem.
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Figure 374: Log-Log plot of the convergence of the
COEF ROOT strategy with the strong boundary
layer problem.

Figure 375: Log-Log plot of the convergence of the
H&P ERREST strategy with the strong boundary
layer problem.

Figure 376: Log-Log plot of the convergence of
the NEXT3P strategy with the strong boundary
layer problem.

Figure 377: Log-Log plot of the convergence of the
NLP strategy with the strong boundary layer prob-
lem.
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Figure 378: Log-Log plot of the convergence of
the PRIOR2P strategy with the strong boundary
layer problem.

Figure 379: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the strong boundary
layer problem.

Figure 380: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the strong boundary
layer problem.

Figure 381: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the strong boundary
layer problem.
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Figure 382: Log-Log plot of the convergence of the
T3S strategy with the strong boundary layer prob-
lem.

Figure 383: Log-Log plot of the convergence of the
TYPEPARAM strategy with the strong boundary
layer problem.
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Figure 384: Log-Log plot of the convergence of all strategies with the strong boundary layer problem.
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strategy A B C
ALTERNATE 0.62 -2.40x10−3 0.70
APRIORI 1.67x1033 -64.08 0.018
COEF DECAY 126.02 -0.33 0.28
COEF ROOT 33.06 -0.22 0.30
H&P ERREST 20.03 -0.22 0.30
NEXT3P 874.53 -0.31 0.32
NLP 1.43x1032 -64.00 0.018
PRIOR2P 2.74 -0.052 0.39
REFSOLN EDGE 22.11 -0.085 0.43
REFSOLN ELEM 3.99x1034 -42.08 0.062
SMOOTH PRED 2.71 -2.52x10−3 0.67
T3S 17.85 -0.44 0.26
TYPEPARAM 1.20x1034 -49.03 0.046

Table 49: Parameters of the least squares fit

for ||ehp||E = AeBNC
dof for the strong boundary

layer problem.

strategy factor
REFSOLN EDGE 1.00
ALTERNATE 1.11
T3S 1.64
NEXT3P 1.87
REFSOLN ELEM 1.93
TYPEPARAM 2.76
SMOOTH PRED 2.93
NLP 2.99
H&P ERREST 3.71
COEF DECAY 4.17
COEF ROOT 4.54
PRIOR2P 4.55
APRIORI 13.73

Table 50: Factor by which N is larger than the best
strategy for the strong boundary layer problem at low
accuracy, 1.0x10−2.

strategy A B
ALTERNATE 1.74x103 -0.36
APRIORI 0.22 -0.038
COEF DECAY 15.86 -0.14
COEF ROOT 10.56 -0.13
H&P ERREST 7.67 -0.13
NEXT3P 578.00 -0.27
NLP 0.16 -0.060
PRIOR2P 12.41 -0.13
REFSOLN EDGE 676.92 -0.34
REFSOLN ELEM 3.04x104 -0.36
SMOOTH PRED 2.82x104 -0.32
T3S 1.91 -0.14
TYPEPARAM 40.03 -0.18

Table 51: Parameters of the least squares fit

for ||ehp||E = AeBN
1/3

dof for the strong boundary
layer problem.

strategy factor
ALTERNATE 1.00
REFSOLN EDGE 1.07
REFSOLN ELEM 1.75
NEXT3P 2.00
SMOOTH PRED 2.15
TYPEPARAM 4.67
T3S 6.25
COEF DECAY 7.93
H&P ERREST 8.78
PRIOR2P 9.40
COEF ROOT 9.74
NLP 257.52
APRIORI 926.79

Table 52: Factor by which N is larger than the best
strategy for the strong boundary layer problem at
high accuracy, 1.0x10−6.
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Figure 385: The solution of the mild oscillatory problem.

5.14 Oscillatory, Mild

The oscillatory problem contains several circular waves which get closer together as you approach the origin.
The PDE is a Helmholtz equation with Dirichlet boundary conditions on the unit square. The solution is

sin(
1

α + r
)

where r =
√

x2 + y2. The number of oscillations, N , is determined by the parameter α = 1
Nπ . For the

easy form of this problem we use N = 10.5. τ = 10−3 for the grid images. For APRIORI, refine by h if
the element touches the origin and by p otherwise. In the perspective view of the solution in Figure 385 we
zoomed in on the origin to show the details of the oscillations.
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Figure 386: Example grid for the ALTERNATE
strategy with the mild oscillatory problem, including
details at the origin.

Figure 387: Example grid for the APRIORI strategy
with the mild oscillatory problem, including details
at the origin.

Figure 388: Example grid for the COEF DECAY
strategy with the mild oscillatory problem, including
details at the origin.

Figure 389: Example grid for the COEF ROOT
strategy with the mild oscillatory problem, including
details at the origin.

Figure 390: Example grid for the H&P ERREST
strategy with the mild oscillatory problem, including
details at the origin.

Figure 391: Example grid for the NEXT3P strategy
with the mild oscillatory problem, including details
at the origin.

Figure 392: Example grid for the NLP strategy with
the mild oscillatory problem, including details at the
origin.

Figure 393: Example grid for the PRIOR2P strategy
with the mild oscillatory problem, including details
at the origin.
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Figure 394: Example grid for the REFSOLN EDGE
strategy with the mild oscillatory problem, including
details at the origin.

Figure 395: Example grid for the REFSOLN ELEM
strategy with the mild oscillatory problem, including
details at the origin.

Figure 396: Example grid for the SMOOTH PRED
strategy with the mild oscillatory problem, including
details at the origin.

Figure 397: Example grid for the T3S strategy with
the mild oscillatory problem, including details at the
origin.

Figure 398: Example grid for the TYPEPARAM
strategy with the mild oscillatory problem, including
details at the origin.

Figure 399: Log-Log plot of the convergence of
the ALTERNATE strategy with the mild oscilla-
tory problem.
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Figure 400: Log-Log plot of the convergence of the
APRIORI strategy with the mild oscillatory problem.

Figure 401: Log-Log plot of the convergence of
the COEF DECAY strategy with the mild oscilla-
tory problem.

Figure 402: Log-Log plot of the convergence of
the COEF ROOT strategy with the mild oscilla-
tory problem.

Figure 403: Log-Log plot of the convergence of
the H&P ERREST strategy with the mild oscilla-
tory problem.
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Figure 404: Log-Log plot of the convergence of the
NEXT3P strategy with the mild oscillatory problem.

Figure 405: Log-Log plot of the convergence of the
NLP strategy with the mild oscillatory problem.

Figure 406: Log-Log plot of the convergence of the
PRIOR2P strategy with the mild oscillatory problem.

Figure 407: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the mild oscilla-
tory problem.
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Figure 408: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the mild oscilla-
tory problem.

Figure 409: Log-Log plot of the convergence of
the SMOOTH PRED strategy with the mild oscil-
latory problem.

Figure 410: Log-Log plot of the convergence of the
T3S strategy with the mild oscillatory problem.

Figure 411: Log-Log plot of the convergence of
the TYPEPARAM strategy with the mild oscilla-
tory problem.
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Figure 412: Log-Log plot of the convergence of all strategies with the mild oscillatory problem.
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strategy A B C
ALTERNATE 486.12 -0.66 0.29
APRIORI 20.77 -0.17 0.51
COEF DECAY 10.88 -0.100 0.48
COEF ROOT 0.79 -8.68x10−3 0.63
H&P ERREST 9.40x1035 -69.23 0.027
NEXT3P 6.91 -1.07 0.23
NLP 11.92 -0.032 0.60
PRIOR2P 4.13 -0.15 0.39
REFSOLN EDGE 2.17x1014 -14.63 0.12
REFSOLN ELEM 15.08 -0.13 0.54
SMOOTH PRED 23.96 -0.044 0.61
T3S 202.82 -0.90 0.30
TYPEPARAM 1.47x1034 -54.41 0.055

Table 53: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mild oscillatory problem.

strategy factor
APRIORI 1.00
REFSOLN ELEM 1.16
REFSOLN EDGE 1.48
TYPEPARAM 1.48
T3S 1.73
NEXT3P 1.82
SMOOTH PRED 3.12
H&P ERREST 4.13
COEF DECAY 4.83
NLP 5.29
PRIOR2P 8.48
ALTERNATE 10.98
COEF ROOT 11.52

Table 54: Factor by which N is larger than the best
strategy for the mild oscillatory problem at low ac-
curacy, 1.0x10−2.

strategy A B
ALTERNATE 59.42 -0.34
APRIORI 1.92x104 -1.23
COEF DECAY 899.51 -0.58
COEF ROOT 775.77 -0.43
H&P ERREST 0.12 -0.16
NEXT3P 0.17 -0.23
NLP 7.42x104 -0.78
PRIOR2P 19.89 -0.32
REFSOLN EDGE 784.24 -0.86
REFSOLN ELEM 7.16x103 -1.11
SMOOTH PRED 1.96x105 -1.00
T3S 47.56 -0.62
TYPEPARAM 187.66 -0.77

Table 55: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mild oscillatory problem.

strategy factor
APRIORI 1.00
REFSOLN ELEM 1.12
REFSOLN EDGE 1.91
TYPEPARAM 2.15
SMOOTH PRED 2.42
T3S 3.23
NLP 4.58
COEF DECAY 6.06
COEF ROOT 14.78
NEXT3P 18.81
PRIOR2P 19.79
ALTERNATE 20.32
H&P ERREST 38.23

Table 56: Factor by which N is larger than the best
strategy for the mild oscillatory problem at high ac-
curacy, 1.0x10−6.
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Figure 413: The solution of the strong oscillatory problem.

5.15 Oscillatory, Strong

For the strong version of the oscillatory problem (Section 5.14) we use N = 50.5. τ = 10−2 for the grid
images. For APRIORI, refine by h if the element touches the origin and by p otherwise.
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Figure 414: Example grid for the ALTERNATE
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 415: Example grid for the APRIORI strategy
with the strong oscillatory problem, including details
at the origin.

Figure 416: Example grid for the COEF DECAY
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 417: Example grid for the COEF ROOT
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 418: Example grid for the H&P ERREST
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 419: Example grid for the NEXT3P strategy
with the strong oscillatory problem, including details
at the origin.

Figure 420: Example grid for the NLP strategy with
the strong oscillatory problem, including details at
the origin.

Figure 421: Example grid for the PRIOR2P strategy
with the strong oscillatory problem, including details
at the origin.
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Figure 422: Example grid for the REFSOLN EDGE
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 423: Example grid for the REFSOLN ELEM
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 424: Example grid for the SMOOTH PRED
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 425: Example grid for the T3S strategy with
the strong oscillatory problem, including details at
the origin.

Figure 426: Example grid for the TYPEPARAM
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 427: Log-Log plot of the convergence of
the ALTERNATE strategy with the strong oscilla-
tory problem.
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Figure 428: Log-Log plot of the convergence of the
APRIORI strategy with the strong oscillatory prob-
lem.

Figure 429: Log-Log plot of the convergence of
the COEF DECAY strategy with the strong oscil-
latory problem.

Figure 430: Log-Log plot of the convergence of
the COEF ROOT strategy with the strong oscilla-
tory problem.

Figure 431: Log-Log plot of the convergence of
the H&P ERREST strategy with the strong oscilla-
tory problem.
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Figure 432: Log-Log plot of the convergence of the
NEXT3P strategy with the strong oscillatory prob-
lem.

Figure 433: Log-Log plot of the convergence of the
NLP strategy with the strong oscillatory problem.

Figure 434: Log-Log plot of the convergence of the
PRIOR2P strategy with the strong oscillatory prob-
lem.

Figure 435: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the strong oscilla-
tory problem.
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Figure 436: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the strong oscilla-
tory problem.

Figure 437: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the strong oscilla-
tory problem.

Figure 438: Log-Log plot of the convergence of the
T3S strategy with the strong oscillatory problem.

Figure 439: Log-Log plot of the convergence of
the TYPEPARAM strategy with the strong oscilla-
tory problem.
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Figure 440: Log-Log plot of the convergence of all strategies with the strong oscillatory problem.
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strategy A B C
ALTERNATE 7.11x1032 -35.32 0.054
APRIORI 4.11x1013 -10.82 0.13
COEF DECAY 3.38 -3.09x10−3 0.62
COEF ROOT 1.82 -6.87x10−4 0.69
H&P ERREST 5.31x1013 -22.33 0.046
NEXT3P 7.83x1031 -64.98 0.020
NLP 2.55x1031 -65.75 7.62x10−3

PRIOR2P 1.49x104 -1.66 0.17
REFSOLN EDGE 14.32 -5.33x10−3 0.74
REFSOLN ELEM 4.77x106 -0.59 0.36
SMOOTH PRED 287.34 -0.24 0.38
T3S 2.03x104 -0.19 0.45
TYPEPARAM 3.43x1035 -40.95 0.077

Table 57: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the strong oscillatory prob-

lem.

strategy factor
APRIORI 1.00
T3S 1.45
TYPEPARAM 1.60
REFSOLN EDGE 1.75
REFSOLN ELEM 1.83
SMOOTH PRED 2.55
NEXT3P 2.83
H&P ERREST 9.48
COEF DECAY 22.37
COEF ROOT 51.26
PRIOR2P 52.76
ALTERNATE 458.20
NLP 2.78x106

Table 58: Factor by which N is larger than the best
strategy for the strong oscillatory problem at low ac-
curacy, 1.0x10−3.

strategy A B
ALTERNATE 1.33x103 -0.073
APRIORI 530.95 -0.53
COEF DECAY 6.39x103 -0.23
COEF ROOT 1.24x104 -0.18
H&P ERREST 0.026 -0.060
NEXT3P 7.27x10−3 -0.061
NLP 7.89 -0.027
PRIOR2P 2.18 -0.080
REFSOLN EDGE 2.92x106 -0.75
REFSOLN ELEM 2.38x107 -0.79
SMOOTH PRED 2.17x103 -0.43
T3S 1.14x107 -0.83
TYPEPARAM 6.62x104 -0.62

Table 59: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the strong oscillatory prob-
lem.

strategy factor
T3S 1.00
APRIORI 1.14
REFSOLN EDGE 1.18
REFSOLN ELEM 1.26
TYPEPARAM 1.37
SMOOTH PRED 2.62
COEF DECAY 19.39
COEF ROOT 42.57
NEXT3P 57.15
H&P ERREST 110.63
PRIOR2P 133.66
ALTERNATE 652.42
NLP 5.19x1010

Table 60: Factor by which N is larger than the best
strategy for the strong oscillatory problem at high
accuracy, 1.0x10−6.
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Figure 441: The solution of the mild wave front problem.

5.16 Wave Front, Mild

The circular wave front problem is often used as an example in adaptive grid refinement papers. It is
Poisson’s equation with Dirichlet boundary conditions on the unit square. The solution is

tan−1(α(r − r0))

where r =
√

(x − xc)2 + (y − yc)2. The location of the wave front is defined by a circle with radius r0 and
center (xc, yc). α determines the steepness of the wave front. In addition to the wave front, the solution
has a mild singularity at the center of the circle, if the center is located in the closure of the domain. For
the easy form of this problem we use α = 20, (xc, yc) = (−.05,−.05), and r0 = 0.7. The center is chosen
outside the domain so that only the wave front is a factor in the adaptivity, not the singularity. τ = 10−4

for the grid images. For the APRIORI strategy, refine by h if the element touches the circle that defines the
location of the wave front and has degree at least 3 (chosen arbitrarily), and by p otherwise.
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Figure 442: Example grid for the ALTERNATE
strategy with the mild wave front problem.

Figure 443: Example grid for the APRIORI strategy
with the mild wave front problem.

Figure 444: Example grid for the COEF DECAY
strategy with the mild wave front problem.

Figure 445: Example grid for the COEF ROOT
strategy with the mild wave front problem.

Figure 446: Example grid for the H&P ERREST
strategy with the mild wave front problem.

Figure 447: Example grid for the NEXT3P strategy
with the mild wave front problem.
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Figure 448: Example grid for the NLP strategy with
the mild wave front problem.

Figure 449: Example grid for the PRIOR2P strategy
with the mild wave front problem.

Figure 450: Example grid for the REFSOLN EDGE
strategy with the mild wave front problem.

Figure 451: Example grid for the REFSOLN ELEM
strategy with the mild wave front problem.

Figure 452: Example grid for the SMOOTH PRED
strategy with the mild wave front problem.

Figure 453: Example grid for the T3S strategy with
the mild wave front problem.
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Figure 454: Example grid for the TYPEPARAM
strategy with the mild wave front problem.

Figure 455: Log-Log plot of the convergence of
the ALTERNATE strategy with the mild wave
front problem.

Figure 456: Log-Log plot of the convergence of the
APRIORI strategy with the mild wave front problem.

Figure 457: Log-Log plot of the convergence of
the COEF DECAY strategy with the mild wave
front problem.
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Figure 458: Log-Log plot of the convergence of
the COEF ROOT strategy with the mild wave
front problem.

Figure 459: Log-Log plot of the convergence of
the H&P ERREST strategy with the mild wave
front problem.

Figure 460: Log-Log plot of the convergence of the
NEXT3P strategy with the mild wave front problem.

Figure 461: Log-Log plot of the convergence of the
NLP strategy with the mild wave front problem.
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Figure 462: Log-Log plot of the convergence of the
PRIOR2P strategy with the mild wave front problem.

Figure 463: Log-Log plot of the convergence of
the REFSOLN EDGE strategy with the mild wave
front problem.

Figure 464: Log-Log plot of the convergence of
the REFSOLN ELEM strategy with the mild wave
front problem.

Figure 465: Log-Log plot of the convergence of
the SMOOTH PRED strategy with the mild wave
front problem.
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Figure 466: Log-Log plot of the convergence of the
T3S strategy with the mild wave front problem.

Figure 467: Log-Log plot of the convergence of
the TYPEPARAM strategy with the mild wave
front problem.

156



Figure 468: Log-Log plot of the convergence of all strategies with the mild wave front problem.
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strategy A B C
ALTERNATE 12.84 -1.00 0.26
APRIORI 253.01 -2.60 0.19
COEF DECAY 38.63 -1.47 0.25
COEF ROOT 6.85 -0.88 0.28
H&P ERREST 5.75x107 -11.85 0.093
NEXT3P 1.78x104 -5.39 0.14
NLP 0.35 -0.018 0.70
PRIOR2P 232.22 -2.76 0.18
REFSOLN EDGE 0.73 -0.12 0.52
REFSOLN ELEM 0.97 -0.12 0.52
SMOOTH PRED 2.95 -0.34 0.40
T3S 2.88 -0.17 0.46
TYPEPARAM 0.74 -0.11 0.52

Table 61: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the mild wave front problem.

strategy factor
REFSOLN EDGE 1.00
H&P ERREST 1.01
REFSOLN ELEM 1.03
NEXT3P 1.10
COEF DECAY 1.17
APRIORI 1.17
PRIOR2P 1.28
SMOOTH PRED 1.36
TYPEPARAM 1.37
COEF ROOT 1.48
NLP 2.09
ALTERNATE 2.13
T3S 2.24

Table 62: Factor by which N is larger than the best
strategy for the mild wave front problem at low ac-
curacy, 1.0x10−2.

strategy A B
ALTERNATE 0.75 -0.37
APRIORI 0.53 -0.41
COEF DECAY 1.59 -0.50
COEF ROOT 1.20 -0.43
H&P ERREST 0.14 -0.34
NEXT3P 0.23 -0.37
NLP 136.67 -0.80
PRIOR2P 0.32 -0.35
REFSOLN EDGE 59.61 -0.88
REFSOLN ELEM 84.36 -0.92
SMOOTH PRED 17.97 -0.68
T3S 112.05 -0.73
TYPEPARAM 41.17 -0.77

Table 63: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the mild wave front problem.

strategy factor
REFSOLN ELEM 1.00
REFSOLN EDGE 1.08
TYPEPARAM 1.49
NLP 1.55
SMOOTH PRED 1.85
T3S 2.18
COEF DECAY 2.91
APRIORI 3.88
COEF ROOT 4.22
NEXT3P 4.32
H&P ERREST 4.73
PRIOR2P 5.41
ALTERNATE 6.15

Table 64: Factor by which N is larger than the best
strategy for the mild wave front problem at high ac-
curacy, 1.0x10−6.
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Figure 469: The solution of the steep wave front problem.

5.17 Wave Front, Steep

In the hard version of the wave front problem (Section 5.16) the location of the wave front is the same, but it
is much steeper. The parameters are α = 1000, (xc, yc) = (−.05,−.05), and r0 = 0.7. τ = 10−1 for the grid
images. For the APRIORI strategy, refine by h if the element touches the circle that defines the location of
the wave front and has degree at least 3 (chosen arbitrarily), and by p otherwise.
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Figure 470: Example grid for the ALTERNATE
strategy with the steep wave front problem.

Figure 471: Example grid for the APRIORI strategy
with the steep wave front problem.

Figure 472: Example grid for the COEF DECAY
strategy with the steep wave front problem.

Figure 473: Example grid for the COEF ROOT
strategy with the steep wave front problem.

Figure 474: Example grid for the H&P ERREST
strategy with the steep wave front problem.

Figure 475: Example grid for the NEXT3P strategy
with the steep wave front problem.
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Figure 476: Example grid for the NLP strategy with
the steep wave front problem.

Figure 477: Example grid for the PRIOR2P strategy
with the steep wave front problem.

Figure 478: Example grid for the REFSOLN EDGE
strategy with the steep wave front problem.

Figure 479: Example grid for the REFSOLN ELEM
strategy with the steep wave front problem.

Figure 480: Example grid for the SMOOTH PRED
strategy with the steep wave front problem.

Figure 481: Example grid for the T3S strategy with
the steep wave front problem.
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Figure 482: Example grid for the TYPEPARAM
strategy with the steep wave front problem.

Figure 483: Log-Log plot of the convergence of
the ALTERNATE strategy with the steep wave
front problem.

Figure 484: Log-Log plot of the convergence of the
APRIORI strategy with the steep wave front prob-
lem.

Figure 485: Log-Log plot of the convergence of
the COEF DECAY strategy with the steep wave
front problem.
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Figure 486: Log-Log plot of the convergence of
the COEF ROOT strategy with the steep wave
front problem.

Figure 487: Log-Log plot of the convergence of
the H&P ERREST strategy with the steep wave
front problem.

Figure 488: Log-Log plot of the convergence of the
NEXT3P strategy with the steep wave front problem.

Figure 489: Log-Log plot of the convergence of the
NLP strategy with the steep wave front problem.
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Figure 490: Log-Log plot of the convergence of the
PRIOR2P strategy with the steep wave front prob-
lem.

Figure 491: Log-Log plot of the convergence of
the REFSOLN EDGE strategy with the steep wave
front problem.

Figure 492: Log-Log plot of the convergence of
the REFSOLN ELEM strategy with the steep wave
front problem.

Figure 493: Log-Log plot of the convergence of
the SMOOTH PRED strategy with the steep wave
front problem.
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Figure 494: Log-Log plot of the convergence of the
T3S strategy with the steep wave front problem.

Figure 495: Log-Log plot of the convergence of
the TYPEPARAM strategy with the steep wave
front problem.
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Figure 496: Log-Log plot of the convergence of all strategies with the steep wave front problem.
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strategy A B C
ALTERNATE 19.59 -0.10 0.39
APRIORI 94.82 -0.70 0.23
COEF DECAY 552.77 -1.23 0.20
COEF ROOT 5.72 -0.33 0.27
H&P ERREST 4.61x105 -3.45 0.15
NEXT3P 5.41x105 -4.91 0.12
NLP 6.64x1033 -66.67 0.019
PRIOR2P 1.55x104 -3.28 0.13
REFSOLN EDGE 1.17 -0.028 0.49
REFSOLN ELEM 9.37 -0.11 0.38
SMOOTH PRED 539.94 -0.97 0.22
T3S 3.98 -0.024 0.48
TYPEPARAM 1.46 -0.023 0.49

Table 65: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the steep wave front problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.45
SMOOTH PRED 1.53
NEXT3P 1.63
COEF DECAY 1.64
H&P ERREST 1.65
PRIOR2P 1.68
TYPEPARAM 1.70
COEF ROOT 1.84
ALTERNATE 1.85
APRIORI 2.00
NLP 2.30
T3S 2.76

Table 66: Factor by which N is larger than the best
strategy for the steep wave front problem at low ac-
curacy, 1.0x10−2.

strategy A B
ALTERNATE 87.43 -0.23
APRIORI 1.68 -0.13
COEF DECAY 1.26 -0.13
COEF ROOT 0.79 -0.11
H&P ERREST 2.44 -0.15
NEXT3P 0.31 -0.098
NLP 0.19 -0.067
PRIOR2P 0.35 -0.095
REFSOLN EDGE 53.68 -0.26
REFSOLN ELEM 46.81 -0.23
SMOOTH PRED 3.33 -0.16
T3S 82.83 -0.20
TYPEPARAM 74.60 -0.23

Table 67: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the steep wave front problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.48
ALTERNATE 1.61
TYPEPARAM 1.61
T3S 2.14
SMOOTH PRED 2.69
H&P ERREST 3.09
COEF DECAY 3.93
APRIORI 4.55
COEF ROOT 5.94
NEXT3P 6.31
PRIOR2P 7.74
NLP 70.96

Table 68: Factor by which N is larger than the best
strategy for the steep wave front problem at high ac-
curacy, 1.0x10−6.
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Figure 497: The solution of the asymmetric wave front problem.

5.18 Wave Front, Asymmetric

The asymmetric wave front is similar to the steep wave front except the wave front is not symmetric within
the domain. The parameters are α = 1000, (xc, yc) = (1.5, .25), and r0 = .92. τ = 10−1 for the grid images.
For the APRIORI strategy, refine by h if the element touches the circle that defines the location of the wave
front and has degree at least 3 (chosen arbitrarily), and by p otherwise.
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Figure 498: Example grid for the ALTERNATE
strategy with the asymmetric wave front problem.

Figure 499: Example grid for the APRIORI strategy
with the asymmetric wave front problem.

Figure 500: Example grid for the COEF DECAY
strategy with the asymmetric wave front problem.

Figure 501: Example grid for the COEF ROOT
strategy with the asymmetric wave front problem.

Figure 502: Example grid for the H&P ERREST
strategy with the asymmetric wave front problem.

Figure 503: Example grid for the NEXT3P strategy
with the asymmetric wave front problem.
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Figure 504: Example grid for the NLP strategy with
the asymmetric wave front problem.

Figure 505: Example grid for the PRIOR2P strategy
with the asymmetric wave front problem.

Figure 506: Example grid for the REFSOLN EDGE
strategy with the asymmetric wave front problem.

Figure 507: Example grid for the REFSOLN ELEM
strategy with the asymmetric wave front problem.

Figure 508: Example grid for the SMOOTH PRED
strategy with the asymmetric wave front problem.

Figure 509: Example grid for the T3S strategy with
the asymmetric wave front problem.

170



Figure 510: Example grid for the TYPEPARAM
strategy with the asymmetric wave front problem.

Figure 511: Log-Log plot of the convergence of the
ALTERNATE strategy with the asymmetric wave
front problem.

Figure 512: Log-Log plot of the convergence of
the APRIORI strategy with the asymmetric wave
front problem.

Figure 513: Log-Log plot of the convergence of the
COEF DECAY strategy with the asymmetric wave
front problem.
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Figure 514: Log-Log plot of the convergence of the
COEF ROOT strategy with the asymmetric wave
front problem.

Figure 515: Log-Log plot of the convergence of the
H&P ERREST strategy with the asymmetric wave
front problem.

Figure 516: Log-Log plot of the convergence of
the NEXT3P strategy with the asymmetric wave
front problem.

Figure 517: Log-Log plot of the convergence of the
NLP strategy with the asymmetric wave front prob-
lem.

172



Figure 518: Log-Log plot of the convergence of
the PRIOR2P strategy with the asymmetric wave
front problem.

Figure 519: Log-Log plot of the convergence of
the REFSOLN EDGE strategy with the asymmetric
wave front problem.

Figure 520: Log-Log plot of the convergence of
the REFSOLN ELEM strategy with the asymmetric
wave front problem.

Figure 521: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the asymmetric wave
front problem.
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Figure 522: Log-Log plot of the convergence of the
T3S strategy with the asymmetric wave front prob-
lem.

Figure 523: Log-Log plot of the convergence of the
TYPEPARAM strategy with the asymmetric wave
front problem.
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Figure 524: Log-Log plot of the convergence of all strategies with the asymmetric wave front problem.
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strategy A B C
ALTERNATE 3.07 -0.013 0.53
APRIORI 226.59 -0.89 0.21
COEF DECAY 1.04x104 -2.14 0.17
COEF ROOT 7.24 -0.36 0.26
H&P ERREST 2.31x105 -2.94 0.16
NEXT3P 4.38x107 -7.95 0.093
NLP 0.68 -0.21 0.24
PRIOR2P 1.03x105 -4.18 0.12
REFSOLN EDGE 0.80 -0.019 0.51
REFSOLN ELEM 4.85 -0.071 0.41
SMOOTH PRED 1.00x103 -1.07 0.21
T3S 16.91 -0.068 0.40
TYPEPARAM 2.65 -0.034 0.46

Table 69: Parameters of the least squares fit

for ||ehp||E = AeBNC
dof for the asymmetric wave

front problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.46
NEXT3P 1.52
H&P ERREST 1.63
SMOOTH PRED 1.69
PRIOR2P 1.70
COEF DECAY 1.74
TYPEPARAM 1.77
COEF ROOT 1.86
APRIORI 1.97
ALTERNATE 2.77
T3S 2.96
NLP 6.90

Table 70: Factor by which N is larger than the best
strategy for the asymmetric wave front problem at
low accuracy, 1.0x10−2.

strategy A B
ALTERNATE 227.52 -0.22
APRIORI 1.69 -0.12
COEF DECAY 1.56 -0.13
COEF ROOT 0.83 -0.11
H&P ERREST 4.14 -0.15
NEXT3P 0.24 -0.091
NLP 0.20 -0.045
PRIOR2P 0.44 -0.096
REFSOLN EDGE 31.24 -0.24
REFSOLN ELEM 41.67 -0.21
SMOOTH PRED 4.12 -0.15
T3S 108.10 -0.19
TYPEPARAM 57.80 -0.21

Table 71: Parameters of the least squares fit

for ||ehp||E = AeBN
1/3

dof for the asymmetric wave
front problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.52
TYPEPARAM 1.64
ALTERNATE 1.88
T3S 2.42
H&P ERREST 2.79
SMOOTH PRED 2.93
COEF DECAY 4.01
APRIORI 4.52
COEF ROOT 5.99
NEXT3P 6.92
PRIOR2P 7.67
NLP 96.23

Table 72: Factor by which N is larger than the best
strategy for the asymmetric wave front problem at
high accuracy, 1.0x10−6.
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Figure 525: The solution of the singular well problem.

5.19 Singular Well

In the wave front problems of the previous three sections, the center of the circle was placed outside the
domain so the mild singularity at the center of the circle was not a factor. In the singular well problem, the
center of the circle is placed at the center of the domain and the wave front is relatively mild, effectively
creating a well with a mild singularity at the center. α = 50, (xc, yc) = (.5, .5), and r0 = .25. τ = 10−3 for
the grid images. For the APRIORI strategy, refine by h if the element touches the circle that defines the
location of the wave front and has degree at least 3 (chosen arbitrarily), or touches the center of the circle,
and by p otherwise.
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Figure 526: Example grid for the ALTERNATE
strategy with the singular well problem.

Figure 527: Example grid for the APRIORI strategy
with the singular well problem.

Figure 528: Example grid for the COEF DECAY
strategy with the singular well problem.

Figure 529: Example grid for the COEF ROOT
strategy with the singular well problem.

Figure 530: Example grid for the H&P ERREST
strategy with the singular well problem.

Figure 531: Example grid for the NEXT3P strategy
with the singular well problem.
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Figure 532: Example grid for the NLP strategy with
the singular well problem.

Figure 533: Example grid for the PRIOR2P strategy
with the singular well problem.

Figure 534: Example grid for the REFSOLN EDGE
strategy with the singular well problem.

Figure 535: Example grid for the REFSOLN ELEM
strategy with the singular well problem.

Figure 536: Example grid for the SMOOTH PRED
strategy with the singular well problem.

Figure 537: Example grid for the T3S strategy with
the singular well problem.
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Figure 538: Example grid for the TYPEPARAM
strategy with the singular well problem.

Figure 539: Log-Log plot of the convergence of the
ALTERNATE strategy with the singular well prob-
lem.

Figure 540: Log-Log plot of the convergence of the
APRIORI strategy with the singular well problem.

Figure 541: Log-Log plot of the convergence of the
COEF DECAY strategy with the singular well prob-
lem.
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Figure 542: Log-Log plot of the convergence of the
COEF ROOT strategy with the singular well prob-
lem.

Figure 543: Log-Log plot of the convergence of the
H&P ERREST strategy with the singular well prob-
lem.

Figure 544: Log-Log plot of the convergence of the
NEXT3P strategy with the singular well problem.

Figure 545: Log-Log plot of the convergence of the
NLP strategy with the singular well problem.
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Figure 546: Log-Log plot of the convergence of the
PRIOR2P strategy with the singular well problem.

Figure 547: Log-Log plot of the convergence of
the REFSOLN EDGE strategy with the singular
well problem.

Figure 548: Log-Log plot of the convergence of
the REFSOLN ELEM strategy with the singular
well problem.

Figure 549: Log-Log plot of the convergence of
the SMOOTH PRED strategy with the singular
well problem.
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Figure 550: Log-Log plot of the convergence of the
T3S strategy with the singular well problem.

Figure 551: Log-Log plot of the convergence of the
TYPEPARAM strategy with the singular well prob-
lem.
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Figure 552: Log-Log plot of the convergence of all strategies with the singular well problem.
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strategy A B C
ALTERNATE 2.01 -0.39 0.30
APRIORI 36.10 -1.26 0.23
COEF DECAY 279.76 -2.27 0.18
COEF ROOT 10.49 -0.92 0.24
H&P ERREST 1.61x1010 -16.68 0.065
NEXT3P 7.76 -0.84 0.25
NLP 3.96x1033 -71.95 0.015
PRIOR2P 428.91 -2.78 0.16
REFSOLN EDGE 2.47 -0.24 0.40
REFSOLN ELEM 0.43 -0.048 0.52
SMOOTH PRED 3.58 -0.33 0.35
T3S 2.72x1018 -31.13 0.052
TYPEPARAM 0.82 -0.16 0.39

Table 73: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the singular well problem.

strategy factor
REFSOLN EDGE 1.00
T3S 1.28
H&P ERREST 1.36
SMOOTH PRED 1.62
COEF DECAY 1.67
APRIORI 1.69
NEXT3P 1.74
REFSOLN ELEM 1.75
PRIOR2P 1.93
COEF ROOT 2.28
TYPEPARAM 2.40
ALTERNATE 2.69
NLP 2.80

Table 74: Factor by which N is larger than the best
strategy for the singular well problem at low accu-
racy, 1.0x10−2.

strategy A B
ALTERNATE 0.82 -0.24
APRIORI 0.56 -0.27
COEF DECAY 0.60 -0.26
COEF ROOT 0.54 -0.23
H&P ERREST 0.093 -0.18
NEXT3P 0.63 -0.26
NLP 0.10 -0.11
PRIOR2P 0.25 -0.20
REFSOLN EDGE 19.52 -0.56
REFSOLN ELEM 24.56 -0.48
SMOOTH PRED 5.38 -0.40
T3S 0.27 -0.26
TYPEPARAM 2.60 -0.31

Table 75: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the singular well problem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.64
SMOOTH PRED 2.13
T3S 3.62
TYPEPARAM 3.95
APRIORI 4.19
COEF DECAY 4.97
NEXT3P 5.04
ALTERNATE 6.90
COEF ROOT 7.15
PRIOR2P 8.38
H&P ERREST 9.63
NLP 326.76

Table 76: Factor by which N is larger than the best
strategy for the singular well problem at high accu-
racy, 1.0x10−6.
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Figure 553: The solution of the intersecting interfaces problem.

5.20 Intersecting Interfaces

The intersecting interfaces problem has piecewise constant coefficients which create a very strong singularity
at the center of the domain and discontinuous derivatives along the x and y axes. The boundary conditions
are Dirichlet on the domain (−1, 1)× (−1, 1). For the grid images, τ = 5x10−3. For the APRIORI strategy,
refine by h if the element touches the origin and by p otherwise.
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Figure 554: Example grid for the ALTERNATE
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 555: Example grid for the APRIORI strat-
egy with the intersecting interfaces problem, includ-
ing details at the singularity.

Figure 556: Example grid for the COEF DECAY
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 557: Example grid for the COEF ROOT
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 558: Example grid for the H&P ERREST
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 559: Example grid for the NEXT3P strat-
egy with the intersecting interfaces problem, includ-
ing details at the singularity.

Figure 560: Example grid for the NLP strategy with
the intersecting interfaces problem, including details
at the singularity.

Figure 561: Example grid for the PRIOR2P strat-
egy with the intersecting interfaces problem, includ-
ing details at the singularity.
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Figure 562: Example grid for the REFSOLN EDGE
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 563: Example grid for the REFSOLN ELEM
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 564: Example grid for the SMOOTH PRED
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 565: Example grid for the T3S strategy with
the intersecting interfaces problem, including details
at the singularity.

Figure 566: Example grid for the TYPEPARAM
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 567: Log-Log plot of the convergence of the
ALTERNATE strategy with the intersecting inter-
faces problem.
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Figure 568: Log-Log plot of the convergence of
the APRIORI strategy with the intersecting inter-
faces problem.

Figure 569: Log-Log plot of the convergence of the
COEF DECAY strategy with the intersecting inter-
faces problem.

Figure 570: Log-Log plot of the convergence of the
COEF ROOT strategy with the intersecting inter-
faces problem.

Figure 571: Log-Log plot of the convergence of the
H&P ERREST strategy with the intersecting inter-
faces problem.
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Figure 572: Log-Log plot of the convergence of
the NEXT3P strategy with the intersecting inter-
faces problem.

Figure 573: Log-Log plot of the convergence of the
NLP strategy with the intersecting interfaces prob-
lem.

Figure 574: Log-Log plot of the convergence of
the PRIOR2P strategy with the intersecting inter-
faces problem.

Figure 575: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the intersecting in-
terfaces problem.
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Figure 576: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the intersecting in-
terfaces problem.

Figure 577: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the intersecting in-
terfaces problem.

Figure 578: Log-Log plot of the convergence of the
T3S strategy with the intersecting interfaces prob-
lem.

Figure 579: Log-Log plot of the convergence of the
TYPEPARAM strategy with the intersecting inter-
faces problem.
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Figure 580: Log-Log plot of the convergence of all strategies with the intersecting interfaces problem.
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strategy A B C
ALTERNATE 1.95 -0.14 0.29
APRIORI 1.07x103 -3.13 0.15
COEF DECAY 22.60 -0.77 0.25
COEF ROOT 31.67 -0.99 0.22
H&P ERREST 3.45 -0.16 0.32
NEXT3P 3.64 -0.14 0.35
NLP 3.58 -0.14 0.34
PRIOR2P 331.68 -2.72 0.13
REFSOLN EDGE 1.56x1033 -70.97 0.014
REFSOLN ELEM 5.46 -0.19 0.37
SMOOTH PRED 4.86 -0.15 0.40
T3S 7.68 -0.71 0.17
TYPEPARAM 199.54 -2.29 0.15

Table 77: Parameters of the least squares fit

for ||ehp||E = AeBNC
dof for the intersecting inter-

faces problem.

strategy factor
REFSOLN EDGE 1.00
APRIORI 1.08
COEF DECAY 1.71
COEF ROOT 1.83
TYPEPARAM 1.83
PRIOR2P 1.92
SMOOTH PRED 2.35
REFSOLN ELEM 2.41
NEXT3P 5.88
NLP 7.08
H&P ERREST 8.58
ALTERNATE 18.30
T3S 19.15

Table 78: Factor by which N is larger than the best
strategy for the intersecting interfaces problem at low
accuracy, 2.0x10−1.

strategy A B
ALTERNATE 1.47 -0.075
APRIORI 8.29 -0.35
COEF DECAY 6.51 -0.29
COEF ROOT 5.48 -0.27
H&P ERREST 3.12 -0.14
NEXT3P 4.23 -0.18
NLP 3.90 -0.16
PRIOR2P 3.86 -0.23
REFSOLN EDGE 6.68 -0.33
REFSOLN ELEM 7.58 -0.28
SMOOTH PRED 8.59 -0.30
T3S 1.43 -0.061
TYPEPARAM 3.65 -0.23

Table 79: Parameters of the least squares fit

for ||ehp||E = AeBN
1/3

dof for the intersecting inter-
faces problem.

strategy factor
APRIORI 1.00
REFSOLN EDGE 1.47
COEF DECAY 1.56
SMOOTH PRED 1.67
REFSOLN ELEM 1.83
COEF ROOT 1.84
TYPEPARAM 2.32
PRIOR2P 2.63
NEXT3P 5.57
NLP 7.07
H&P ERREST 10.01
ALTERNATE 38.16
T3S 65.48

Table 80: Factor by which N is larger than the best
strategy for the intersecting interfaces problem at
high accuracy, 2.0x10−2.
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Figure 581: The solution of the multiple difficulties problem.

5.21 Multiple Difficulties

The multiple difficulties problem combines several of the difficulties of the other problems into a single
problem. It contains a reentrant corner point singularity, wave front, peak and boundary layer. For the
selected parameters, the peak falls on the wave front, and the wave front intersects the boundary layer and
point singularity. The parameters are:

• reentrant corner ω = 3π/2

• center of circle for wave front (0,−3/4)

• radius of circle for wave front 3/4

• strength of wave front α = 200

• center of peak (
√

5/4,−1/4)

• strength of peak α = 1000

• strength of boundary layer ǫ = 1/100

For the grid images, τ = 10−2. The APRIORI method refines by h in the same cases as it did in the
individual problems.
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Figure 582: Example grid for the ALTERNATE
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 583: Example grid for the APRIORI strat-
egy with the multiple difficulties problem, including
details at the singularity.

Figure 584: Example grid for the COEF DECAY
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 585: Example grid for the COEF ROOT
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 586: Example grid for the H&P ERREST
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 587: Example grid for the NEXT3P strategy
with the multiple difficulties problem, including de-
tails at the singularity.

Figure 588: Example grid for the NLP strategy with
the multiple difficulties problem, including details at
the singularity.

Figure 589: Example grid for the PRIOR2P strat-
egy with the multiple difficulties problem, including
details at the singularity.
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Figure 590: Example grid for the REFSOLN EDGE
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 591: Example grid for the REFSOLN ELEM
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 592: Example grid for the SMOOTH PRED
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 593: Example grid for the T3S strategy with
the multiple difficulties problem, including details at
the singularity.

Figure 594: Example grid for the TYPEPARAM
strategy with the multiple difficulties problem, in-
cluding details at the singularity.

Figure 595: Log-Log plot of the convergence of the
ALTERNATE strategy with the multiple difficul-
ties problem.
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Figure 596: Log-Log plot of the convergence of
the APRIORI strategy with the multiple difficul-
ties problem.

Figure 597: Log-Log plot of the convergence of the
COEF DECAY strategy with the multiple difficul-
ties problem.

Figure 598: Log-Log plot of the convergence of the
COEF ROOT strategy with the multiple difficul-
ties problem.

Figure 599: Log-Log plot of the convergence of the
H&P ERREST strategy with the multiple difficul-
ties problem.
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Figure 600: Log-Log plot of the convergence of the
NEXT3P strategy with the multiple difficulties prob-
lem.

Figure 601: Log-Log plot of the convergence of the
NLP strategy with the multiple difficulties problem.

Figure 602: Log-Log plot of the convergence of
the PRIOR2P strategy with the multiple difficul-
ties problem.

Figure 603: Log-Log plot of the convergence of the
REFSOLN EDGE strategy with the multiple difficul-
ties problem.
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Figure 604: Log-Log plot of the convergence of the
REFSOLN ELEM strategy with the multiple difficul-
ties problem.

Figure 605: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the multiple difficul-
ties problem.

Figure 606: Log-Log plot of the convergence of the
T3S strategy with the multiple difficulties problem.

Figure 607: Log-Log plot of the convergence of the
TYPEPARAM strategy with the multiple difficul-
ties problem.
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Figure 608: Log-Log plot of the convergence of all strategies with the multiple difficulties problem.
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strategy A B C
ALTERNATE 275.97 -1.03 0.24
APRIORI 2.97x1037 -75.72 0.018
COEF DECAY 149.10 -1.15 0.22
COEF ROOT 3.14 -0.33 0.28
H&P ERREST 2.14x1014 -19.96 0.066
NEXT3P 3.98x106 -7.65 0.098
NLP 1.41x1033 -68.91 0.016
PRIOR2P 1.92x103 -2.69 0.15
REFSOLN EDGE 1.57 -0.073 0.46
REFSOLN ELEM 3.01 -0.076 0.45
SMOOTH PRED 3.29 -0.14 0.38
T3S 150.22 -0.84 0.24
TYPEPARAM 70.19 -0.62 0.27

Table 81: Parameters of the least squares fit for

||ehp||E = AeBNC
dof for the multiple difficulties prob-

lem.

strategy factor
REFSOLN EDGE 1.00
H&P ERREST 1.40
REFSOLN ELEM 1.43
TYPEPARAM 1.49
ALTERNATE 1.52
NEXT3P 1.53
SMOOTH PRED 1.71
COEF DECAY 1.77
PRIOR2P 1.90
APRIORI 1.98
T3S 2.05
COEF ROOT 2.09
NLP 2.40

Table 82: Factor by which N is larger than the best
strategy for the multiple difficulties problem at low
accuracy, 1.0x10−2.

strategy A B
ALTERNATE 7.15 -0.25
APRIORI 0.021 -0.062
COEF DECAY 1.32 -0.19
COEF ROOT 0.82 -0.16
H&P ERREST 0.47 -0.17
NEXT3P 0.13 -0.12
NLP 0.18 -0.089
PRIOR2P 0.37 -0.14
REFSOLN EDGE 28.18 -0.36
REFSOLN ELEM 60.29 -0.35
SMOOTH PRED 11.05 -0.26
T3S 4.61 -0.22
TYPEPARAM 7.86 -0.27

Table 83: Parameters of the least squares fit for

||ehp||E = AeBN
1/3

dof for the multiple difficulties prob-
lem.

strategy factor
REFSOLN EDGE 1.00
REFSOLN ELEM 1.26
TYPEPARAM 2.07
SMOOTH PRED 2.18
ALTERNATE 2.37
T3S 3.34
H&P ERREST 4.02
COEF DECAY 4.13
COEF ROOT 6.20
NEXT3P 7.82
PRIOR2P 8.00
APRIORI 39.60
NLP 224.68

Table 84: Factor by which N is larger than the best
strategy for the multiple difficulties problem at high
accuracy, 1.0x10−6.
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5.22 Computation Time

In the previous sections we presented performance results for the hp-adaptive strategies on a number of
test problems in terms of error vs. the number of degrees of freedom. It would be interesting to also see
a comparison in terms of error vs. computation time. However, we do not believe we could perform a
fair comparison of that nature at this time for a number of reasons, not the least of which is that the
implementation of the strategies in PHAML emphasized correctness of the method and was not tuned for
optimal performance. Nevertheless, to satisfy one’s curiosity about computation time, we present timing
results for one problem, the mild peak problem at a tolerance of 10−6. These times should not be taken
too seriously; they should only be viewed as a rough estimate of the relative time required by each of the
strategies.

These computations were performed in single user mode on a single core of a Dell Latitude D630 with
the Intel Core 2 Duo processor T7700 operating under the CentOS 5.5 distribution of Linux with the 2.6.18
kernel. PHAML Version 1.8.1 was compiled with the Intel Fortran 95 compiler Version 11.1.072 using -O
for optimization.

The results are given in Table 85. The first column gives the total wall clock time (in seconds) spent
in refinement. There is some variation in the number of times each strategy went through the refine/solve
loop making it difficult to compare the time spent in a single refinement phase of the loop using only these
numbers. The second column gives the number of refine/solve loops, and the third gives the quotient of the
first two columns to obtain the average time spent in a refinement phase. These figures show pretty much
what one would expect a priori. Most of the strategies use between 0.035 and 0.111 seconds per refinement
phase, which, due to the considerations above, should be considered approximately equal in this context,
roughly .07 seconds. The H&P ERREST strategy takes about twice as long, which makes sense because it
computes two error indicators instead of one. The NEXT3P strategy takes about ten times longer, which
makes sense because, not only is it computing three error indicators, but those error indicators are more
expensive than the basic error indicator because they use a higher polynomial degree. The two reference
solution strategies are roughly equal and take much longer than most strategies because they solve the
expensive reference solution. Finally, NLP is extremely expensive, taking about 5000 times as long as the
typical strategy because it has to solve the optimization problem.

5.23 Summary and Observations

In this section, we summarize the results in Sections 5.1–5.21 to examine the relative performance of the
strategies in different situations. The test problems are grouped into six categories: easy problems, hard
problems, and singular problems at low accuracy and high accuracy. We present the comparisons in two
forms.

Tables 86–91 give a straight-forward ranking of the strategies for each problem based on the 3-parameter
least squares fit. The four best strategies for each problem are highlighted in green, and the four worst in
red to make it easy to see which strategies are consistently good or bad in a given category.
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strategy total time number of average time
in refinement ref/solve loops per refinement

(s.) (s./loop)
ALTERNATE 1.55 16 0.097
APRIORI 0.95 27 0.035
COEF DECAY 0.94 11 0.085
COEF ROOT 0.88 12 0.073
H&P ERREST 1.44 11 0.131
NEXT3P 7.09 11 0.645
NLP 3969.16 13 305.320
PRIOR2P 1.33 12 0.111
REFSOLN EDGE 29.38 19 1.546
REFSOLN ELEM 20.01 12 1.668
SMOOTH PRED 1.03 11 0.094
T3S 0.38 8 0.048
TYPEPARAM 1.08 15 0.072

Table 85: Wall clock time for the refinement phases of the solution of the mild peak problem with τ = 10−6,
the number of refine/solve loops, and the average time for a refinement phase of the loops.
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ALTERNATE 11 13 11 12 12

APRIORI 4 3 13 1 6

COEF DECAY 6 12 6 9 5

COEF ROOT 7 9 8 13 10

H&P ERREST 9 6 1 8 2

NEXT3P 2 5 4 6 4

NLP 12 7 7 10 11

PRIOR2P 8 10 5 11 7

REFSOLN EDGE 1 1 3 3 1

REFSOLN ELEM 5 2 9 2 3

SMOOTH PRED 10 11 10 7 8

T3S 13 8 12 5 13

TYPEPARAM 3 4 2 4 9

Table 86: Low accuracy ranking of each strategy for
easy problems.
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ALTERNATE 9 2 12 10 11

APRIORI 11 13 1 11 10

COEF DECAY 5 10 9 5 7

COEF ROOT 7 11 10 9 9

H&P ERREST 8 9 8 6 4

NEXT3P 4 4 7 4 3

NLP 12 8 13 12 13

PRIOR2P 6 12 11 7 6

REFSOLN EDGE 1 1 4 1 1

REFSOLN ELEM 2 5 5 2 2

SMOOTH PRED 13 7 6 3 5

T3S 10 3 2 13 12

TYPEPARAM 3 6 3 8 8

Table 87: Low accuracy ranking of each strategy for
hard problems.
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ALTERNATE 12 13 12 12 13

APRIORI 1 2 13 1 8

COEF DECAY 8 12 5 8 7

COEF ROOT 6 10 8 9 9

H&P ERREST 13 8 11 13 11

NEXT3P 9 7 9 10 10

NLP 7 9 6 7 4

PRIOR2P 10 11 10 11 12

REFSOLN EDGE 4 4 2 3 2

REFSOLN ELEM 3 1 4 2 1

SMOOTH PRED 5 6 3 5 5

T3S 11 5 7 6 6

TYPEPARAM 2 3 1 4 3

Table 88: High accuracy ranking of each strategy for
easy problems.
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ALTERNATE 13 1 12 3 4

APRIORI 8 13 2 9 9

COEF DECAY 10 8 7 8 8

COEF ROOT 9 11 8 10 10

H&P ERREST 6 9 10 7 6

NEXT3P 7 4 9 11 11

NLP 5 12 13 13 13

PRIOR2P 11 10 11 12 12

REFSOLN EDGE 2 2 3 1 1

REFSOLN ELEM 1 3 4 2 2

SMOOTH PRED 12 5 6 6 7

T3S 4 7 1 5 5

TYPEPARAM 3 6 5 4 3

Table 89: High accuracy ranking of each strategy for
hard problems.
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ALTERNATE 11 11 11 12 12 12 11 10 12 12 5

APRIORI 10 9 5 3 3 2 8 5 6 2 10

COEF DECAY 3 1 1 2 2 3 3 4 5 3 8

COEF ROOT 5 2 3 4 5 5 4 12 10 4 12

H&P ERREST 1 3 7 8 8 8 5 1 3 11 2

NEXT3P 2 5 8 9 9 6 10 3 7 9 6

NLP 4 7 4 11 11 11 9 9 13 10 13
PRIOR2P 8 6 6 6 7 9 6 6 9 6 9

REFSOLN EDGE 6 4 2 1 1 1 1 11 1 1 1

REFSOLN ELEM 9 8 9 5 6 4 7 2 8 8 3

SMOOTH PRED 12 12 12 10 10 10 12 8 4 7 7

T3S 13 13 13 13 13 13 13 7 2 13 11

TYPEPARAM 7 10 10 7 4 7 2 13 11 5 4

Table 90: Low accuracy ranking of each strategy for singular problems.

The ranking of the strategies indicates which strategies did best, but it does not indicate how much better
one strategy is than another (or how close they are to being nearly the same). For this we can examine
the factor by which N for a particular strategy is larger than N for the best strategy, as described at the
beginning of Section 5. The factors are illustrated in Figures 609–614. Each circle represents the factor for
one problem in the given category. If there is a number at the top of the graph, it indicates the number of
factors that are larger than 10. The strategies that performed the best in that category have all the circles
near the bottom of the graph, as in REFSOLN EDGE, REFSOLN ELEM and TYPEPARAM in Figure
609. To the right of the graph, the strategies are ranked according to the average of the factors for that
category.

Based on the tables and figures in this section and Section 5.22, we make the following observations.

• REFSOLN EDGE and REFSOLN ELEM are the top two strategies in all categories except singular
problems at low accuracy where they are in the top 5 with factors less than 2. Also note that REF-
SOLN EDGE would have been the best strategy in that category if it had not performed poorly on
the battery problem. The two strategies are equally good with each of them having the better average
factor in three categories, and the largest ratio of their average factors being about 1.35. However, these
strategies are considerably more expensive than most strategies.

• TYPEPARAM is the third best strategy in all categories of nonsingular problems, and is in the middle
of the pack for singular problems where it has an average factor of 2.26 for low accuracy and 3.27 for
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ALTERNATE 13 12 12 12 12 11 12 10 9 12 5

APRIORI 1 1 1 3 2 2 2 3 6 1 12

COEF DECAY 7 7 7 7 8 8 8 7 7 3 8

COEF ROOT 4 6 6 6 7 10 6 12 10 6 9

H&P ERREST 8 9 9 10 10 7 9 1 12 11 7

NEXT3P 10 10 11 11 9 13 13 8 8 9 10

NLP 11 11 10 9 11 6 5 4 13 10 13

PRIOR2P 6 4 4 5 6 9 4 9 11 8 11

REFSOLN EDGE 3 3 2 1 1 1 1 11 1 2 1

REFSOLN ELEM 2 2 3 2 3 3 3 2 2 5 2

SMOOTH PRED 9 5 5 4 4 4 7 6 3 4 4

T3S 12 13 13 13 13 12 11 5 4 13 6

TYPEPARAM 5 8 8 8 5 5 10 13 5 7 3

Table 91: High accuracy ranking of each strategy for singular problems.
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Figure 609: Factors by which N is larger than the best strategy for each easy problem at low accuracy. The
table contains the average over all problems in the category.

Figure 610: Factors by which N is larger than the best strategy for each easy problem at high accuracy.
The table contains the average over all problems in the category.
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Figure 611: Factors by which N is larger than the best strategy for each hard problem at low accuracy. The
table contains the average over all problems in the category.

Figure 612: Factors by which N is larger than the best strategy for each hard problem at high accuracy.
The table contains the average over all problems in the category.
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Figure 613: Factors by which N is larger than the best strategy for each singular problem at low accuracy.
The table contains the average over all problems in the category.

Figure 614: Factors by which N is larger than the best strategy for each singular problem at high accuracy.
The table contains the average over all problems in the category.
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high accuracy.

• SMOOTH PRED is in the top 5 in all categories at high accuracy, and is the third best strategy for
singular problems at high accuracy. But at low accuracy its average factors are in the middle of the
pack and it is in the bottom four for many problems.

• APRIORI performs very well on singular problems with known point singularities and three of the five
easy problems at both low and high accuracy. But it performs poorly on the hard problems, except for
the strong oscillatory problem, and very poorly with the boundary layer.

• NEXT3P performs very well on nonsingular problems at low accuracy and fairly well on singular prob-
lems at low accuracy, but it is a bit more expensive than most strategies. It is below the middle of the
pack at high accuracy with average factors around 5.

• T3S performs fairly well on nonsingular problems, but very poorly on singular problems where it has
the largest average factor at both low and high accuracy, and is the worst strategy on about half of the
singular problems.

• PRIOR2P performs poorly on nonsingular problems, but did very well on singular problems at low
accuracy and fairly well on singular problems at high accuracy.

• COEF DECAY is in the middle of the pack in all categories except for singular problems at low accuracy
where it has the smallest average factor and is in the top four for most problems.

• H&P ERREST is in the middle of the pack in all categories except easy problems at high accuracy
where it performed poorly.

• COEF ROOT performed poorly on nonsingular problems and is in the middle of the pack on singular
problems.

• ALTERNATE performs very poorly in all categories, although it did well on a few of the hard problems.

• NLP performs poorly in most cases and is extremely expensive.

6 Conclusion and Future Work

In this paper we presented the results of a study of strategies for the hp-adaptive finite element method for
2D linear elliptic partial differential equations using newest node bisection of triangles. The hp-strategies are
methods for determining how to select between the different possibilities of h- and p-refinement. Thirteen
strategies were described and compared in a numerical experiment using 21 test problems. The primary
metric for comparison was the convergence of the relative energy norm of the error vs. the number of degrees
of freedom. A rough comparison of computation time was also presented, confirming the a priori expectations
of the relative expense of the strategies.

We found that the REFSOLN EDGE and REFSOLN ELEM strategies performed best overall, in con-
vergence, and are comparable to each other. However, they are considerably more expensive than other
viable strategies. For problems with known point singularities and no other significant features, APRIORI
appears to be the less expensive method of choice. For nonsingular problems, TYPEPARAM performs very
well and is quite inexpensive. Another inexpensive strategy that performed very well at high accuracy is
SMOOTH PRED. Most of the other strategies have their good and bad moments.
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Since the determination of what strategies to include in this study, other strategies have come to our
attention or have come into existence. For future work we will extend the results of this study to include
additional strategies as they are discovered. Also, we hope to use the lessons learned from this study to
develop a better general purpose hp-strategy. For example, is it possible to get the excellent convergence
performance of the reference solution strategies without the expense of computing the reference solution
by combining some aspects of the reference solution strategies with some aspects of other strategies? Our
conclusion is that, at this time, there is still much opportunity for the development of a general purpose
hp-adaptive strategy that is both efficient and effective.
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[14] B. Guo and I. Babuška, The h-p version of the finite element method. Part 1: The basic approximation

results, Comput. Mech. 1 (1986), 21–41.
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