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Abstract

The hp version of the nite element method ( hp-FEM) combined with adaptive mesh re nement is a
particularly e cient method for solving partial di erential equations be  cause it can achieve a convergence
rate that is exponential in the number of degrees of freedom. hp-FEM allows for re nement in both the
element size, h, and the polynomial degree, p. Like adaptive re nement for the h version of the nite
element method, a posteriori error estimates can be used to determine where the mesh needs to be re ned,
but a single error estimate can not simultaneously determine whether it is be tter to do the re nement by h
or by p. Several strategies for making this determination have been proposed ove the years. In this paper
we summarize these strategies and present the results of a numerical expgment to study the convergence
properties of these strategies.

Keywords: elliptic partial di erential equations, nite elements, hp-adaptive strategy, hp-FEM

1 Introduction

The numerical solution of partial di erential equations (PDES) is the most compute-intensive part of a wide
range of scienti ¢ and engineering applications. Consequently the deslopment and application of faster and
more accurate methods for solving partial di erential equations has reeived much attention in the past fty
years. Many of the applications at the cutting edge of research are extraordarily challenging. For these
problems it is necessary to allocate computing resources in an optimalay in order to have any chance at
solving the problem. Determining the best grid and approximation space on which to compute the solution
is a central concern in this regard. Unfortunately, it is rarely posside to determine an optimal grid in
advance. Thus, developing self-adaptive techniques which lead toptimal resource allocation is critical for
future progress in many elds.

Self-adaptive methods have been studied for over 30 years now. There often cast in the context of
nite element methods, where the domain of the PDE is partitioned into a mesh consisting of a number of
elements (in two dimensions, usually triangles or rectangles), andhe approximate solution is a polynomial
over each element. Most of the work has focused oh-adaptive methods. In these methods, the mesh size,
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h, is adapted locally by means of a local error estimator with the goal of placig the smallest elements in the
areas where they will do the most good. In particular, elements that tave a large error estimate get re ned
so that ultimately the error estimates, and presumably the error, areapproximately equal over all elements.
h-adaptive methods are quite well understood now, and are beginningp be used in practice.

Recently, the research community has begun to focus more attention omp-adaptive methods. In these
methods, one not only locally adapts the size of the mesh, but also thealjree of the polynomials,p. The
attraction of hp-adaptivity is that the error converges at an exponential rate in the number of degrees of
freedom, as opposed to a polynomial rate for xedp. Much of the theoretical work showing the advantages
of hp-adaptive methods was done in the 1980's, but it wasn't until the 1990's that pactical implementation
began to be studied. The new complication is that the local error estinator is no longer su cient to guide
the adaptivity. It tells you which elements should be re ned, but it does not indicate whether it is better to
re ne the element by h or by p. A method for making that determination is called an hp-adaptive strategy.
A number of strategies have been proposed, but it is not clear which orseperform best under di erent
situations, or even if any of the strategies are good enough to be used as a geal purpose solver. In this
paper we present an experimental comparison of severéip-adaptive strategies.

Any study of this type is necessarily limited in scope. The comparisn will be restricted to steady-state
linear elliptic partial di erential equations on bounded domains in tw o dimensions with Dirichlet, natural
or mixed boundary conditions. The standard Galerkin nite element method will be used with the space
of continuous piecewise polynomial functions over triangles that are r@ed by the newest node bisection
method.

The remainder of the paper is organized as follows. In Sectidr 2 we de nitae equation to be solved, present
the nite element method, and give somea priori error estimates. In Section[3 we give the details of the
hp-adaptive nite element algorithm used in the experiments. Sectbn[4 de nes the hp-adaptive strategies to
be compared. Sectiorj b contains the results of the experiments. Fatly, we draw our conclusions in Section
6.

2 The Finite Element Method

We consider the elliptic partial di erential equation
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where is a bounded, connected, polygonal, open region irR? with boundary @= @p[ @n, @b \
@ n = ;. Dierentiation with respect to s is with respect to a counterclockwise parameterization of the

boundary (x(s);y(s)) with k(dx=ds dy=d9k = 1. If ¢ = 0 Equation E]is the natural boundary condition.
If, in addition, p= g =1 or @ n consists of line segments that are parallel to the axes, Equatiofi|3 is
the Neumann boundary condition. We assume the data in Equationg |{{3 satigfthe usual ellipticity and
regularity assumptions. In one of the test problems, we extend the egation to a system of two equations
containing a cross derivative term @u=@x@ynd in another test problem we include rst order derivative
terms.



As usual, de ne the spacel? by
ZZ
L2()= fv(xy): vZdxdy < 1g

with inner product 77

hu; vip = uv dx dy

and norm
jivii5 = hv;viz:
We denote by H™ () the usual Sobolov spaces

H™()= fv2L%(): D v2L?):jj mg
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The Sobolov spaces have inner products
ZZ
hu;vigm ) = D uD vdxdy
jjm
and norms
jjvjjam() = hvivigm(y :

We will also refer to the seminormjvjy(y where the sum is overj j= m.
Let H'()= fv2H™(): v=0o0n @ pg. Let tp be a lift function satisfying the Dirichlet boundary
conditions in Equation E]and de ne the ane space tip + H() = fup +v:v2 H}() g. De ne the bilinear

form zZ @w@ @@ Z
% %
B(u;v) = Pp—— + q— — + ruvdxdy + cuvds
@x@x '@
Yoy 0.
and the linear form 27 z
L(v)= fvdxdy + gy Vvds
@

Then the variational form of the problem is to nd the unique u 2 tp + HE() that satis es
B(u;v) = L(v) 8v2Hj() :

The energy norm ofv 2 Hg is de ned by jjvjiz , = B(v;Vv).

The nite element space is de ned by partitioning into a grid (or m esh), Gyp, consisting of a set ofNt
triangular elements, fT; giN:Tl with = iN:Tl Ti. If a vertex of a triangle is contained in the interior of an
edge of another triangle, it is called a hanging node. We only consider conapible grids with no hanging
nodes, i.e.T;\ T;,i 6 j, is either empty, a common edge, or a common vertex. The diameter of thelement
is denoted h;. With each element we associate an integer degreg 1. The nite element space Vyp is



the space of continuous piecewise polynomial functions on such that oer elementT; it is a polynomial
of degreep;. The degree of an edge is determined by applying either a minimum fe or a maximum rule
over Gy, in which the edge is assigned the minimum or maximum of the degrees of ¢hadjacent elements,
respectively.

The nite element solution is the unique function upy 2 tp + Vy, that satis es

B (Unp;Vhp) = L(Vhp) 8Vhp 2 Vip:

The error is de ned by enp = U Upp.
The nite element solution is expressed as a linear combination of basi functions f igiN:l that span
bp + Vhp,
X
Unp = i i1(XY)
i=1
For high order elements, there are a number of basis sets used in prace. A number of the hp strategies of
Section[4 rely on the basis being g-hierarchical basis in which the basis functions for a space of degrge
are a subset of the basis functions for a space of degree+ 1. In the results of Section [ the p-hierarchical
basis of Szabo and Babwskal[33], which is based on Legendre polynomials, isad. Regardless of the choice
of basis set, for an element of degrep; with edge degreegy; , j = 1,2, 3, there is one linear basis function
associated with each vertex,p;; 1 basis functions (one each of degree; 2:::p;; ) associated with edgej,
and q 2 basis functions of degree for q=3;4:::p; (for atotal of (p; 1)(pi 2)=2) whose support is the
interior of the triangle.
The discrete form of the problem is a linear system of algebraic equation

Ax = b (4)

where the matrix A is given by Aj = B( i; j) and the right hand side is given byl = L( ;).
If h and p are uniform over the grid, u 2 H™(), and the other usual assumptions are met, then the a
priori error bound is [8,[7]

Jienplinz() CWJJUJJHm() ®)
where = min(p;m 1) and C is a constant that is independent ofh, p and u, but depends onm. The
same references show that under certain conditions, such as Laplasetquation on a domain with reentrant
corners, the exponent onp can be doubled to 2(m 1), i.e., the p-version of the nite element method
converges twice as fast as thé-version.

With a suitably chosen hp mesh, and other typical assumptions, the error can be shown [14] to conuge
exponentially in the number of degrees of freedom,

.. .. 1=3
iienpiiniy  Cie &N (6)
for someC; and C, > 0 independent ofN .

3 hp-Adaptive Re nement Algorithm

One basic form of anhp-adaptive algorithm is given in Figure [1. If the algorithm is run on a parallel
computer, a load balancing step is performed either before or after theoarsening/re nement part of the
algorithm.

There are a number of approaches to each of the steps of the algorithm. In pacular:



begin with a very coarse grid
form and solve the linear system
repeat
determine which elements to coarsen and whether to coarsen Ry or p
coarsen elements
repeat
determine which elements to re ne and whether to re ne by h or p
re ne elements
until some criterion on amount of re nement is met
form and solve the linear system
until  some termination criterion is met

Figure 1: Basic form of anhp-adaptive algorithm.

How is an elementh-re ned?

How is an elementp-re ned?

What error indicator is used to guide adaptive re nement?

When is the program terminated?

How is an element coarsened?

How do you determine which elements should be coarsened?

How do you determine which elements should be re ned?

How much re nement should occur before the linear system is formednd solved again?
Should an element be re ned byh or p?

Other considerations, that are beyond the scope of this paper, includéow to create the initial grid, and
how to solve the linear system.

Complete coverage of the possible answers to these questions is beglotihe scope of this paper. We
will focus on the choices used for the results given in Sectioh] 5, andhisome cases brie y mention other
possibilities or give a reference, but this is not intended to be ghaustive. Note that some of thehp strategies
in Section[4 require a di erent choice, or even a modi cation of the basic algorithm. These exceptions will
be noted in Section[4.

There are several ways to re ne triangles([[18]. In this paper, the newst node bisection method[[20] is
used. Briey, a parent triangle is h-re ned by connecting one of the vertices to the midpoint of the opposte
side to form two new child triangles. The most recently created vetex is chosen as the vertex to use in this
bisection. Triangles are always re ned in pairs (except when the ede to be re ned is on the boundary) to
maintain compatibility of the grid. This may require rst re ning a neighbor triangle to create the second
triangle of the pair. The h-re nement level, |;, of a triangle T; is one more than theh-re nement level of
the parent, with level 0 assigned to the triangles of the initial coarsegrid. p-re nement is fairly universally
accepted as increasing the degree of the element by one, followed bgfercing either the minimum rule or
maximum rule for the edges. We will use the minimum rule.



Adaptive re nement is guided by a local a posteriori error indicator computed for each element. There
are several choices of error indicators; see for examplée [2,134]. For this pap the error indicator for element
T, is given by solving a local Neumann residual problem:

Le=f L up in T (7)
e=0 on @T\ @ p (8)
Be = gv B Unp on @T\ @ 9)
Be = 5 O on (@TN@ o) n@ (10
h [
wherelL, B, f, gy, @ p, and @ y are de ned in Equations , O% s the jump in the outward normal

@n
derivative of up, across the element boundary, including the coe cients of the natural boundary conditions,
and in Equation |10 B is modi ed by setting c(x;y) = 0. If the degree of T; is p;, the approximate solution,
e;np Of Equations[4{10 is computed using the hierarchical bases of exact degrpe+ 1. The error indicator
for element T; is then given by

i = Ji€np Jie(m)
A global energy norm error estimate is given by

One criterion for program termination is that be smaller than some prescribed error tolerance, or,
to base it on the relative error rather than the absolute error, < jjuppjie() - Other possibilities are
to terminate when some quantity, such as number of elements, numlyeof degrees of freedom, amount of
memory, amount of computation time, etc., is reached, or combinations of dteria. In this paper, the primary
termination criterion is a relative error tolerance, with number of d egrees of freedom as a secondary criterion.

Coarsening of elements may be performed to reverse bad decisions abavhat re nements to perform,
or to allow the grid to follow the behavior of the solution in a time dependent problem. Elements are
h-coarsened by reversing then-re nement, i.e., joining the child triangles back together to form the parent
triangle. p-coarsening means decreasing the degree of the element by one, andoecihg the minimum or
maximum rule for the edges. For steady state problems, one choice of wliiicelements to coarsen is the
empty set, i.e., don't perform coarsening. Other than that choice, the most common approach is to coarsen
elements that have a su ciently small error indicator, subject to any requirements for compatibility of the
grid. In the numerical results of this paper, an element is coarsene@ ; < max; ;=100. The value 100 is
arbitrary.

The elements that are re ned are usually those that have a su ciently large error indicator. Perhaps the
most common approach is to re ne those with an error indicator that is larger than some fraction, typically
between 1/4 and 1/2, of the maximunb error indicator. Another approach, which is used in thiB paper, is
to re ne those with | > jiunpjie(y = Nt. Note that if every element had | = jjuppjie(y = Nt then
=jiunpliey = . hence the” Ny factor.

There are many ways to determine how much re nement to do before drming and solving the linear
system. One could re ne until the global error estimate has been redoed by some factor, such as 1/2
or 1/4, or one could re ne until some quantity, e.g. number of elements or dgrees of freedom, has been
increased by some factor, such as 2 or 4. Both of these require that reasonabérror indicators can be



computed on the child elements. The approach taken in this paper is tgerform the re ne loop once. The
downside of this approach is that it requires more passes through the oer loop, which means forming
and solving the linear system more times. But for the purpose of this pper, which is to determine the
convergence rate of varioushp-adaptive strategies with respect to number of degrees of freedom, ethexcess
computation time is not important.
The method for determining whether an element should be re ned ly h or by p is called anhp-adaptive

strategy. Several strategies have been proposed over the years. Many thiem will be described in the next
section.

4 The hp-Adaptive Strategies

In this section, the hp-adaptive strategies that have been proposed in the literature are preented. In some
cases, these strategies were developed in the context of 1D problemectangular elements, or other settings
that are not fully compatible with the context of this paper. In those cases, the strategy is appropriately
modi ed for 2D elliptic PDEs and newest node bisection of triangles.

4.1 Use of a priori Knowledge of Solution Regularity

It is well known that for smooth solutions p-re nement will produce an exponential rate of convergence, but
near singularities p-re nement is less e ective than h-re nement. This is a consequence of thea priori error
bound in Equation 5 For this reason, many of thehp strategies useh-re nement in areas where the solution
is irregular (i.e., locally fails to be in H™ for some nite m, also called nonsmooth) or nearly irregular,
and p-re nement elsewhere. The simplest strategy is to use anw priori knowledge about irregularities. For
example, it is known that linear elliptic PDEs with smooth coe ci ents and piecewise analytic boundary data
will have point singularities only near reentrant corners of the boundary and where boundary conditions
change [4]. Another example would be a situation where one knows the appxonate location of a shock in
the interior of the domain.

An hp-adaptive strategy of this type was presented by Ainsworth and Senior[]4] In this approach they
simply ag vertices in the initial mesh as being possible trouble @ots. During re nement an element is
re ned by h if it contains a vertex that is so agged, and by p otherwise. We will refer to this strategy by
the name APRIORI.

We extend this strategy to allow more general regions of irregularity, andto provide the strength of the
irregularity. The user provides a function that, given an element T; as input, returns a regularity value for
that element. For true singularities, it would ideally return the m aximum value of m such that u 2 H™(T;).
But it can also indicate that a triangle intersects an area that is consicered to be nearly irregular, like a
boundary layer or sharp wave front. Based on the de nition of in Equation B} if the current degree of the
triangle is p; and the returned regularity value is m;, we dop-renementif pp m; 1 and h-re nement
otherwise. The same approach is used in all the following strategies #t estimate the local regularity m;.

4.2 Estimate Regularity Using Smaller p Estimates

Suli, Houston and Schwab [32] presented a strategy based on Equatidr] 5 and arstémate of the convergence
rate in p using error estimates based orp; 2 andp; 1. We will refer to this strategy as PRIOR2P. This
requiresp; 3, so we always usg-re nement in elements of degree 1 and 2.



Suppose the error estimate in Equation 5 holds on individual elementsand that the inequality is an
approximate equality. Let 5, > and ;p, 1 bea posteriori error estimates for partial approximate solutions
over triangle T; using the bases up to degre@ 2 andp; 1, respectively. Then

pi 1 Pi 1 (mi 1)

ipi 2 pi 2

and thus the regularity is estimated by
|Og( ipi 1= ip; 2)
log((pi  1)=(pi  2))
Usep-renementif pp m; 1 and h-re nement otherwise.
Thanks to the p-hierarchical basis, the computation of the error estimates is very iexpensive. For 1
i<pi, X X X
UnpiT, = K k= Kk kT K k
supp( k)\ Ti6; supp( k)\ Ti6; supp( k)\ Ti6;
deg( «) Pi | deg( «)>pi |

where supp( k) is the support of  and deg( k) is the degree of . The last sum is the amount by which
the solution changed when the degree of the element was increased frggn j to p;, and provides an estimate
of the error in the partial approximate solution of degreep; j given in the next to last sum. (Indeed, the
local Neumann error estimator of Equations[ J|-1D approximates this quantityfor the increase from degreep;
to p; +1.) Thus the error estimates are

.s X .e
ipi = k kllH1(T)
supp( k)\ Ti6;
deg( k)>pi |

which only involves computing the norm of known quantities.

4.3 Type parameter

Gui and Babuska [13] presented anhp-adaptive strategy using what they call a type parameter, . This
strategy is also used by Adjerid, Ai a and Flaherty [L]. We will refer t o this strategy as TYPEPARAM.

Given the error estimates i, and i, 1, dene

P
RTy= o Y
0 ip; 1=0
By convention, ;.o = 0, which forces p-re nement if p; = 1.

R is used to assess the perceived solution smoothness. Given thety parameter, 0 < 1, element
T; is said to be ofh-type if R(T;) > , and of p-type if R(T;) . If element T; is selected for re nement,
then re ne it by h-re nement if it is of h-type and p-re nement if it is of p-type. Note that = 0 gives pure
h-re nementand = 1 gives purep-re nement.

For the error estimates, we use the local Neumann error estimate of Equains [4{10 for iy,, and the

ip; 1 Of Section . For the results of Sectiorf 5, we use = 0:3 if the solution has a singularity, and
= 0:6 otherwise.

1The value for this parameter, and the parameters of the other  strategies, was determined by a preliminary experiment to
determine a single value (or possibly two values dependent o n singularness) that generally works best, using a subset of t he
test problems.



4.4 Estimate Regularity Using Larger p Estimates

Another approach that estimates the regularity is given by Ainsworth and Senior [3]. This strategy uses
three error estimates based on spaces of degree+ 1, pi + 2 and p; + 3, so we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the local Neumann residual error
estimate given by Equations[TF10 in which Equation 10 is replaced by

Be =g on (@Tn@p)n@ n

where g, is an approximation of Bu that satis es an equilibrium condition. This is the equilibrated r esidual
error estimator in [2].

The local problem is solved on elemenfT; three times using the spaces of degrep + g, q=1;2;3, to
obtain error estimates .. In contrast to the local Neumann residual error estimate, the whole spce over
T; is used, not just the p-hierarchical bases of degree greater thap;,. These approximations to the error
converge to the true solution of the residual problem at the same rate theapproximate solution converges
to the true solution of Equations [I{3, i.e.

jie  egqliery C(pi+ 09

where C and are positive constants that are independent ofq but depend on T;. Using the Galerkin
orthogonality

iie ei;qij(Ti) = jjeijjé(Ti) i ei;qjjé(Ti)
this can be rewritten

iieiig ) i eqligmr, Cp+ad ?:
We can computejje;q jjé(m and p; + qfor q=1;2; 3 from the approximate solutions, so the three constants
jigjie(ry, C and can be approximated by tting the data. Then, using the a priori error estimate in

Equation [§, the approximation of the local regularity is mj =1+ . Usep-renementif pp m; 1 and
h-re nement otherwise.

45 Texas 3 Step

The Texas 3 Step strategy [[8/2B8["24] rst performsh-re nement to get an intermediate grid, and follows
that with p-re nement to reduce the error to some given error tolerance, . We will refer to this strategy as
T3S. Note that for this strategy the basic form of the hp-adaptive algorithm is di erent than that in Figure
1k

The rst step is to create an initial mesh with uniform p and nearly uniform h such that the solution is in
the asymptotic range of convergence irh. This may be accomplished by performing uniformh-re nements
of some very coarse initial mesh until the asymptotic range is reached. e resulting grid hasNg elements
with sizes h;, degreesp; and a posteriori error estimates , and approximate solution ug. The results in
Section[§ begin withp = 1 and assume the initial grid is su ciently ne in h.

The second step is to perform adaptiveh-re nement to reach an intermediate error tolerance  where
is a given parameter. In the references, is in the range 5 10, usually 6 in the numerical results. This
intermediate grid is created by computing a desired number of chiren for each elementT; by the formula

L
2N R

Ni= —m 1
P; ¢

(11)



P . . . . . ) .
whereN, = n; is the number of elements in the intermediate grlqyni is the local regularity of the solution,

i=min(p;m; 1), | = jjuojje, =1 for 2D problems, 2= 2 and
_
0
where o
_ o

See any of the above references for the derivation of this formula. It ibased on thea priori error estimate
in Equation B] Inserting the expression for ; into Equation [[I]and using =1 we arrive at

N, is not known at this point, since it is the sum of the n;. Successive iterations are used to solve far; and
N, simultaneously. We use 5 iterations, which preliminary experimats showed to be su cient (convergence
was usually achieved in 3 or 4 iterations). Once then; have been determined, we perfornb0:5 + log, nic
uniform h-re nements (bisections) of each elementl; to generate approximately n; children, and solve the
discrete problem on the intermediate grid.

The third step is to perform adaptive p-re nement to reduce the error to the desired tolerance . The
new degree for each element is given by

where |, is the a posteriori error estimate for elementT; of the intermediate grid and t = jjugjje. Again,
the formula is a simple reduction of the equations derived in the réerences. p-re nement is performed to
increase the degree of each elemeili to f, and the discrete problem is solved on the nal grid.

In the results of Section[5, ifn; < 2 or B < p; then re nement is not performed. Also, to avoid excessive
re nement, the number of h-re nements done to any element in step 2 and number of-re nements in step
3 is limited to 3.

The strategy of performing all the h-re nement in one step and all the p-re nement in one step is adequate
for low accuracy solutions (e.g. 1%), but is not likely to work well with high accuracy solution (e.g. 108
relative error) [25]. We extend the Texas 3 Step strategy to high accurag by cycling through steps 2 and 3
until the nal tolerance .5 is met. in the algorithm above is now the factor by which one cycle of steps
2 and 3 should reduce the error. Toward this end, before step 2 the eor estimate ¢ is computed for the
current grid. The nal (for this cycle) and intermediate targets are now givenby + = ggand | = .
In the results of Section[$ we use =0:1 and = 6. For the local regularity m; we use the same routine as
the APRIORI strategy (Section f.1).

4.6 Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S that is more like the algorithm
of Figure[d. The di erence from T3S is that instead of predicting the number of re nements needed to reduce
the error to the next target, the usual adaptive re nement is performed until the target is reached. Thus in

10



step 2 all elements with an error indicator larger than P Ny are h-re ned. The discrete problem is solved
and the new error estimate compared to |. This is repeated until the error estimate is smaller than .
Step 3 is similar except adaptivep-re nement is performed and the targetis 1. Steps 2 and 3 are repeated
until the nal error tolerance is achieved.

4.7 Nonlinear Programming

Patra and Gupta [26] proposed a strategy forhp mesh design using nonlinear programming. We refer to
this strategy as NLP. They presented it in the context of quadrilateral elements with one level of hanging
nodes, i.e., an element edge is allowed to have at most one hanging nodeere it is modi ed slightly for
newest node bisection of triangles with no hanging nodes. This is anber approach that does not strictly
follow the algorithm in Figure [[]

Given a current grid with triangles fT;g, degreesf pig, h-re nement levels fl;g, error estimatesf ;g, and
element diameters

whereHg; is the diameter of the element in the initial grid that contains T;, the object is to determine new
mesh parametersf pig and ffig, i = 1::Nt, by solving an optimization problem. The new grid is obtained
by re ning T; fi 1 times (or coarsening iff; <1 i) and assigning degregj*to the 2l I children. The size
of the children of T; is

There are two forms of the optimization problem, which can be informally stated as 1) minimize the
number of degrees of freedom (or some other measure of grid size) subjdotthe error being less than a
given tolerance and other constraints, and 2) minimize the error subjetto the number of degrees of freedom
being less than a given limit and other constraints. We will only consder the rst form here; the second
form simply reverses the objective function and constraint.

Computationally, the square of the error is approximated by P iN:}, A2 where %, to be de ned later, is an
estimate of the error in the re ned grid over the region covered byT;. The number of degrees of freedom
associated with a triangle of degree is taken to be 3=6 (one for each vertex with an average of six triangles
sharing a vertex) plus 3 1)=2 (p 1 for each edge with two triangles sharing an edge) plusp( 1)(p 2)=2

(for the interior), which is p?=2. Thus the number of degrees of freedom over the children & is 2 p2=2.
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We can now formally state the optimization problem as

N N _
minimize oA p? (12)
fligfpg 2

X

st: N2 < N2 (13)
i=1
i 1 fi f+1 8 suchthat T, shares an edge withT; (14)
0 fi lmax (15)
1 pi pmaX (16)
Ii Idec f\l Ii + Iinc (17)
Pi Pdec pl pi + Pinc (18)

where “is the error tolerance for this re nement phase. We use "= =4 where is the global error estimate
on the current grid. The divisor 4 is arbitrary and could be replaced by some other value. In practice,
Equation is divided through by 2 so that the numbers areO(1). Equation is a necessary condition
for compatibility of the grid (in [26]lit enforces one level of hanging nods). It is not a su cient condition,
however any violations of compatibility while this condition is met are cases where only one triangle of a
compatibly divisible pair was re ned, and it is a slight adjustment t o the optimal solution to also re ne the
other one to maintain compatibility. Equation {5Jinsures that coarsening does not go beyond the initial grid,
and that the re nement level of an element does not exceed a presdred limit Imax . Similarly, Equation [L6]
insures that element degrees do not go below one or exceed a preseblimit pnhax . Also, because many
guantities are only approximate, it is wise to limit the amount of change that occurs to any element during
one phase of re nement. Equationg 1J7 andl 118 restrict the amount of change thatan occur at one time, i.e.,
restrict the amount of decrease inl and p to prescribed limits lgec and  pgec, and the amount of increase
to linc and pinc. In the results in Section[§ we used lgec =1, Pdec =1, linc =3, and  pinc = 1.

Since thef} and P are naturally integers, the optimization problem is a mixed integer norlinear program,
which is known to be NP-hard. To make the problem tractable, the integer requirement is dropped to give
a nonlinear program which can be solved by one of several software packages. Fbe results in Section[5,
we used the program ALGENCANHVersion 2.2.1[5,9]. Following solution of the nonlinear program, the
fi and P are rounded to the nearest integer.

It remains to de ne #j, the estimate of the error in the re ned grid over the region coveredby T;. Assuming
approximate equality in the a priori error estimate of Equation[5, we have

h '
i C—mliujjpm (T,
[ p!'n. 1 (Ti)

and
Ao
N Comlilijnm (ry)

B

2The mention of speci ¢ products, trademarks, or brand names is for purposes of identi cation only. Such mention is not to
be interpreted in any way as an endorsement or certi cation o f such products or brands by the National Institute of Standa  rds
and Technology. All trademarks mentioned herein belong to t heir respective owners.
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where m; is the local regularity over T and ; = min( p;;m; 1). Combining these leads to

i i if\i i i
N A
ot T2 b |
and thus the constraint in Equation [L3]is
Xt 1 min( pi;smi - (i 1) P 2(mi 1) 2 < a2
o 2 2 !

in which the only remaining quantity to be determined is m;. Patra and Gupta suggest estimatingm; by
using the observed convergence rate from two grids, with a formula wg similar to that used in the PRIOR2P
strategy of Section[4.2, so we use the same estimate as PRIOR2P.

4.8 Another Optimization Strategy

Another strategy based on the formulation and solution of an optimization problem is given in Novotny
et al. [22]. However, it turns out that 1) the optimization does not work near singularities, so a priori
knowledge of singularities must be used to forcé-re nement near singularities, and 2) for the nite element
method and class of problems considered in this paper, the strategy alys chooseg-re nement except for
extremely large elements. Thus, this strategy is (nearly) identcal to the APRIORI strategy, and will not be
considered further in this paper.

4.9 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [I7] proposed a strategy based on a prediction of what th error should be if the
solution is smooth. We call this strategy SMOOTH_PRED.

When re ning element T;, assume the solution is locally smooth and that the optimal convergenceate is
obtained. If h-re nement is perfﬁrmed and the degree ofT; is p;, then the expected error on the two children
of T; is reduced by a factor of 2 P as indicated by the a priori error estimate q; E(Jbuation B Thus if
is the error estimate for T;, predict the error estimate of the children to be = 2~ where  is a user
speci ed parameter. If p-re nement is performed on T;, exponential convergence is expected, so the error
should be reduced by some constant factor, 2 (0;1), i.e., the predicted error estimate is , ;. When the
actual error estimate of a child becomes available, it is compared to thepredicted error estimate. If the
error estimate is less than or equal to the predicted error estimatethen p-re nement is indicated for the
child. Otherwise, h-re nement is indicated sincepogsumably the assumption of smoothess was wrong. For
the results in Section@ we usenp=2and ,= 04.

4.10 Larger of h-Based and p-Based Error Indicators

In 1D, Schmidt and Siebert [28] proposed a strategy that uses twa posteriori error estimates to predict
whether h-re nement or p-re nement will reduce the error more. We extend this strategy to bisected triangles
and refer to it as H&P _ERREST.

The local Neumann residual error estimate given by Equations [[-10 is actudi an estimate of how much
the norm of the solution will change if T; is p-re ned. This is because the solution of the local problem is
estimated using the p-hierarchical bases that would be added ifT; is p-re ned, so it is an estimate of the

13



actual change that would occur. Using the fact that the current space is asubspace of the re ned space and
Galerkin orthogonality, it can be shown that

jiu  Onpii® = jiu  Unpii® Ji Onp  Unpii®

where Uy, is the solution in the re ned space. Thus the change in the solution imlicates how much the error
will be reduced.
A second error estimate forT; can be computed by solving a local Dirichlet problem

Le=f L upp in T; [ Tmate (19)
€& =0p Unp on@Ti [ ™)\ @o (20)
Be = gv B Unp on@Ti [ ™)\ @ n (21)
e =0 on @Ti[ T™)n@p n@n (22)

where T"@® s the element that is re ned along with T; in the newest node bisection method[[20]. The
solution to this problem is approximated by an h-re nement of the two elements using only the new basis
functions. The error estimate obtained by taking the norm of this approximate solution is actually an
estimate of how much the solution will change, or the error will be redweed, if h-re nement is performed.

Schmidt and Siebert divide the two error estimates by the associad increase in the number of degrees
of freedom to obtain an approximate error reduction per degree of freedom.In addition or instead, one
of the error estimates can be multiplied by a user speci ed constantto bias the re nement toward h- or
p-re nement. In the results of Section[J the p-based error estimate is multiplied by 2.

The type of re nement that is used is the one that corresponds to the &rger of the two modi ed error
estimates.

4.11 Legendre coe cient strategies

There are three hp-adaptive strategies that are based on the coe cients in an expansion of tle solution
in Legendre polynomials. In one dimension, the approximate solution in lement T; with degree p; can be
written

i
u()= P
j=0
where P; is the j!" degree Legendre polynomial scaled to the interval of elemeri;.
Mavriplis [L6] estimates the decay rate of the coe cients by a leastsquares t of the the last four coe cients
g to Ce I . Elements are re ned by p-re nement where > 1 and by h-re nement where 1. We refer
to this strategy as COEF_DECAY. When four coe cients are not available, we t to whatever is av ailable.
If only one coe cient is available, we use p-re nement.
Houston et al. [15] present the other two approaches which use the Legendmoe cients to estimate the
regularity of the solution. One approach estimates the regularity usingthe root test yielding

2pi +1
log iz
1

2logpi .

If pj =1, use p-re nement. Otherwise, usep-re nementif pj m; 1 andh-re nementif pp>m; 1. We
refer to this strategy as COEF_ROOT.

m; =
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They also present a second way of estimating the regularity from the Lgendre coe cients using the ratio
test. However, they determined the ratio test is inferior to the root test, so it will not be considered further
in this paper.

Both Mavriplis and Houston et al. presented the strategies in the contet of one dimension and use the
Legendre polynomials as the local basis so the coe cients are readily ailable. In [15] it is extended to 2D
for rectangular elements with a tensor product of Legendre polynomialsand the regularity is estimated in
each dimension separately, so the coe cients are still readily avdable. Eibner and Melenk [12] extended the
COEF _DECAY strategy to quadrisected triangles with an orthogonal polynomial basis. In this study we are
using triangular elements which have a basis that is based on Legendreofynomials [33]. In this basis there
are 3+max(j 2;0) basis functions of exact degreg¢ over an element, so we don't have a single Legendre
polynomial coe cient to use. Instead, for the coe cients a we use the’; norm of the coe cients of the
degreej basis functions, i.e. X

g = J oKl
k sit: deg( «)=j
supp( k)\ Ti6;

4.12 Reference Solution Strategies

Demkowicz and his collaborators developed arhp-adaptive strategy over a number of years, presented in
several papers and books, e.g.[ [10, 11,127,131]. In its full glory, the strategy iguite complicated. Here
we present only the basic ideas of the algorithm and how we have adapted for bisected triangles (it is
usually presented in the context of rectangular elements with someeference to quadrisection triangles), and
refer to the references for further details. We refer to this stategy as REFSOLN_EDGE because it relies on
computing a reference solution and bases the re nement decisions oedge re nements. Note that for this
strategy the basic form of the hp-adaptive algorithm is di erent than that in Figure 1[]

The algorithm is rst presented for 1D elliptic problems. Given the current existing (coarse) mesh,
Ghp = Gpp, and current solution, Unp = Upp, @ uniform re nement in both h and p is performed to
obtain a ne mesh Gp-,,,+1 . The equation is solved on the ne mesh to obtain a reference solutionip=».5.+1 .
The norm of the di erence between the current solution and referere solution is used as the global error
estimate, i.e.,

= jjuh:Z;p+1 UnpiH

The next step is to determine the optimal re nement of each elemen This is done by considering a
p-re nement and all possible (bisection) h-re nements (i.e., all possible assignments op to the two children
of an h-re nement) that give the same increase in the number of degrees of #dedom as thep-re nement.
In 1D, this means that the sum of the degrees of the two children must b p + 1, resulting in a total of p
h-re nements and onep-re nement to be examined. For each possibility, the error decreas rate is computed
as

JUh=2;p+1 hpi Uh:2;p+1jﬁ1(-ri) J Un=2;p+1 new;i Uh:2;p+1jﬁ1(-ri)
N new th

where pp;i Up=2;p+1 IS the projection-based interpolant of the reference solution in edment T;, computed
by solving a local Dirichlet problem, and nrew:i is the projection onto the resulting elements from any one
of the candidate re nements. The re nement with the largest error decrease rate is selected as the optimal
re nement. In the case ofh-re nement, the degrees may be increased further by a processkbwn as following
the biggest subelement error re nement path, which is also used taletermine the guaranteed element rate;
see[[10] for details.
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Elements that have a guaranteed rate larger than 1/3 the maximum guaranteed ate are selected for
re nement; the factor 1/3 is arbitrary.

The 2D algorithm also begins by computing a referen%e solution on the globbl hp-re ned grid Gp=2,p41 -
(For bisected triangles, we should use the subscriph= 2;p + 1 for the ne grid and solution, but for
simplicity we will use the original notation.) Then for each edge in the grid, the choice betweenp- and
h-re nement, the determination of the guaranteed edge rate, and the seiction of edges to re ne are done
exactly as in 1D, except that a weightedH ! seminorm is used instead of the more naturaH =2 seminorm
which is di cult to work with. In the case of bisected triangles, w e only consider edges that would be re ned
by the bisection of an existing triangle.

The h-re nement of edges determines theh-re nement of elements. It remains to determine the degree of
each element. As a starting point, element degrees are assigned to i the minimum rule for edge degrees,
using the edge degrees determined in the previous step. Then tHeggest subelement error re nement path
is followed to determine the guaranteed element rate and assignment aflement degrees. We again refer
to [10] for details. Finally, the minimum rule for edge degrees is enfared by increasing edge degrees as
necessary.

A related, but simpler, approach was developed bySoln et al. [B0]. We refer to this strategy as REF-
SOLN_ELEM since it also begins by computing a reference solutionup=»p+1, 0N Gp=2,p+1 , but bases the
re nement on elements. The basic form of thehp-adaptive algorithm is di erent than that in Figure 1[for
this strategy, also.

The local error estimate is given by the norm of the di erence betwea the reference solution and the
current solution,

i = JUn=2p+1  Unplini(m)
and the elements with the largest error estimates are re ned. IfT; is selected for re nement, let py =
b(p; + 1) =2c and consider the following options:

p-re ne T; to degreep; + 1,
p-re ne T; to degreep; + 2,
h-re ne T; and consider all combinations of degreegp, po + 1 and pp + 2 in the children.

In all cases the minimum rule is used to determine edge degrees. [B0], quadrisection of triangles is used
leading to 83 options to consider. With bisection of triangles, there ae only 11 options. Also, since the object
of dividing by two to get pg is to make thed'rlcrease in degrees of freedom froim-re nement comparable to
that of p-re nement, we usepg = b(p; +1) = 2c since there are only two children instead of four. Solin et al.
allow an unlimited number of hanging nodes, so they have no issue ofow to assign the degrees of children
that were created to maintain compatitBIiEy or one level of hanging nodes For the newest node bisection of
triangles algorithm, we assignb(p+ 1) = 2c to both children of a triangle of degreep that is re ned only for
the sake of compatibility.

For each candidate, the standardH?! projection E'a;gc‘,;te of Up=2,p+1 ONto the corresponding space is
performed, and the projection error in the H! norm, candidate » IS computed,

— i H(Ti) o
candidate = JJUn=2;p+1 candif;ate Uh=2;p+1 JH 1 (T))

as well as the projection error of the projection ontoT;, ;.
The selection of which candidate to use is not simply the candidate ith the smallest projection error
[29]. Let N; be the number of degrees of freedom in the space corresponding 1, and Ncangidaie the
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number of degrees of freedom in the space corresponding to a candidatieor simplicity, when computing N;
and Ncangidate We apply the minimum rule for edge degree ignoring the degrees of the ighbors of T;, e.g.
N; = (p +1)(pi +2)=2 regardless of what the actual edge degrees of are.

Candidates with cangigate > i are discarded. We also discard any of thén-re ned candidates for which
the degrees are both greater thanp; since the reference solution is (locally) in that space. Letn be the
number of remaining candidates. Compute the average and standard devian of the base 10 logarithms of
the 's

X
- IOQ candidate
candidates

_ 1 x I 2 2
= = (log candidate )
candidates

Finally, to determine which candidate to use, select an above-awvage candidate with the steepest error
decrease, i.e., from among the candidates with I0Gtangidate < + and Neandigate > N i, select the candidate
that maximizes

IOg i |Og candidate

23
N candidate Ni ( )

Following the re nement that is indicated by the selected candidate, the minimum rule for edge degrees is
applied.

This algorithm can be modi ed slightly to bias the re nement towards or away from p re nement to
improve the performance. Given a parameterpyias, multiply the value from Equation 23]by it for all the
p-re nement candidates. ppias > 1 will bias the re nement toward doing p-re nement, and ppias < 1 will bias
the re nement toward doing h-re nement. For the results in Section [§ we usepyias = 2 for most problems,
and ppigs = 4 for the analytic, mild wave front and both peak problems, which are the easiest problems.

5 Numerical Results

This section contains the results of a numerical experiment to comare the hp-adaptive strategies' perfor-
mance on a suite of 21 test problems with various di culties that adaptiv e re nement should locate. The
primary criteria for comparing the strategies is the convergence of tle relative error in the energy norm as a
function of the number of degrees of freedomN . The results for each problem are given in Sections 5[1-5.P1,
and summary results for comparison of the strategies are given in SectidnZ3. We also give some indication
of the relative amount of time required to obtain the solution in Section[5.23.

The full details of the test problems can be found in a separate report21]. Here we just give a brief
description of each problem and an image of the solution, both as a color map and assarface in perspective.
Recall that Poisson's equation isuxy + Uyy = f (x;y) and Laplace's equation is Poisson's equation witlf = 0.

Each problem is solved with eachhp strategy using the hp-adaptive algorithm of Section[3, except for
those strategies that dictate using a variation on that algorithm, as indicated in Section[4. To examine
the convergence of the error as a function o, each problem is solved using each strategy several times
with di erent values of the termination tolerance . The relative energy norm of the error and N are
recorded at the end of each run to give a set of points for the convergenceath. In most cases we used

=0:1; 0:05 0:02; 0:01; 0:005 ::: 2x10 8; 10 8, although some of the more di cult problems required
ending the sequence earlier.
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Figure 2: The initial grid for problems on square domains.

The initial grid for problems on a square domain is shown in Figurg 2. The mitial grid for the reentrant
corner problems is obtained by removing the unneeded elementsdm the grid in Figure | The initial grid
for the battery problem is shown in Section[5.11.

In the following subsections for each problem, we present the follging results of the computations.

We begin with a sample grid for each strategy, to show the wide variationm the di erent strategies' choice
betweenh and p re nement. In all of the grid images, the color indicates the degree of tle polynomial over
each element. To obtain the grid, we pick one particular value of the temination relative error tolerance
and run each strategy to that tolerance. In cases where there is stronb-re nement in a small area we also
zoom in on that area to show the detail at the ne level.

Second we present a plot oN vs. the error on a log-log scale. These graphs have a curvature indicatinthe
exponential rate of convergence. The black circles and connecting l@s show the convergence data obtained
by solving the problem with a sequence of termination tolerances. Paits that were obvious outliers were
omitted. The red and green curves are exponential least squares ts tahe data. According to Equation
the error should converge likeAeBN . The red curve is a least squares t to this form. As will be seen,
this t is not always close to the data. Often the data exhibit exponential convergence, but with a di erent
exponent onN than 1=3. The green curve is a least squares t to the formAeBN ‘. This 3-parameter least
squares t will be the primary means of comparing the performance of thestrategies.

Following the individual strategy convergence plots is a composite it containing the 3-parameter least
squares t curves of all strategies on a single graph.

Some papers orhp-adaptive re nement present the convergence plots using a cube mi of N vs. logarithm
of error scale. This is because, if the error converges likkeBN " then the convergence plot will be a straight
line using this scale. To illustrate this, we present the cube oot vs. log plots for one problem, the L-shaped
domain problem (Section[5.4), along with the 2-parameter least squares t.

The parameters obtained by the 3-parameter and 2-parameter least squarests are given in tables. In
the 3-parameter t, C (the power on N, theoretically 1/3) indicates the curvature of the curve on a log-log
plot. Very small values indicate the exponential nature of the convergeace is weak. Larger values indicate a
larger curvature, which asymptotically gives faster convergence ratesin the 2-parameter t, B is the slope
of the line on the cube root vs. log convergence plot. Strategies with saller values of B (larger magnitude,
since B is negative) will have steeper slopes, and asymptotically be the bé&tr strategies.
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Figure 3: Computation of the factor by which N for a particular strategy is larger than N for the best
strategy. In this illustration, for an accuracy of 10 © the factor for ALTERNATE is 53730 =7787  6:90.

The performance of the strategies are compared on each problem at two accusacequirements. For low
accuracy, which is typical in engineering applications, we use 1%, or 1% relative error, for most problems.
For high accuracy, which is of interest mathematically and useful in sone scienti ¢ applications, we use 106
for most problems.

To compare the strategies, consider the 3-parameter least squares t. & each strategy, compute the
value of N that gives the desired accuracy according to the formula for the 3-paramter least squares t,
as illustrated in Figure Let Npest be the minimum such value over all the strategies. For each strategy
compute the factor by which N is larger than the best strategy, Nsyategy =Nbest. FOr example, in Figure@
the factor for ALTERNATE is 53730 =7787  6:90. The nal tables of each subsection contain these factors
at low and high accuracy, with the accuracy requirement given in the cagion. The strategies are ordered
by increasing value of the factor, implicitly giving the rank (rst, second, etc.) of each strategy.

These computations were performed using the adaptive nite elemencode PHAML Version 1.8.1 [18]
on a single processor. During the period of this investigation therevere changes to the available hardware
and software, but we do not believe any of these changes would e ect the ¢come of these computations,
except in Section[5.22 where a consistent computational environmentsiused. The computers were 32-bit
and 64-bit x86-class computers operating under CentOS 5.x distributios of Linux. PHAML was compiled
with the Intel Fortran compiler.
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Figure 4: The solution of the analytic problem.

5.1 Analytic Solution

The analytic problem in [21] is Poisson's equation on the unit square withDirichlet boundary conditions.
The solution is the polynomial

2°xP(1 x)PyP(1 )P

with p = 10. 2*° is a normalization factor so that the L' norm is 1:0. The purpose of this test problem
is to see how the methods perform on a smooth, well-behaved probtethat does not really need adaptive
re nement at all. For the grid images we used =10 “. For the APRIORI strategy, we choose to always
re ne by p, i.e., it is just p-adaptive re nement.
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Figure 5: Example grid for the ALTERNATE strat-  Figure 8: Example grid for the COEF_ROOT strat-
egy with the analytic problem. egy with the analytic problem.

Figure 6: Example grid for the APRIORI strategy Figure 9: Example grid for the H&P _ERREST strat-
with the analytic problem. egy with the analytic problem.

Figure 7: Example grid for the COEF_DECAY strat- Figure 10: Example grid for the NEXT3P strategy
egy with the analytic problem. with the analytic problem.
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Figure 11: Example grid for the NLP strategy with Figure 14: Example grid for the REFSOLN_ELEM
the analytic problem. strategy with the analytic problem.

Figure 12: Example grid for the PRIOR2P strategy Figure 15: Example grid for the SMOOTH_PRED
with the analytic problem. strategy with the analytic problem.

Figure 13: Example grid for the REFSOLN_EDGE Figure 16: Example grid for the T3S strategy with
strategy with the analytic problem. the analytic problem.
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Figure 17: Example grid for the TYPEPARAM strat-
egy with the analytic problem.

Figure 19: Log-Log plot of the convergence of the
APRIORI strategy with the analytic problem.

Figure 18: Log-Log plot of the convergence of the

ALTERNATE strategy with the analytic problem. Figure 20: Log-Log plot of the convergence of the

COEF _DECAY strategy with the analytic problem.
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Figure 21: Log-Log plot of the convergence of the Figure 23: Log-Log plot of the convergence of the
COEF _ROOT strategy with the analytic problem. NEXT3P strategy with the analytic problem.

Figure 22: Log-Log plot of the convergence of the Figure 24: Log-Log plot of the convergence of the
H&P ERREST strategy with the analytic problem.  NLP strategy with the analytic problem.
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Figure 25: Log-Log plot of the convergence of the Figure 27: Log-Log plot of the convergence of the

PRIOR2P strategy with the analytic problem. REFSOLN_ELEM strategy with the analytic prob-
lem.

Figure 26: Log-Log plot of the convergence of the Figure 28: Log-Log plot of the convergence of the

REFSOLN_EDGE strategy with the analytic prob-  SMOOTH_PRED strategy with the analytic prob-
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Figure 29: Log-Log plot of the convergence of the
T3S strategy with the analytic problem.

Figure 30: Log-Log plot of the convergence of the
TYPEPARAM strategy with the analytic problem.
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Figure 31: Log-Log plot of the convergence of all strategies with the analytic protem.
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strategy A B C strategy A B
ALTERNATE 139.23 -2.18 0.21 ALTERNATE 0.54 -0.44
APRIORI 18.38 -0.64 0.38 APRIORI 107.21 -1.08
COEF_DECAY 2.48x108  -12.68 0.098 COEF_DECAY 0.36 -0.47
COEF_ROOT 501.62 -2.81 0.20 COEF_ROOT 1.50 -0.57
H&P _ERREST 2.18x101° -17.82 0.070 H&P _ERREST 0.066  -0.29
NEXT3P 4.96x10** -69.95 0.030 NEXT3P 0.098 -0.40
NLP 9.58x10° -3.54 0.19 NLP 8.95 -0.66
PRIOR2P 7.83x10°  -491 0.15 PRIOR2P 0.44 -0.45
REFSOLN_EDGE 101.26 -1.49  0.29 REFSOLN_EDGE 13.87 -0.88
REFSOLN_ELEM 18.10 -0.82 0.34 REFSOLN_ELEM 26.29 -0.92
SMOOTH_PRED  9.57 -0.43 040 SMOOTH_PRED 84.07 -0.89
T3S 9.20x16 -7.67 0.13 T3S 1.01 -0.46
TYPEPARAM 559.51 -2.04 0.26 TYPEPARAM 19.80 -0.91

Table 1: Parameters of the least squares t for Table 3: Parameters of the least squares t for

jienpiie = AeBN & for the analytic problem. jienpiie = AeBM w for the analytic problem.
strategy factor strategy factor
REFSOLN_EDGE 1.00 APRIORI 1.00
NEXT3P 1.01 TYPEPARAM 1.23
TYPEPARAM 1.02 REFSOLN_ELEM 1.29
APRIORI 1.06 REFSOLN_EDGE 1.32
REFSOLN_ELEM 1.07 SMOOTH _PRED 1.72
COEF_DECAY 1.15 COEF_ROOT 3.01
COEF_ROOT 1.26 NLP 3.06
PRIOR2P 1.30 COEF_DECAY 3.79
H&P ERREST 1.35 NEXT3P 3.91
SMOOTH _PRED 1.73 PRIOR2P 4.48
ALTERNATE 1.80 T3S 4.77
NLP 1.86 ALTERNATE 5.13
T3S 2.63 H&P _ERREST 8.77

Table 2: Factor by which N is larger than the best Table 4: Factor by which N is larger than the best

strategy for the analytic problem at low accuracy, strategy for the analytic problem at high accuracy,
1:0x10 2. 1:0x10 8.
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Figure 32: The solution of the nearly straight reentrant corner problem.

5.2 Reentrant Corner, Nearly Straight

For elliptic partial di erential equations, a reentrant (concave) c orner in the domain, with interior angle ! ,

causes a point singularity that behaves liker wherer is the distance from the corner and = =! . The
larger! is, the stronger the singularity. The reentrant corner problems of the next ve sections are Laplace's
equation with Dirichlet boundary conditions on ( 1;1) ( 1;1) with a section of angle 2 ! removed.
The solution is
rosin( )

wherer = P x2+y2and =tan I(y=x).

For the nearly straight reentrant corner, ! = +:01. If! was , then there would be no reentrant corner
and the solution would be linear. But with ! = + :01 there is a very mild singularity. For this problem,

we use =10 © for the grid images. The APRIORI strategy re nes by h if the element contains the origin
and by p otherwise.
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Figure 33: Example grid for the ALTERNATE strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 34: Example grid for the APRIORI strategy
with the nearly straight reentrant corner problem,
including details at the singularity.

Figure 35: Example grid for the COEF_.DECAY
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 36: Example grid for the COEF_ROOT strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 37: Example grid for the H&P_ERREST
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 38: Example grid for the NEXT3P strategy
with the nearly straight reentrant corner problem,
including details at the singularity.

Figure 39: Example grid for the NLP strategy with
the nearly straight reentrant corner problem, includ-
ing details at the singularity.

Figure 40: Example grid for the PRIOR2P strategy
with the nearly straight reentrant corner problem,
including details at the singularity.
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Figure 41: Example grid for the REFSOLN_EDGE
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 45: Example grid for the TYPEPARAM strat-
egy with the nearly straight reentrant corner prob-
lem, including details at the singularity.

Figure 42: Example grid for the REFSOLN_ELEM
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 43: Example grid for the SMOOTH_PRED
strategy with the nearly straight reentrant cor-
ner problem, including details at the singularity.

Figure 46: Log-Log plot of the convergence of the
ALTERNATE strategy with the nearly straight reen-
trant corner problem.

Figure 44: Example grid for the T3S strategy with
the nearly straight reentrant corner problem, includ-
ing details at the singularity.
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Figure 47: Log-Log plot of the convergence of the Figure 49: Log-Log plot of the convergence of the
APRIORI strategy with the nearly straight reentrant  COEF_ROOT strategy with the nearly straight reen-
corner problem. trant corner problem.

Figure 48: Log-Log plot of the convergence of the Figure 50: Log-Log plot of the convergence of the
COEF_DECAY strategy with the nearly straight H&P _ERREST strategy with the nearly straight
reentrant corner problem. reentrant corner problem.
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Figure 51: Log-Log plot of the convergence of the Figure 53: Log-Log plot of the convergence of the
NEXT3P strategy with the nearly straight reentrant PRIOR2P strategy with the nearly straight reentrant
corner problem. corner problem.

Figure 52: Log-Log plot of the convergence of the Figure 54: Log-Log plot of the convergence of the
NLP strategy with the nearly straight reentrant cor- REFSOLN_EDGE strategy with the nearly straight
ner problem. reentrant corner problem.
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Figure 55: Log-Log plot of the convergence of the Figure 57: Log-Log plot of the convergence of the
REFSOLN_ELEM strategy with the nearly straight T3S strategy with the nearly straight reentrant cor-
reentrant corner problem. ner problem.

Figure 56: Log-Log plot of the convergence of the Figure 58: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the nearly straight TYPEPARAM strategy with the nearly straight
reentrant corner problem. reentrant corner problem.
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Figure 59: Log-Log plot of the convergence of all strategies with the nearly strajht reentrant corner problem.
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strategy A B C strategy A B

ALTERNATE 0.036 -1.39 0.25 ALTERNATE 5.87x10 3 -0.59
APRIORI 3.04x10 ® -0.14 0.55 APRIORI 0.087 -1.04
COEF _DECAY 0.035 -1.07 031 COEF_DECAY 0.019 -0.84
COEF_ROOT 0.014 -0.64 0.37 COEF_ROOT 0.030 -0.90
H&P _ERREST 0.056 -1.42  0.27 H&P _ERREST 0.010 -0.74
NEXT3P 0.29 -2.40 0.22 NEXT3P 8.17x10 3 -0.70
NLP 2.47 -3.85 0.18 NLP 5.59x10 3 -0.65
PRIOR2P 0.011 -0.58 0.37 PRIOR2P 0.024 -0.85
REFSOLN_EDGE 0.015 -0.59 0.39 REFSOLN_EDGE 0.048 -0.97
REFSOLN_ELEM 4.83x10 2 -0.24 0.49 REFSOLN_ELEM 0.089 -1.02
SMOOTH_PRED 2.15x10 ® -0.13 0.52 SMOOTH_PRED  0.025 -0.76
T3S 5.64x10°% -0.45 0.36 T3S 9.62x10° -0.60
TYPEPARAM 0.014 -0.64 0.37 TYPEPARAM 0.027 -0.88

Table 5: Parameters of the least squares t for Table 7: Parameters of the least squares t for

fienplie = AeBN i for the nearly straight reentrant jienpiie = Ae®N w for the nearly straight reentrant
corner problem. corner problem.

strategy factor strategy factor
H&P _ERREST 1.00 APRIORI 1.00
NEXT3P 1.00 REFSOLN_ELEM  1.05
COEF_DECAY 1.01 REFSOLN_EDGE  1.07
NLP 1.02 COEF_ROOT 1.19
COEF_ROOT 1.04 TYPEPARAM 1.27
REFSOLN_EDGE 1.04 PRIOR2P 1.36
TYPEPARAM 1.06 COEF _DECAY 1.36
PRIOR2P 1.11 H&P _ERREST 1.65
REFSOLN_ELEM 1.21 SMOOTH _PRED 1.82
APRIORI 1.25 NEXT3P 1.91
ALTERNATE 1.30 NLP 2.14
SMOOTH _PRED 1.74 T3S 3.00
T3S 1.77 ALTERNATE 3.10

Table 6: Factor by which N is larger than the best Table 8: Factor by which N is larger than the best
strategy for the nearly straight reentrant corner prob- strategy for the nearly straight reentrant corner prob-
lem at low accuracy, 10x10 *. lem at high accuracy, 10x10 ’.
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Figure 60: The solution of the wide angle reentrant corner problem.
5.3 Reentrant Corner, Wide Angle

This is the reentrant corner problem (Section 5.2) with! =5 =4, =10 4 for the grid images. The
APRIORI strategy re nes by h if the element contains the origin and by p otherwise.
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Figure 61: Example grid for the ALTERNATE strat- Figure 65:. Example grid for the H&P_ERREST
egy with the wide angle reentrant corner problem, strategy with the wide angle reentrant corner prob-
including details at the singularity. lem, including details at the singularity.

Figure 62: Example grid for the APRIORI strategy Figure 66: Example grid for the NEXT3P strategy
with the wide angle reentrant corner problem, includ- with the wide angle reentrant corner problem, includ-
ing details at the singularity. ing details at the singularity.

Figure 63: Example grid for the COEF.DECAY Figure 67: Example grid for the NLP strategy with
strategy with the wide angle reentrant corner prob- the wide angle reentrant corner problem, including
lem, including details at the singularity. details at the singularity.

Figure 64: Example grid for the COEF_ROOT strat- Figure 68: Example grid for the PRIOR2P strategy
egy with the wide angle reentrant corner problem, with the wide angle reentrant corner problem, includ-
including details at the singularity. ing details at the singularity.
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Figure 69: Example grid for the REFSOLN_EDGE
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 73: Example grid for the TYPEPARAM strat-
egy with the wide angle reentrant corner problem,
including details at the singularity.

Figure 70: Example grid for the REFSOLN_ELEM
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 71: Example grid for the SMOOTH_PRED
strategy with the wide angle reentrant corner prob-
lem, including details at the singularity.

Figure 74: Log-Log plot of the convergence of the
ALTERNATE strategy with the wide angle reentrant
corner problem.

Figure 72: Example grid for the T3S strategy with
the wide angle reentrant corner problem, including
details at the singularity.
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Figure 75: Log-Log plot of the convergence of the Figure 77: Log-Log plot of the convergence of the
APRIORI strategy with the wide angle reentrant cor- COEF_ROOT strategy with the wide angle reentrant
ner problem. corner problem.

Figure 76: Log-Log plot of the convergence of the Figure 78: Log-Log plot of the convergence of the
COEF_DECAY strategy with the wide angle reen- H&P _ERREST strategy with the wide angle reen-
trant corner problem. trant corner problem.
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Figure 79: Log-Log plot of the convergence of the Figure 81: Log-Log plot of the convergence of the
NEXT3P strategy with the wide angle reentrant cor- PRIOR2P strategy with the wide angle reentrant cor-
ner problem. ner problem.

Figure 80: Log-Log plot of the convergence of the Figure 82: Log-Log plot of the convergence of the
NLP strategy with the wide angle reentrant cor- REFSOLN_EDGE strategy with the wide angle reen-
ner problem. trant corner problem.
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Figure 83: Log-Log plot of the convergence of the Figure 85: Log-Log plot of the convergence of the T3S
REFSOLN_ELEM strategy with the wide angle reen- strategy with the wide angle reentrant corner prob-
trant corner problem. lem.

Figure 84: Log-Log plot of the convergence of the Figure 86: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the wide angle reen- TYPEPARAM strategy with the wide angle reen-
trant corner problem. trant corner problem.
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Figure 87: Log-Log plot of the convergence of all strategies with the wide angle emtrant corner problem.
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strategy A B C strategy A B
ALTERNATE 1.47 -1.22 0.24 ALTERNATE 0.13 -0.39
APRIORI 0.49 -0.30 0.44 APRIORI 6.37 -0.92
COEF _DECAY 6.35 -159 0.25 COEF_DECAY 0.40 -0.61
COEF_ROOT 208 -1.03 0.29 COEF_ROOT 0.63 -0.65
H&P _ERREST 529 -162 0.24 H&P _ERREST 0.27 -0.54
NEXT3P 209 -1.16 0.27 NEXT3P 0.37 -0.55
NLP 0.19 -0.35 0.37 NLP 0.46 -0.54
PRIOR2P 0.47 -0.42 0.38 PRIOR2P 153 -0.73
REFSOLN_EDGE 0.42 -0.34 0.42 REFSOLN_EDGE 3.97 -0.87
REFSOLN_ELEM 0.43 -0.29 0.44 REFSOLN_ELEM 7.74 -0.92
SMOOTH_PRED 0.23 -0.18 0.47 SMOOTH_PRED 3.38 -0.75
T3S 256 -1.40 0.22 T3S 0.11 -0.34
TYPEPARAM 0.45 -0.48 0.36 TYPEPARAM 0.78 -0.62

Table 9: Parameters of the least squares t for Table 11: Parameters of the least squares t for
.. .. c . 1=3 i
ienpjie = AeBNwr for the wide angle reentrant cor- jienjic = Ae®  « for the wide angle reentrant cor-

ner problem. ner problem.

strategy factor strategy factor
COEF_DECAY 1.00 APRIORI 1.00
COEF_ROOT 1.05 REFSOLN_ELEM  1.02
H&P _ERREST 1.07 REFSOLN_EDGE  1.07
REFSOLN_EDGE 1.10 PRIOR2P 1.46
NEXT3P 1.14 SMOOTH _PRED 1.62
PRIOR2P 1.16 COEF_ROOT 1.71
NLP 1.18 COEF_DECAY 1.79
REFSOLN_ELEM  1.20 TYPEPARAM 2.06
APRIORI 1.24 H&P ERREST 2.43
TYPEPARAM 1.27 NEXT3P 2.52
ALTERNATE 1.35 NLP 2.70
SMOOTH _PRED 1.66 ALTERNATE 5.49
T3S 1.88 T3S 8.11

Table 10: Factor by which N is larger than the best Table 12: Factor by which N is larger than the best
strategy for the wide angle reentrant corner problem strategy for the wide angle reentrant corner problem
at low accuracy, 10x10 2. at high accuracy, 10x10 6.
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Figure 88: The solution of the L-shaped domain problem.

5.4 Reentrant Corner, L-Shaped Domain

The reentrant corner problem (Section 5.2) with! =3 =2 is the classic \L domain" problem which is used
as an example in many papers on adaptive grid re nement. = 10 4 for the grid images. The APRIORI
strategy re nes by h if the element contains the origin and by p otherwise. For this problem, the cube root
vs. log convergence plots are shown in addition to the log-log plots.
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Figure 89: Example grid for the ALTERNATE strat- Figure 93:. Example grid for the H&P_ERREST
egy with the L-shaped domain problem, including de- strategy with the L-shaped domain problem, includ-
tails at the singularity. ing details at the singularity.

Figure 90: Example grid for the APRIORI strategy Figure 94: Example grid for the NEXT3P strategy
with the L-shaped domain problem, including details with the L-shaped domain problem, including details
at the singularity. at the singularity.

Figure 91: Example grid for the COEF.DECAY Figure 95: Example grid for the NLP strategy with
strategy with the L-shaped domain problem, includ- the L-shaped domain problem, including details at
ing details at the singularity. the singularity.

Figure 92: Example grid for the COEF_ROOT strat- Figure 96: Example grid for the PRIOR2P strategy
egy with the L-shaped domain problem, including de- with the L-shaped domain problem, including details
tails at the singularity. at the singularity.
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Figure 97: Example grid for the REFSOLN_EDGE
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 101: Example grid for the TYPEPARAM
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 98: Example grid for the REFSOLN_ELEM
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 99: Example grid for the SMOOTH_PRED
strategy with the L-shaped domain problem, includ-
ing details at the singularity.

Figure 102: Log-Log plot of the convergence of
the ALTERNATE strategy with the L-shaped do-
main problem.

Figure 100: Example grid for the T3S strategy with
the L-shaped domain problem, including details at
the singularity.
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Figure 103: Log-Log plot of the convergence of the Figure 105: Log-Log plot of the convergence of
APRIORI strategy with the L-shaped domain prob- the COEF_ROOT strategy with the L-shaped do-
lem. main problem.

Figure 104: Log-Log plot of the convergence of Figure 106: Log-Log plot of the convergence of
the COEF_DECAY strategy with the L-shaped do- the H&P _ERREST strategy with the L-shaped do-
main problem. main problem.
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Figure 107: Log-Log plot of the convergence of the Figure 109: Log-Log plot of the convergence of the

NEXT3P strategy with the L-shaped domain prob- PRIORZ2P strategy with the L-shaped domain prob-
lem. lem.

Figure 110: Log-Log plot of the convergence of the

Figure 108: Log-Log plot of the convergence of the RersSOLN_EDGE strategy with the L-shaped do-
NLP strategy with the L-shaped domain problem. main problem.
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Figure 111: Log-Log plot of the convergence of the Figyre 113: Log-Log plot of the convergence of the

REFSOLN ELEM strategy with the L-shaped do- T35 strategy with the L-shaped domain problem.
main problem.

Figure 112: Log-Log plot of the convergence of the Figure 114: Log-Log plot of the convergence of
SMOOTH _PRED strategy with the L-shaped do- theé TYPEPARAM strategy with the L-shaped do-
main problem. main problem.
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Figure 115: Log-Log plot of the convergence of all strategies with the L-shaped domaiproblem.
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Figure 116: Cube root vs. Log plot of the con- Figure 118: Cube root vs. Log plot of the conver-
vergence of the ALTERNATE strategy with the L- gence of the COEEDECAY strategy with the L-
shaped domain problem. shaped domain problem.

Figure 117: Cube root vs. Log plot of the conver- Figure 119: Cube root vs. Log plot of the con-
gence of the APRIORI strategy with the L-shaped vergence of the COEEROOT strategy with the L-
domain problem. shaped domain problem.
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Figure 120: Cube root vs. Log plot of the con- Figure 122: Cube root vs. Log plot of the conver-
vergence of the H&P ERREST strategy with the L- gence of the NLP strategy with the L-shaped do-
shaped domain problem. main problem.

Figure 121: Cube root vs. Log plot of the conver- Figure 123: Cube root vs. Log plot of the conver-
gence of the NEXT3P strategy with the L-shaped gence of the PRIOR2P strategy with the L-shaped
domain problem. domain problem.
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Figure 124: Cube root vs. Log plot of the conver- Figure 126: Cube root vs. Log plot of the conver-
gence of the REFSOLNEDGE strategy with the L- gence of the SMOOTHPRED strategy with the L-
shaped domain problem. shaped domain problem.

Figure 125: Cube root vs. Log plot of the conver- Figure 127: Cube root vs. Log plot of the conver-
gence of the REFSOLNELEM strategy with the L- gence of the T3S strategy with the L-shaped do-
shaped domain problem. main problem.
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Figure 128: Cube root vs. Log plot of the con-
vergence of the TYPEPARAM strategy with the L-
shaped domain problem.

55



Figure 129: Cube root vs. Log plot of the convergence of all strategies with thé-shaped domain problem.
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strategy A B C strategy A B
ALTERNATE 286 -1.15 0.24 ALTERNATE 0.23 -0.33
APRIORI 130 -0.35 041 APRIORI 9.70 -0.81
COEF_DECAY 20.31 -1.85 0.23 COEF_DECAY 0.44 -0.50
COEF_ROOT 332 -095 0.28 COEF_ROOT 0.81 -0.54
H&P _ERREST 1.74 -0.74 0.30 H&P _ERREST 0.79 -0.51
NEXT3P 340 -1.14 0.25 NEXT3P 0.39 -0.42
NLP 0.094 -0.14 0.44 NLP 0.70 -0.46
PRIOR2P 0.84 -040 0.37 PRIOR2P 221 -0.63
REFSOLN_EDGE 0.81 -0.34 0.41 REFSOLN_EDGE 5.81 -0.79
REFSOLN_ELEM 0.89 -0.37 0.38 REFSOLN_ELEM 3.28 -0.66
SMOOTH_PRED 043 -0.17 0.45 SMOOTH_PRED 4.99 -0.64
T3S 276 -1.10 0.23 T3S 0.19 -0.28
TYPEPARAM 0.72 -040 0.36 TYPEPARAM 1.38 -0.55

Table 13: Parameters of the least squares t for Table 15: Parameters of the least squares t for
.. .. c . 1=3 .
jienpjie = AePNar for the L-shaped domain prob- jie,,jie = Ae®Na for the L-shaped domain prob-

lem.

lem.

Strategy factor strategy factor
COEF_DECAY 1.00 APRIORI 1.00
REFSOLN_EDGE 1.01 REFSOLN_EDGE 1.00
COEF_ROOT 1.13 REFSOLN_ELEM 1.54
NLP 1.14 PRIOR2P 1.61
APRIORI 1.18 SMOOTH _PRED 1.77
PRIOR2P 1.24 COEF_ROOT 2.03
H&P ERREST 1.27 COEF_DECAY 2.08
NEXT3P 1.32 TYPEPARAM 2.09
REFSOLN_ELEM  1.32 H&P ERREST 2.48
TYPEPARAM 1.39 NLP 3.03
ALTERNATE 1.77 NEXT3P 3.67
SMOOTH _PRED 1.77 ALTERNATE 6.90
T3S 2.54 T3S 11.55

Table 14: Factor by which N is larger than the best Table 16: Factor by which N is larger than the best
strategy for the L-shaped domain problem at low ac- strategy for the L-shaped domain problem at high
curacy, 10x10 2. accuracy, 10x10 ©.
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Figure 130: The solution of the narrow angle reentrant corner problem.
5.5 Reentrant Corner, Narrow Angle

This is the reentrant corner problem (Section 5.2) with! =7 =4. =10 4 for the grid images. The
APRIORI strategy re nes by h if the element contains the origin and by p otherwise.
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Figure 131: Example grid for the ALTERNATE Figure 135: Example grid for the H&P_ERREST
strategy with the narrow angle reentrant corner prob- strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity. lem, including details at the singularity.

Figure 132: Example grid for the APRIORI strat- Figure 136: Example grid for the NEXT3P strategy
egy with the narrow angle reentrant corner problem, with the narrow angle reentrant corner problem, in-
including details at the singularity. cluding details at the singularity.

Figure 133: Example grid for the COEF.DECAY Figure 137: Example grid for the NLP strategy with
strategy with the narrow angle reentrant corner prob- the narrow angle reentrant corner problem, including
lem, including details at the singularity. details at the singularity.

Figure 134: Example grid for the COEF.ROOT Figure 138: Example grid for the PRIOR2P strat-
strategy with the narrow angle reentrant corner prob- egy with the narrow angle reentrant corner problem,
lem, including details at the singularity. including details at the singularity.
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Figure 139: Example grid for the REFSOLN_EDGE
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 143: Example grid for the TYPEPARAM
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 140: Example grid for the REFSOLN_ELEM
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 141. Example grid for the SMOOTH_PRED
strategy with the narrow angle reentrant corner prob-
lem, including details at the singularity.

Figure 144. Log-Log plot of the convergence of the
ALTERNATE strategy with the narrow angle reen-
trant corner problem.

Figure 142: Example grid for the T3S strategy with
the narrow angle reentrant corner problem, including
details at the singularity.
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Figure 145: Log-Log plot of the convergence of the Figure 147: Log-Log plot of the convergence of the
APRIORI strategy with the narrow angle reentrant COEF_ROOT strategy with the narrow angle reen-
corner problem. trant corner problem.

Figure 146: Log-Log plot of the convergence of the Figure 148: Log-Log plot of the convergence of the
COEF _DECAY strategy with the narrow angle reen- H&P _ERREST strategy with the narrow angle reen-
trant corner problem. trant corner problem.
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Figure 149: Log-Log plot of the convergence of the Figure 151: Log-Log plot of the convergence of the
NEXT3P strategy with the narrow angle reentrant PRIOR2P strategy with the narrow angle reentrant
corner problem. corner problem.

Figure 150: Log-Log plot of the convergence of the Figure 152: Log-Log plot of the convergence of the
NLP strategy with the narrow angle reentrant cor- REFSOLN_EDGE strategy with the narrow angle
ner problem. reentrant corner problem.
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Figure 153: Log-Log plot of the convergence of the Figure 155: Log-Log plot of the convergence of the
REFSOLN_ELEM strategy with the narrow angle T3S strategy with the narrow angle reentrant cor-
reentrant corner problem. ner problem.

Figure 154: Log-Log plot of the convergence of the Figure 156: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the narrow angle TYPEPARAM strategy with the narrow angle reen-
reentrant corner problem. trant corner problem.
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Figure 157: Log-Log plot of the convergence of all strategies with the narrow anglesentrant corner problem.
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strategy A B C strategy A B
ALTERNATE 231 -0.83 0.25 ALTERNATE 035 -0.30
APRIORI 1.75 -0.33 041 APRIORI 12.03 -0.73
COEF_DECAY 36.40 -1.90 0.22 COEF_DECAY 049 -0.44
COEF_ROOT 6.61 -1.05 0.27 COEF_ROOT 0.87 -0.47
H&P _ERREST 1.28 -047 0.33 H&P _ERREST 117 -0.45
NEXT3P 272 -0.83 0.27 NEXT3P 059 -0.38
NLP 14.36 -0.99 0.27 NLP 226 -0.48
PRIOR2P 155 -045 0.35 PRIOR2P 236 -0.55
REFSOLN_EDGE 0.92 -0.29 0.42 REFSOLN_EDGE 6.93 -0.71
REFSOLN_ELEM 0.53 -0.13 0.49 REFSOLN_ELEM 11.62 -0.72
SMOOTH_PRED 045 -0.13 0.47 SMOOTH_PRED 7.64 -0.60
T3S 025 -0.24 0.33 T3S 0.23 -0.22
TYPEPARAM 139 -046 0.34 TYPEPARAM 151 -0.48

Table 17: Parameters of the least squares t for Table 19: Parameters of the least squares t for

. . (o} 1=3
jienpjie = AeBNwr for the narrow angle reentrant jiensjic = Ae® @ for the narrow angle reentrant
corner problem.

corner problem.

strategy factor

strategy factor
REFSOLN_EDGE 1.00 REFSOLN_EDGE  1.00
COEF _DECAY 1.06 REFSOLN_ELEM  1.00
APRIORI 1.18 APRIORI 1.01
COEF_ROOT 1.19 SMOOTH _PRED 1.69
REFSOLN_ELEM  1.28 PRIOR2P 1.74
PRIOR2P 1.29 COEF_ROOT 2.25
TYPEPARAM 1.51 COEF_DECAY 2.28
H&P ERREST 1.54 TYPEPARAM 2.38
NEXT3P 1.57 NLP 2.68
SMOOTH _PRED 1.78 H&P ERREST 2.69
NLP 1.95 NEXT3P 3.97
ALTERNATE 2.14 ALTERNATE 7.30
T3S 3.66 T3S 15.52

Table 18: Factor by which N is larger than the best Table 20: Factor by which N is larger than the best
strategy for the narrow angle reentrant corner prob- strategy for the narrow angle reentrant corner prob-
lem at low accuracy, 10x10 2. lem at high accuracy, 10x10 ©.
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Figure 158: The solution of the slit domain problem.

5.6 Reentrant Corner, Slit

This is the reentrant corner problem (Section 5.2) with! =2 . This results in a domain that has a slit
along the positive x axis. =10 * for the grid images. The APRIORI strategy re nes by h if the element
contains the origin and by p otherwise.
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Figure 159: Example grid for the ALTERNATE
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 160: Example grid for the APRIORI strategy
with the slit domain problem, including details at the
singularity.

Figure 161: Example grid for the COEF.DECAY
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 162: Example grid for the COEF.ROOT
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 163: Example grid for the H&P_ERREST
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 164: Example grid for the NEXT3P strategy
with the slit domain problem, including details at the
singularity.

Figure 165: Example grid for the NLP strategy with
the slit domain problem, including details at the sin-

gularity.

Figure 166: Example grid for the PRIOR2P strategy
with the slit domain problem, including details at the
singularity.
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Figure 167: Example grid for the REFSOLN_EDGE
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 168: Example grid for the REFSOLN_ELEM
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 169: Example grid for the SMOOTH_PRED
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 170: Example grid for the T3S strategy with
the slit domain problem, including details at the sin-

gularity.

Figure 171: Example grid for the TYPEPARAM
strategy with the slit domain problem, including de-
tails at the singularity.

Figure 172: Log-Log plot of the convergence of the
ALTERNATE strategy with the slit domain problem.
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Figure 173: Log-Log plot of the convergence of the Figure 175: Log-Log plot of the convergence of the
APRIORI strategy with the slit domain problem. COEF_ROOQT strategy with the slit domain problem.

Figure 174: Log-Log plot of the convergence of the Figure 176: Log-Log plot of the convergence of the
COEF _DECAY strategy with the slit domain prob- H&P _ERREST strategy with the slit domain prob-
lem. lem.
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Figure 177: Log-Log plot of the convergence of the Figure 179: Log-Log plot of the convergence of the
NEXT3P strategy with the slit domain problem. PRIOR2P strategy with the slit domain problem.

) Figure 180: Log-Log plot of the convergence of
Figure 178: Log-Log plot of the convergence of the {ne REFSOLN_EDGE strategy with the slit do-
NLP strategy with the slit domain problem. main problem.

70



Figure 181: Log-Log plot of the convergence of Figure 183: Log-Log plot of the convergence of the
the REFSOLN_ELEM strategy with the slit do-  T3s strategy with the slit domain problem.
main problem.

Figure 182: Log-Log plot of the convergence of the Figure 184: Log-Log plot of the convergence of the

SMOOTH _PRED strategy with the slit domain prob- FYPEPARAM strategy with the slit domain prob-
lem. em.
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Figure 185: Log-Log plot of the convergence of all strategies with the slit domain pblem.
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strategy A B C strategy A B
ALTERNATE 141 -049 0.29 ALTERNATE 0.54 -0.27
APRIORI 1.89 -0.30 0.40 APRIORI 12.72 -0.67
COEF_DECAY 4470 -1.81 0.22 COEF_DECAY 0.57 -0.39
COEF_ROOT 10.14 -1.08 0.26 COEF_ROOT 097 -042
H&P _ERREST 162 -043 0.33 H&P _ERREST 154 -041
NEXT3P 110 -0.31 0.36 NEXT3P 1.74 -0.42
NLP 0.11 -0.038 0.53 NLP 3.08 -041
PRIOR2P 1.74 -039 0.35 PRIOR2P 292 -049
REFSOLN_EDGE 1.17 -0.29 0.40 REFSOLN_EDGE 7.35 -0.65
REFSOLN_ELEM 2.17 -0.38 0.36 REFSOLN_ELEM 4.92 -0.54
SMOOTH_.PRED 0.70 -0.14 045 SMOOTH_PRED 9.52  -0.55
T3S 0.17 -0.086 0.40 T3S 0.40 -0.21
TYPEPARAM 6.24 -0.78 0.30 TYPEPARAM 196 -0.49

Table 21: Parameters of the least squares t for Table 23: Parameters of the least squares t for

jienpiie = AeBN o for the slit domain problem. jienpiie = AeBM w for the slit domain problem.
strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_EDGE 1.00
COEF_DECAY 1.18 APRIORI 1.01
APRIORI 1.18 REFSOLN_ELEM 1.60
TYPEPARAM 1.21 SMOOTH _PRED 1.65
COEF_ROOT 1.30 TYPEPARAM 1.70
REFSOLN_ELEM 1.48 PRIOR2P 1.86
PRIOR2P 1.48 COEF_ROOT 2.37
H&P _ERREST 1.74 COEF_DECAY 2.48
NEXT3P 1.86 NEXT3P 2.66
SMOOTH _PRED 1.86 H&P _ERREST 2.74
NLP 241 NLP 3.18
ALTERNATE 2.99 ALTERNATE 8.05
T3S 6.11 T3S 15.97

Table 22: Factor by which N is larger than the best Table 24: Factor by which N is larger than the best

strategy for the slit domain problem at low accuracy, strategy for the slit domain problem at high accuracy,
1:0x10 2. 1:0x10 8.
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Figure 186: Theu component of the solution of the mode 1 linear elasticity problem.

Figure 187: Thev component of the solution of the mode 1 linear elasticity problem.

5.7 Linear Elasticity, Mode 1

The linear elasticity problem is a coupled system of two equations vth a mixed derivative in the coupling

term and di erent coe cients on the second order x and y terms. The domain is a square with a slit, as in
the reentrant corner slit domain problem (Section 5.6). The boundary comlitions are Dirichlet. For further

details, see [21]. We consider two solutions, refered to as mode 1 andode 2, by using di erent boundary
conditions. Both solutions have a singularity at the origin, with the mode 1 solution having the stronger
singularity. This section contains the results for the mode 1 soluion. =10 3 for the grid images. The
APRIORI strategy re nes by h if the element contains the origin and by p otherwise.
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Figure 188: Example grid for the ALTERNATE Figure 192: Example grid for the H&P_ERREST
strategy with the mode 1 linear elasticity problem, strategy with the mode 1 linear elasticity problem,
including details at the singularity. including details at the singularity.

Figure 189: Example grid for the APRIORI strategy Figure 193: Example grid for the NEXT3P strategy
with the mode 1 linear elasticity problem, including with the mode 1 linear elasticity problem, including
details at the singularity. details at the singularity.

Figure 190: Example grid for the COEF.DECAY Figure 194: Example grid for the NLP strategy with
strategy with the mode 1 linear elasticity problem, the mode 1 linear elasticity problem, including details
including details at the singularity. at the singularity.

Figure 191: Example grid for the COEF.ROOT Figure 195: Example grid for the PRIOR2P strategy
strategy with the mode 1 linear elasticity problem, with the mode 1 linear elasticity problem, including
including details at the singularity. details at the singularity.
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Figure 196: Example grid for the REFSOLN_EDGE
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 200: Example grid for the TYPEPARAM
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 197: Example grid for the REFSOLN_ELEM
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 198: Example grid for the SMOOTH_PRED
strategy with the mode 1 linear elasticity problem,
including details at the singularity.

Figure 201: Log-Log plot of the convergence of the
ALTERNATE strategy with the mode 1 linear elas-
ticity problem.

Figure 199: Example grid for the T3S strategy with
the mode 1 linear elasticity problem, including details
at the singularity.
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Figure 202: Log-Log plot of the convergence of the Figure 204: Log-Log plot of the convergence of the
APRIORI strategy with the mode 1 linear elastic- COEF_ROOT strategy with the mode 1 linear elas-
ity problem. ticity problem.

Figure 203: Log-Log plot of the convergence of the Figure 205: Log-Log plot of the convergence of the
COEF_DECAY strategy with the mode 1 linear elas- H&P _ERREST strategy with the mode 1 linear elas-
ticity problem. ticity problem.
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Figure 206: Log-Log plot of the convergence of the Figure 208: Log-Log plot of the convergence of the
NEXT3P strategy with the mode 1 linear elastic- PRIOR2P strategy with the mode 1 linear elastic-
ity problem. ity problem.

Figure 207: Log-Log plot of the convergence of the Figure 209: Log-Log plot of the convergence of the
NLP strategy with the mode 1 linear elasticity prob- REFSOLN_EDGE strategy with the mode 1 linear
lem. elasticity problem.
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Figure 210: Log-Log plot of the convergence of the Figure 212: Log-Log plot of the convergence of the
REFSOLN_ELEM strategy with the mode 1 linear T3S strategy with the mode 1 linear elasticity prob-
elasticity problem. lem.

Figure 211: Log-Log plot of the convergence of the Figure 213: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the mode 1 linear TYPEPARAM strategy with the mode 1 linear elas-
elasticity problem. ticity problem.

79



Figure 214: Log-Log plot of the convergence of all strategies with the mode 1 lirse elasticity problem.
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strategy A B C strategy A B
ALTERNATE 2.92 -0.39 0.29 ALTERNATE 096 -0.21
APRIORI 5.11 -0.28 0.38 APRIORI 20.92 -0.50
COEF _DECAY 20.25 -1.06 0.24 COEF_DECAY 0.712  -0.27
COEF_ROOT 4.27 -0.53 0.29 COEF_ROOT 1.16 -0.28
H&P _ERREST 1.97 -0.31 0.33 H&P _ERREST 190 -0.30
NEXT3P 9.44x10'® -33.00 0.033 NEXT3P 0.017 -0.078
NLP 0.44 -0.068 0.45 NLP 474  -0.32
PRIOR2P 151 -0.26 0.34 PRIOR2P 181 -0.29
REFSOLN_EDGE 2.30 -0.23 040 REFSOLN_EDGE 11.91 -0.49
REFSOLN_ELEM 2.42 -0.19 0.40 REFSOLN_ELEM 13.58 -0.43
SMOOTH_PRED 0.94 -0.088 0.45 SMOOTH_PRED 1251 -0.39
T3S 0.33 -0.066 0.41 T3S 1.14 -0.18
TYPEPARAM 291 -0.33  0.33 TYPEPARAM 299 -0.33

Table 25: Parameters of the least squares t for Table 27: Parameters of the least squares t for

jiepiie = AeBNd for the mode 1 linear elastic- jienpiie = Ae®N = for the mode 1 linear elastic-

ity problem. ity problem.
strategy factor strategy factor
REFSOLN_EDGE  1.00 REFSOLN_EDGE  1.00
APRIORI 1.17 APRIORI 1.04
COEF_DECAY 1.39 REFSOLN_ELEM  1.55
REFSOLN_ELEM  1.56 SMOOTH_PRED  1.97
COEF_ROOT 1.63 TYPEPARAM 2.51
NEXT3P 1.69 NLP 2.85
TYPEPARAM 1.70 H&P ERREST 3.06
H&P _ERREST 1.77 COEF_DECAY 3.24
PRIOR2P 1.90 PRIOR2P 3.33
SMOOTH_PRED  2.06 COEF_ROOT 3.36
NLP 2.29 ALTERNATE 7.90
ALTERNATE 3.43 T3S 11.93
T3S 6.06 NEXT3P 46.52

Table 26: Factor by which N is larger than the best Table 28: Factor by which N is larger than the best

strategy for the mode 1 linear elasticity problem at strategy for the mode 1 linear elasticity problem at
low accuracy, 10x10 2. high accuracy, 10x10 6.
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Figure 215: Theu component of the solution of the mode 2 linear elasticity problem.

Figure 216: Thev component of the solution of the mode 2 linear elasticity problem.
5.8 Linear Elasticity, Mode 2

This is the mode 2 solution of the linear elasticity problem (Section5.7). =10 3 for the grid images. The
APRIORI strategy re nes by h if the element contains the origin and by p otherwise.
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Figure 217: Example grid for the ALTERNATE Figure 221: Example grid for the H&P_ERREST
strategy with the mode 2 linear elasticity problem, strategy with the mode 2 linear elasticity problem,
including details at the singularity. including details at the singularity.

Figure 218: Example grid for the APRIORI strategy Figure 222: Example grid for the NEXT3P strategy
with the mode 2 linear elasticity problem, including with the mode 2 linear elasticity problem, including
details at the singularity. details at the singularity.

Figure 219: Example grid for the COEF.DECAY Figure 223: Example grid for the NLP strategy with
strategy with the mode 2 linear elasticity problem, the mode 2 linear elasticity problem, including details
including details at the singularity. at the singularity.

Figure 220: Example grid for the COEF.ROOT Figure 224: Example grid for the PRIOR2P strategy
strategy with the mode 2 linear elasticity problem, with the mode 2 linear elasticity problem, including
including details at the singularity. details at the singularity.
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Figure 225: Example grid for the REFSOLN_EDGE
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 229: Example grid for the TYPEPARAM
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 226: Example grid for the REFSOLN_ELEM
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 227: Example grid for the SMOOTH_PRED
strategy with the mode 2 linear elasticity problem,
including details at the singularity.

Figure 230: Log-Log plot of the convergence of the
ALTERNATE strategy with the mode 2 linear elas-
ticity problem.

Figure 228: Example grid for the T3S strategy with
the mode 2 linear elasticity problem, including details
at the singularity.
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Figure 231: Log-Log plot of the convergence of the Figure 233: Log-Log plot of the convergence of the
APRIORI strategy with the mode 2 linear elastic- COEF_ROOT strategy with the mode 2 linear elas-
ity problem. ticity problem.

Figure 232: Log-Log plot of the convergence of the Figure 234: Log-Log plot of the convergence of the
COEF_DECAY strategy with the mode 2 linear elas- H&P _ERREST strategy with the mode 2 linear elas-
ticity problem. ticity problem.
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Figure 235: Log-Log plot of the convergence of the Figure 237: Log-Log plot of the convergence of the
NEXT3P strategy with the mode 2 linear elastic- PRIOR2P strategy with the mode 2 linear elastic-
ity problem. ity problem.

Figure 236: Log-Log plot of the convergence of the Figure 238: Log-Log plot of the convergence of the
NLP strategy with the mode 2 linear elasticity prob- REFSOLN_EDGE strategy with the mode 2 linear
lem. elasticity problem.
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Figure 239: Log-Log plot of the convergence of the Figure 241: Log-Log plot of the convergence of the
REFSOLN_ELEM strategy with the mode 2 linear T3S strategy with the mode 2 linear elasticity prob-
elasticity problem. lem.

Figure 240: Log-Log plot of the convergence of the Figure 242: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the mode 2 linear TYPEPARAM strategy with the mode 2 linear elas-
elasticity problem. ticity problem.
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Figure 243: Log-Log plot of the convergence of all strategies with the mode 2 lirs elasticity problem.
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strategy A B C strategy A B
ALTERNATE 1.63 -0.88 0.24 ALTERNATE 0.12 -0.25
APRIORI 0.38 -0.15 0.46 APRIORI 572 -0.59
COEF_DECAY 3.27 -0.96 0.26 COEF_DECAY 0.37 -0.38
COEF_ROOT 1.95 -0.74 0.28 COEF_ROOT 049 -0.40
H&P _ERREST 6.51 -1.29 0.23 H&P _ERREST 0.22 -0.33
NEXT3P 8.60 -1.86 0.18 NEXT3P 0.11 -0.23
NLP 0.70 -0.34 0.35 NLP 1.05 -0.43
PRIOR2P 0.66 -0.38 0.34 PRIOR2P 0.86 -0.43
REFSOLN_EDGE 0.88 -0.32 0.38 REFSOLN_EDGE 3.12 -0.58
REFSOLN_ELEM 0.54 -0.21 042 REFSOLN_ELEM 4.15 -0.56
SMOOTH_PRED 0.14 -0.063 0.50 SMOOTH_PRED 259 -0.45
T3S 0.69 -0.49 0.29 T3S 0.21 -0.26
TYPEPARAM 27146 -3.90 0.14 TYPEPARAM 0.070 -0.24

Table 29: Parameters of the least squares t for Table 31: Parameters of the least squares t for

jiepiie = AeBNdr for the mode 2 linear elastic- jienpiie = Ae®N w for the mode 2 linear elastic-

ity problem. ity problem.
strategy factor strategy factor
REFSOLN_EDGE  1.00 REFSOLN_EDGE  1.00
TYPEPARAM 1.03 APRIORI 1.03
COEF_DECAY 1.03 REFSOLN_ELEM  1.14
COEF_ROOT 1.06 PRIOR2P 1.84
H&P ERREST 1.10 NLP 1.96
PRIOR2P 1.16 COEF_ROOT 2.01
REFSOLN_ELEM  1.18 SMOOTH_PRED  2.04
APRIORI 1.19 COEF_DECAY 2.15
NLP 1.34 H&P ERREST 2.75
NEXT3P 1.35 TYPEPARAM 5.66
ALTERNATE 1.48 T3S 5.74
SMOOTH_PRED  1.87 ALTERNATE 5.81
T3S 1.88 NEXT3P 8.76

Table 30: Factor by which N is larger than the best Table 32: Factor by which N is larger than the best
strategy for the mode 2 linear elasticity problem at strategy for the mode 2 linear elasticity problem at

low accuracy, 10x10 2.
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Figure 244: The solution of the mild peak problem.

5.9 Mild Peak

The peak problem contains a Gaussian peak in the interior of the domain. Itis Poisson's equation on the
unit square with Dirichlet boundary conditions. The solution is

e (X X)ZHy yo)?)

where (Xc;Yc) is the location of the peak, and determines the strength of the peak. For the easy form
of this problem, we use = 1000 and (x¢;Yc) = (0:5;0:5). For this problem, we used = 10 ° for the

grid images. The APRIORI strategy re nes by h if the element touches the center of the peak and byp

otherwise.
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Figure 245: Example grid for the ALTERNATE Figure 248: Example grid for the COEF.ROOT
strategy with the mild peak problem. strategy with the mild peak problem.

Figure 246: Example grid for the APRIORI strategy Figure 249: Example grid for the H&P_ERREST
with the mild peak problem. strategy with the mild peak problem.

Figure 247: Example grid for the COEF.DECAY Figure 250: Example grid for the NEXT3P strategy
strategy with the mild peak problem. with the mild peak problem.
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Figure 251: Example grid for the NLP strategy with Figure 254: Example grid for the REFSOLN_ELEM
the mild peak problem. strategy with the mild peak problem.

Figure 252: Example grid for the PRIOR2P strategy Figure 255: Example grid for the SMOOTH_PRED
with the mild peak problem. strategy with the mild peak problem.

Figure 253: Example grid for the REFSOLN_EDGE Figure 256: Example grid for the T3S strategy with
strategy with the mild peak problem. the mild peak problem.
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Figure 257: Example grid for the TYPEPARAM
strategy with the mild peak problem.

Figure 259: Log-Log plot of the convergence of the
APRIORI strategy with the mild peak problem.

Figure 258: Log-Log plot of the convergence of the

ALTERNATE strategy with the mild peak problem. Figure 260: Log-Log plot of the convergence of the

COEF _DECAY strategy with the mild peak problem.
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Figure 261: Log-Log plot of the convergence of the Figure 263: Log-Log plot of the convergence of the
COEF _ROOT strategy with the mild peak problem. NEXT3P strategy with the mild peak problem.

Figure 262: Log-Log plot of the convergence of the Figure 264: Log-Log plot of the convergence of the
H&P _ERREST strategy with the mild peak problem. NLP strategy with the mild peak problem.
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Figure 265: Log-Log plot of the convergence of the Figure 267: Log-Log plot of the convergence of the

PRIOR2P strategy with the mild peak problem. REFSOLN_ELEM strategy with the mild peak prob-
lem.

Figure 266: Log-Log plot of the convergence of the Figure 268: Log-Log plot of the convergence of the

REFSOLN_EDGE strategy with the mild peak prob-  SMOOTH _PRED strategy with the mild peak prob-
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Figure 269: Log-Log plot of the convergence of the
T3S strategy with the mild peak problem.

Figure 270: Log-Log plot of the convergence of the
TYPEPARAM strategy with the mild peak problem.
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Figure 271: Log-Log plot of the convergence of all strategies with the mild peak pblem.
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strategy A B C strategy A B
ALTERNATE 1.06 -0.31 0.36 ALTERNATE 2.23 -0.42
APRIORI 6.34 -0.25 0.50 APRIORI 2.16x10° -1.41
COEF_DECAY 5.52x10° -6.02 0.15 COEF_DECAY 2.53 -0.52
COEF_ROOT 33.43 -1.23  0.27 COEF_ROOT 3.73 -0.59
H&P _ERREST 7.93x10t6  -28.21 0.066 H&P ERREST 0.56 -0.53
NEXT3P 2.19x10'? -18.60 0.087 NEXT3P 0.95 -0.58
NLP 1.80x1¢* -10.39 0.12 NLP 1.32 -0.57
PRIOR2P 3.58x10° -6.34 0.14 PRIOR2P 1.58 -0.51
REFSOLN_EDGE 1.13x1¢* -3.33 0.23 REFSOLN_EDGE 35.07 -1.07
REFSOLN_ELEM 262.43 -0.90 0.39 REFSOLN_ELEM 2.26x10° -1.52
SMOOTH_PRED  9.60 -0.33 043 SMOOTH_PRED  271.26 -0.96
T3S 5.10x16 -599 0.18 T3S 28.24 -0.84
TYPEPARAM 6.02x10% -1.99  0.29 TYPEPARAM 760.49 -1.29

Table 33: Parameters of the least squares t for Table 35: Parameters of the least squares t for

jienpiie = AeBNar for the mild peak problem. jienpiie = AeBM w for the mild peak problem.
strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_ELEM 1.00
REFSOLN_ELEM 1.13 APRIORI 1.25
APRIORI 1.29 TYPEPARAM 1.37
TYPEPARAM 1.38 REFSOLN_EDGE 1.47
NEXT3P 1.51 T3S 2.88
H&P ERREST 1.52 SMOOTH _PRED 291
NLP 1.92 NEXT3P 4.19
T3S 2.02 H&P _ERREST 4.66
COEF_ROOT 2.13 NLP 4.88
PRIOR2P 2.26 COEF_ROOT 5.67
SMOOTH _PRED 2.45 PRIOR2P 7.09
COEF_DECAY 2.88 COEF_DECAY 7.60
ALTERNATE 411 ALTERNATE 14.36

Table 34: Factor by which N is larger than the best Table 36: Factor by which N is larger than the best

strategy for the mild peak problem at low accuracy, strategy for the mild peak problem at high accuracy,
1:0x10 2. 1:0x10 8.
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Figure 272: The solution of the sharp peak problem.

5.10 Sharp Peak

This is the hard version of the peak problem (Section 5.9) with = 100000 and (¢;Vyc) = ( :51;,:117). We
used =10 ° for the grid images. The APRIORI strategy re nes by h if the element touches the center of
the peak and by p otherwise.
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Figure 273: Example grid for the ALTERNATE  Figure 277: Example grid for the H&P_ERREST
strategy with the sharp peak problem, including de- strategy with the sharp peak problem, including de-
tails at the peak. tails at the peak.

Figure 274: Example grid for the APRIORI strategy Figure 278: Example grid for the NEXT3P strategy

with the sharp peak problem, including details atthe . the sharp peak problem, including details at the
peak. peak.

Figure 275: Example grid for the COEF.DECAY
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 279: Example grid for the NLP strategy with
the sharp peak problem, including details at the peak.

Figure 276: Example grid for the COEF.ROOT Figure 280: Example grid for the PRIOR2P strategy
strategy with the sharp peak problem, including de- Wwith the sharp peak problem, including details at the
tails at the peak. peak.
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Figure 281: Example grid for the REFSOLN_EDGE
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 285: Example grid for the TYPEPARAM
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 282: Example grid for the REFSOLN_ELEM
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 283: Example grid for the SMOOTH_PRED
strategy with the sharp peak problem, including de-
tails at the peak.

Figure 286: Log-Log plot of the convergence of the
ALTERNATE strategy with the sharp peak problem.

Figure 284: Example grid for the T3S strategy with
the sharp peak problem, including details at the peak.
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Figure 287: Log-Log plot of the convergence of the Figure 289: Log-Log plot of the convergence of the
APRIORI strategy with the sharp peak problem. COEF_ROOQT strategy with the sharp peak problem.

Figure 288: Log-Log plot of the convergence of the Figure 290: Log-Log plot of the convergence of the
COEF _DECAY strategy with the sharp peak prob- H&P _ERREST strategy with the sharp peak prob-
lem. lem.
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Figure 291: Log-Log plot of the convergence of the Figure 293: Log—Log. plot of the convergence of the

Figure 294: Log-Log plot of the convergence

Figure 292: Log-Log plot of the convergence of the of the REFSOLN_EDGE strategy with the sharp
NLP strategy with the sharp peak problem. peak problem.
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Figure 295: Log-Log plot of the convergence Figure 297: Log-Log plot of the convergence of the
of the REFSOLN_ELEM strategy with the sharp T35 strategy with the sharp peak problem.
peak problem.

Figure 296: Log-Log plot of the convergence of the Figure 298: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the sharp peak prob- FYPEPARAM strategy with the sharp peak prob-
lem. em.
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Figure 299: Log-Log plot of the convergence of all strategies with the sharp peak pblem.
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strategy A B C strategy A B
ALTERNATE 15.36 -0.86 0.29 ALTERNATE 2.29 -0.46
APRIORI 18.05 -0.30 041 APRIORI 370.62 -0.77
COEF _DECAY 5.19x10'° -14.80 0.097 COEF_DECAY 1.19 -0.52
COEF_ROOT 38.27 -1.17  0.28 COEF_ROOT 4.32 -0.59
H&P _ERREST 2.05x10° -49.20 0.058 H&P _ERREST 22.70 -0.77
NEXT3P 1.84x10% -65.99 0.038 NEXT3P 0.88 -0.53
NLP 6.52x10°° -41.09 0.093 NLP 4.47x10P -1.35
PRIOR2P 400.63 -236  0.21 PRIOR2P 1.54 -0.51
REFSOLN_EDGE 2.19x10 -6.65 0.18 REFSOLN_EDGE 166.16 -1.18
REFSOLN_ELEM 2.05x10°** -56.36 0.061 REFSOLN_ELEM 627.71 -1.30
SMOOTH_PRED 0.76 -0.055 0.53 SMOOTH_PRED 94.68 -0.60
T3S 9.11x16° -41.24 0.098 T3S 3.34x10  -1.69
TYPEPARAM 8.81 -0.16  0.55 TYPEPARAM 1.34x104 -1.43

Table 37: Parameters of the least squares t for Table 39: Parameters of the least squares t for

jienpiie = AeBN & for the sharp peak problem. jienpiie = AeBM w for the sharp peak problem.

strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_ELEM 1.00
REFSOLN_ELEM 1.12 REFSOLN_EDGE 1.11
TYPEPARAM 1.59 TYPEPARAM 1.21

NEXT3P 1.73 T3S 1.67
COEF_DECAY 1.90 NLP 2.70
PRIOR2P 1.96 H&P _ERREST 2.71
COEF_ROOT 1.98 NEXT3P 4.06
H&P _ERREST 2.23 APRIORI 4.66

ALTERNATE 3.13 COEF_ROOT 4.75
T3S 3.73 COEF_DECAY 5.06

APRIORI 4.15 PRIOR2P 5.89
NLP 5.67 SMOOTH _PRED 8.22
SMOOTH _PRED 6.06 ALTERNATE 8.62

Table 38: Factor by which N is larger than the best Table 40: Factor by which N is larger than the best
strategy for the sharp peak problem at low accuracy, strategy for the sharp peak problem at high accuracy,
1:0x10 2. 1:0x10 8.
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Figure 300: The solution of the battery problem.

Figure 301: The initial grid for the battery problem.

5.11 Battery

The battery problem is from a model of heat conduction in a battery with honhomogeneous materials. It
has piecewise constant coe cients and right hand side, and mixed boudary conditions on a rectangular
domain. The initial grid, shown in Figure 301, is aligned to the discontiruities in the data. The solution
has several point singularities in the interior of the domain where thiee or more materials meet. See [21] for
further details. The exact solution of this problem is not known, so the error estimate (Section 3) is used
for the convergence results instead of the error. For the grid images, wesed = 10 2 for most strategies,
and =10 ! for COEF_ROOT, REFSOLN _EDGE and TYPEPARAM. The APRIORI strategy re nes by

h if the element touches any of the singularities, and byp otherwise.
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Figure 302: Example grid for the ALTERNATE Figure 305: Example grid for the COEF.ROOT
strategy with the battery problem. strategy with the battery problem.

Figure 303: Example grid for the APRIORI strategy Figure 306: Example grid for the H&P_ERREST
with the battery problem. strategy with the battery problem.

Figure 304: Example grid for the COEF.DECAY Figure 307: Example grid for the NEXT3P strategy
strategy with the battery problem. with the battery problem.
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Figure 308: Example grid for the NLP strategy with Figure 311: Example grid for the REFSOLN_ELEM
the battery problem. strategy with the battery problem.

Figure 309: Example grid for the PRIOR2P strategy Figure 312: Example grid for the SMOOTH_PRED
with the battery problem. strategy with the battery problem.

Figure 310: Example grid for the REFSOLN_EDGE Figure 313: Example grid for the T3S strategy with
strategy with the battery problem. the battery problem.
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Figure 314: Example grid for the TYPEPARAM
strategy with the battery problem.

Figure 316: Log-Log plot of the convergence of the
APRIORI strategy with the battery problem.

Figure 315: Log-Log plot of the convergence of the

ALTERNATE strategy with the battery problem. Figure 317: Log-Log plot of the convergence of the

COEF _DECAY strategy with the battery problem.
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Figure 318: Log-Log plot of the convergence of the Figure 320: Log-Log plot of the convergence of the
COEF _ROOT strategy with the battery problem. NEXT3P strategy with the battery problem.

Figure 319: Log-Log plot of the convergence of the Figure 321: Log-Log plot of the convergence of the
H&P _ERREST strategy with the battery problem. NLP strategy with the battery problem.
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Figure 322: Log-Log plot of the convergence of the Figure 324: Log-Log plot of the convergence of the
PRIOR2P strategy with the battery problem. REFSOLN_ELEM strategy with the battery prob-
lem.

Figure 323: Log-Log plot of the convergence of the

REFSOLN_EDGE strategy with the battery prob- Figure 325: Log-Log plot of the convergence of the
lem. SMOOTH _PRED strategy with the battery problem.
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Figure 326: Log-Log plot of the convergence of the
T3S strategy with the battery problem.

Figure 327: Log-Log plot of the convergence of the
TYPEPARAM strategy with the battery problem.
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Figure 328: Log-Log plot of the convergence of all strategies with the battery prolem.
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strategy A B C strategy A B
ALTERNATE 7.91 -091 0.21 ALTERNATE 0.48 -0.15
APRIORI 4.58x10%* -75.15 0.014 APRIORI 059 -0.23
COEF _DECAY 93.28 -4.06 0.10 COEF_DECAY 0.090 -0.12
COEF_ROOT 0.56 -0.041 0.42 COEF_ROOT 125 -0.13
H&P _ERREST 1.44x10* -8.18 0.074 H&P _ERREST 0.079 -0.15
NEXT3P 3.19x10* -9.25  0.061 NEXT3P 0.10 -0.12
NLP 10.52 -1.70 0.16 NLP 0.11 -0.14
PRIOR2P 1.20x1¢° -6.44 0.074 PRIOR2P 0.087 -0.11
REFSOLN_EDGE 0.15 -0.011 0.53 REFSOLN_EDGE 0.37 -0.12
REFSOLN_ELEM 4.83 -1.86 0.15 REFSOLN_ELEM 0.11 -0.16
SMOOTH_PRED  71.25 -3.15 0.12 SMOOTH_PRED 0.13 -0.14
T3S 1.80x1¢ -10.13 0.062 T3S 0.050 -0.10
TYPEPARAM 0.66 -0.22 0.25 TYPEPARAM 0.34 -0.063

Table 41: Parameters of the least squares t for Table 43: Parameters of the least squares t for

jienpiie = AeBN & for the battery problem. jienpiie = AeBM w for the battery problem.

strategy factor strategy factor
H&P ERREST 1.00 H&P ERREST 1.00
REFSOLN_ELEM 1.39 REFSOLN_ELEM 1.34
NEXT3P 1.68 APRIORI 1.59

COEF_DECAY 1.78 NLP 2.10
APRIORI 1.89 T3S 2.11
PRIOR2P 1.89 SMOOTH _PRED 2.12
T3S 1.94 COEF_DECAY 2.19

SMOOTH _PRED 2.66 NEXT3P 2.56
NLP 3.17 PRIOR2P 3.12
ALTERNATE 8.56 ALTERNATE 3.81

REFSOLN_EDGE 19.22 REFSOLN_EDGE 5.97
COEF_ROOT 31.82 COEF_ROOT 8.97
TYPEPARAM 92.09 TYPEPARAM 61.73

Table 42: Factor by which N is larger than the best Table 44: Factor by which N is larger than the best

strategy for the battery problem at low accuracy, strategy for the battery problem at high accuracy,
1:0x10 2. 5:0x10 4.
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Figure 329: The solution of the mild boundary layer problem.

5.12 Boundary Layer, Mild

The boundary layer problem is a convection-di usion equation with r st order terms and Dirichlet boundary
conditions on ( 1;1) ( 1;1). The solution is

@ e® 97 e® Y7 )cos( (x+y)

where controls the strength of the boundary layer. In the easy form of this prodem we use =10 *. For
the grid images, = 10 *. In the APRIORI strategy we re ne by h if the element touches either of the
boundaries with a boundary layer, and by p otherwise.
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Figure 330: Example grid for the ALTERNATE Figure 333: Example grid for the COEF.ROOT
strategy with the mild boundary layer problem. strategy with the mild boundary layer problem.

Figure 331: Example grid for the APRIORI strategy Figure 334: Example grid for the H&P_ERREST
with the mild boundary layer problem. strategy with the mild boundary layer problem.

Figure 332: Example grid for the COEF.DECAY Figure 335: Example grid for the NEXT3P strategy
strategy with the mild boundary layer problem. with the mild boundary layer problem.
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Figure 336: Example grid for the NLP strategy with Figure 339: Example grid for the REFSOLN_ELEM
the mild boundary layer problem. strategy with the mild boundary layer problem.

Figure 337: Example grid for the PRIOR2P strategy Figure 340: Example grid for the SMOOTH_PRED
with the mild boundary layer problem. strategy with the mild boundary layer problem.

Figure 338: Example grid for the REFSOLN_EDGE Figure 341: Example grid for the T3S strategy with
strategy with the mild boundary layer problem. the mild boundary layer problem.
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Figure 342: Example grid for the TYPEPARAM
strategy with the mild boundary layer problem.

Figure 344: Log-Log plot of the convergence of
the APRIORI strategy with the mild boundary
layer problem.

Figure 343: Log-Log plot of the convergence of

the ALTERNATE strategy with the mild boundary _
layer problem. Figure 345: Log-Log plot of the convergence of

the COEF_DECAY strategy with the mild boundary
layer problem.
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Figure 346: Log-Log plot of the convergence of Figure 348: Log-Log plot of the convergence of
the COEF_ROQT strategy with the mild boundary  the NEXT3P strategy with the mild boundary
layer problem. layer problem.

Figure 347: Log-Log plot of the convergence of

the H&P _ERREST strategy with the mild boundary ~Figure 349: Log-Log plot of the convergence of the
layer problem. NLP strategy with the mild boundary layer problem.
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Figure 350: Log-Log plot of the convergence of Figure 352: Log-Log plot of the convergence of the
the PRIOR2P strategy with the mild boundary REFSOLN_ELEM strategy with the mild boundary
layer problem. layer problem.

Figure 351: Log-Log plot of the convergence of the Figure 353: Log-Log plot of the convergence of the
REFSOLN_EDGE strategy with the mild boundary SMOOTH _PRED strategy with the mild boundary
layer problem. layer problem.
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Figure 354: Log-Log plot of the convergence of the
T3S strategy with the mild boundary layer problem.

Figure 355: Log-Log plot of the convergence of
the TYPEPARAM strategy with the mild boundary
layer problem.
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Figure 356: Log-Log plot of the convergence of all strategies with the mild boundar layer problem.
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strategy A B C strategy A B
ALTERNATE 2.06x10° -4.10 0.17 ALTERNATE 4.63 -0.44
APRIORI 8.34x10%? -69.02 0.019 APRIORI 0.065 -0.14
COEF_DECAY 31.86 -0.76  0.33 COEF_DECAY 23.90 -0.69
COEF_ROOT 90.23 -1.40 0.25 COEF_ROOT 4.34 -0.53
H&P ERREST 1.69x10** -44.04 0.045 H&P _ERREST 0.22 -0.38
NEXT3P 1.11x10° -5.30 0.16 NEXT3P 1.35 -0.47
NLP 90.72 -1.30 0.27 NLP 7.50 -0.57
PRIOR2P 9.46x10* -5.24  0.16 PRIOR2P 1.58 -0.48
REFSOLN_EDGE 3.88 -0.11  0.55 REFSOLN_EDGE 2.01x1¢° -1.11
REFSOLN_ELEM 4.69 -0.21  0.46 REFSOLN_ELEM 177.13 -0.83
SMOOTH_PRED 2.50 -0.050 0.62 SMOOTH_PRED 9.54x10° -1.10
T3S 1.89x13¢% -19.72 0.10 T3S 607.31 -0.73
TYPEPARAM 3.24 -0.087 0.59 TYPEPARAM 4.14x103% -1.21

Table 45: Parameters of the least squares t for Table 47: Parameters of the least squares t for
. . c . 1=3
jienpjie = Ae®N @ for the mild boundary layer prob- jiensjie = Ae®Nwr for the mild boundary layer prob-

lem. lem.

Strategy factor strategy factor
H&P ERREST 1.00 TYPEPARAM 1.00

TYPEPARAM 1.02 REFSOLN_EDGE  1.15
REFSOLN_EDGE 1.08 SMOOTH _PRED 151
NEXT3P 1.14 REFSOLN_ELEM  1.96
PRIOR2P 1.14 COEF_DECAY 241
COEF_DECAY 1.18 NLP 3.38
NLP 1.25 T3S 3.42
COEF_ROOT 1.30 COEF_ROOT 3.97
REFSOLN_ELEM  1.35 NEXT3P 4.05
SMOOTH _PRED 1.59 PRIOR2P 4.14
ALTERNATE 2.82 H&P _ERREST 4.75
T3S 3.13 ALTERNATE 6.80

APRIORI 3.20 APRIORI 219.71

Table 46: Factor by which N is larger than the best Table 48: Factor by which N is larger than the best
strategy for the mild boundary layer problem at low strategy for the mild boundary layer problem at high
accuracy, 10x10 2. accuracy, 10x10 6.
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Figure 357: The solution of the strong boundary layer problem.

5.13 Boundary Layer, Strong

For the hard version of the boundary layer problem (Section 5.12) we use = 10 3. For the grid images,
=10 1. Inthe APRIORI strategy we re ne by h if the element touches either of the boundaries with a
boundary layer, and by p otherwise.
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Figure 358: Example grid for the ALTERNATE Figure 361: Example grid for the COEF.ROOT
strategy with the strong boundary layer problem. strategy with the strong boundary layer problem.

Figure 359: Example grid for the APRIORI strategy Figure 362: Example grid for the H&P_ERREST
with the strong boundary layer problem. strategy with the strong boundary layer problem.

Figure 360: Example grid for the COEF.DECAY Figure 363: Example grid for the NEXT3P strategy
strategy with the strong boundary layer problem. with the strong boundary layer problem.
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Figure 364: Example grid for the NLP strategy with Figure 367: Example grid for the REFSOLN_ELEM
the strong boundary layer problem. strategy with the strong boundary layer problem.

Figure 365: Example grid for the PRIOR2P strategy Figure 368: Example grid for the SMOOTH_PRED
with the strong boundary layer problem. strategy with the strong boundary layer problem.

Figure 366: Example grid for the REFSOLN_EDGE Figure 369: Example grid for the T3S strategy with
strategy with the strong boundary layer problem. the strong boundary layer problem.
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Figure 370: Example grid for the TYPEPARAM
strategy with the strong boundary layer problem.

Figure 372: Log-Log plot of the convergence of
the APRIORI strategy with the strong boundary
layer problem.

Figure 371: Log-Log plot of the convergence of the

ALTERNATE strategy with the strong boundary _
layer problem. Figure 373: Log-Log plot of the convergence of the

COEF_DECAY strategy with the strong boundary
layer problem.
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Figure 374: Log-Log plot of the convergence of the Figure 376: Log-Log plot of the convergence of
COEF_ROQT strategy with the strong boundary the NEXT3P strategy with the strong boundary
layer problem. layer problem.

Figure 375: Log-Log plot of the convergence of the Figure 377: Log-Log plot of the convergence of the
H&P _ERREST strategy with the strong boundary NLP strategy with the strong boundary layer prob-
layer problem. lem.
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Figure 378: Log-Log plot of the convergence of Figure 380: Log-Log plot of the convergence of the
the PRIOR2P strategy with the strong boundary REFSOLN_ELEM strategy with the strong boundary
layer problem. layer problem.

Figure 379: Log-Log plot of the convergence of the Figure 381: Log-Log plot of the convergence of the
REFSOLN _EDGE strategy with the strong boundary SMOOTH _PRED strategy with the strong boundary
layer problem. layer problem.
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Figure 382: Log-Log plot of the convergence of the
T3S strategy with the strong boundary layer prob-
lem.

Figure 383: Log-Log plot of the convergence of the
TYPEPARAM strategy with the strong boundary
layer problem.
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Figure 384: Log-Log plot of the convergence of all strategies with the strong bouraty layer problem.
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strategy A B C strategy A B
ALTERNATE 0.62 -2.40x10 ° 0.70 ALTERNATE 1.74x103 -0.36
APRIORI 1.67x10%% -64.08 0.018 APRIORI 0.22 -0.038
COEF_DECAY 126.02 -0.33 0.28 COEF_DECAY 15.86 -0.14
COEF_ROOT 33.06 -0.22 0.30 COEF_ROOT 10.56 -0.13
H&P ERREST 20.03 -0.22 0.30 H&P ERREST 7.67 -0.13
NEXT3P 874.53 -0.31 0.32 NEXT3P 578.00 -0.27
NLP 1.43x10°? -64.00 0.018 NLP 0.16 -0.060
PRIOR2P 2.74 -0.052 0.39 PRIOR2P 12.41 -0.13
REFSOLN_EDGE 22.11 -0.085 0.43 REFSOLN_EDGE 676.92 -0.34
REFSOLN_ELEM  3.99x10% -42.08 0.062 REFSOLN_ELEM 3.04x10* -0.36
SMOOTH_PRED 2.71 -2.52x10°% 0.67 SMOOTH_PRED  2.82x1¢* -0.32
T3S 17.85 -0.44 0.26 T3S 1.91 -0.14
TYPEPARAM 1.20x10%*  -49.03 0.046 TYPEPARAM 40.03 -0.18
Table 49: Parameters of the least squares t Table 51: Parameters of the least squares
for jienjie = AeBN& for the strong boundary for jienjie = Ae®Na for the strong boundary
layer problem. layer problem.
strategy factor strategy factor
REFSOLN_EDGE 1.00 ALTERNATE 1.00
ALTERNATE 1.11 REFSOLN_EDGE 1.07
T3S 1.64 REFSOLN_ELEM 1.75
NEXT3P 1.87 NEXT3P 2.00
REFSOLN_ELEM  1.93 SMOOTH _-PRED 2.15
TYPEPARAM 2.76 TYPEPARAM 4.67
SMOOTH _PRED 2.93 T3S 6.25
NLP 2.99 COEF _DECAY 7.93
H&P _ERREST 3.71 H&P _ERREST 8.78
COEF_DECAY 4.17 PRIOR2P 9.40
COEF_ROOT 4.54 COEF_ROOT 9.74
PRIOR2P 4.55 NLP 257.52
APRIORI 13.73 APRIORI 926.79

Table 50: Factor by which N is larger than the best Table 52: Factor by which N is larger than the best
strategy for the strong boundary layer problem at low strategy for the strong boundary layer problem at

accuracy, 10x10 2.

high accuracy, 10x10 6.
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Figure 385: The solution of the mild oscillatory problem.

5.14 Oscillatory, Mild

The oscillatory problem contains several circular waves which get clas together as you approach the origin.
The PDE is a Helmholtz equation with Dirichlet boundary conditions on t he unit square. The solution is

sin( " r)
wherer = P X2+ y2. The number of oscillations, N, is determined by the parameter = Ni For the
easy form of this problem we useN = 10:5. =10 2 for the grid images. For APRIORI, re ne by h if

the element touches the origin and byp otherwise. In the perspective view of the solution in Figure 385 we
zoomed in on the origin to show the details of the oscillations.
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Figure 386: Example grid for the ALTERNATE Figure 390: Example grid for the H&P_ERREST
strategy with the mild oscillatory problem, including strategy with the mild oscillatory problem, including
details at the origin. details at the origin.

Figure 387: Example grid for the APRIORI strategy Figure 391: Example grid for the NEXT3P strategy
with the mild oscillatory problem, including details with the mild oscillatory problem, including details
at the origin. at the origin.

Figure 388: Example grid for the COEF.DECAY Figure 392: Example grid for the NLP strategy with
strategy with the mild oscillatory problem, including the mild oscillatory problem, including details at the
details at the origin. origin.

Figure 389: Example grid for the COEF.ROOT Figure 393: Example grid for the PRIOR2P strategy
strategy with the mild oscillatory problem, including  with the mild oscillatory problem, including details
details at the origin. at the origin.
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Figure 394: Example grid for the REFSOLN_EDGE
strategy with the mild oscillatory problem, including
details at the origin.

Figure 398: Example grid for the TYPEPARAM
strategy with the mild oscillatory problem, including
details at the origin.

Figure 395: Example grid for the REFSOLN_ELEM
strategy with the mild oscillatory problem, including
details at the origin.

Figure 396: Example grid for the SMOOTH_PRED
strategy with the mild oscillatory problem, including
details at the origin.

Figure 399: Log-Log plot of the convergence of
the ALTERNATE strategy with the mild oscilla-
tory problem.

Figure 397: Example grid for the T3S strategy with
the mild oscillatory problem, including details at the
origin.
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Figure 400: Log-Log plot of the convergence of the Figure 402: Log-Log plot of the convergence of

APRIORI strategy with the mild oscillatory problem. ~ the COEF_ROOT strategy with the mild oscilla-
tory problem.

Figure 401: Log-Log plot of the convergence of Figure 403: Log-Log plot of the convergence of
the COEF_DECAY strategy with the mild oscilla-  the H&P ERREST strategy with the mild oscilla-
tory problem. tory problem.
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Figure 404: Log-Log plot of the convergence of the Figure 406: Log-Log plot of the convergence of the
NEXT3P strategy with the mild oscillatory problem. ~ PRIOR2P strategy with the mild oscillatory problem.

) Figure 407: Log-Log plot of the convergence of the
Figure 405: Log-Log plot of the convergence of the REFSOLN_EDGE strategy with the mild oscilla-
NLP strategy with the mild oscillatory problem. tory problem.
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Figure 408: Log-Log plot of the convergence of the Figyre 410: Log-Log plot of the convergence of the

REFSOLN ELEM strategy with the mild oscilla- T35 strategy with the mild oscillatory problem.
tory problem.

Figure 409: Log-Log plot of the convergence of Figure 411: Log-Log plot of the convergence of
the SMOOTH _PRED strategy with the mild oscil- the TYPEPARAM strategy with the mild oscilla-
latory problem. tory problem.
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Figure 412: Log-Log plot of the convergence of all strategies with the mild oscéitory problem.
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strategy A B C strategy A B
ALTERNATE 486.12 -0.66 0.29 ALTERNATE 59.42 -0.34
APRIORI 20.77 -0.17 0.51 APRIORI 1.92x10% -1.23
COEF_DECAY 10.88 -0.100 0.48 COEF_DECAY 899.51 -0.58
COEF_ROOT 0.79 -8.68x10 % 0.63 COEF_ROOT 775.77 -0.43
H&P _ERREST 9.40x10® -69.23 0.027 H&P _ERREST 0.12 -0.16
NEXT3P 6.91 -1.07 0.23 NEXT3P 0.17 -0.23
NLP 11.92 -0.032 0.60 NLP 7.42x10*  -0.78
PRIOR2P 413 -0.15 0.39 PRIOR2P 19.89 -0.32
REFSOLN_EDGE 2.17x10* -14.63 0.12 REFSOLN_EDGE 784.24 -0.86
REFSOLN_ELEM 15.08 -0.13 0.54 REFSOLN_ELEM 7.16x10° -1.11
SMOOTH_PRED  23.96 -0.044 0.61 SMOOTH PRED  1.96x1¢> -1.00
T3S 202.82 -0.90 0.30 T3S 47.56 -0.62
TYPEPARAM 1.47x103%*  -54.41 0.055 TYPEPARAM 187.66 -0.77

Table 53: Parameters of the least squares t for Table 55: Parameters of the least squares t for
jienpiie = AeBNdr for the mild oscillatory problem. jienjic = Ae®N i for the mild oscillatory problem.

strategy factor strategy factor
APRIORI 1.00 APRIORI 1.00
REFSOLN_ELEM 1.16 REFSOLN_ELEM 1.12
REFSOLN_EDGE 1.48 REFSOLN_EDGE 1.91
TYPEPARAM 1.48 TYPEPARAM 2.15
T3S 1.73 SMOOTH _PRED 2.42
NEXT3P 1.82 T3S 3.23
SMOOTH _PRED 3.12 NLP 4.58
H&P _ERREST 4.13 COEF_DECAY 6.06
COEF_DECAY 4.83 COEF_ROOT 14.78
NLP 5.29 NEXT3P 18.81
PRIOR2P 8.48 PRIOR2P 19.79
ALTERNATE 10.98 ALTERNATE 20.32
COEF_ROOT 11.52 H&P _ERREST 38.23

Table 54: Factor by which N is larger than the best Table 56: Factor by which N is larger than the best
strategy for the mild oscillatory problem at low ac- strategy for the mild oscillatory problem at high ac-
curacy, 1:0x10 2. curacy, 1:0x10 6.
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Figure 413: The solution of the strong oscillatory problem.
5.15 Oscillatory, Strong

For the strong version of the oscillatory problem (Section 5.14) we uséN = 50:5. = 10 2 for the grid
images. For APRIORI, re ne by h if the element touches the origin and byp otherwise.
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Figure 414: Example grid for the ALTERNATE
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 415: Example grid for the APRIORI strategy
with the strong oscillatory problem, including details
at the origin.

Figure 416: Example grid for the COEF.DECAY
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 417: Example grid for the COEF.ROOT
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 418: Example grid for the H&P_ERREST
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 419: Example grid for the NEXT3P strategy
with the strong oscillatory problem, including details
at the origin.

Figure 420: Example grid for the NLP strategy with
the strong oscillatory problem, including details at
the origin.

Figure 421: Example grid for the PRIOR2P strategy
with the strong oscillatory problem, including details
at the origin.
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Figure 422: Example grid for the REFSOLN_EDGE
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 426: Example grid for the TYPEPARAM
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 423: Example grid for the REFSOLN_ELEM
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 424. Example grid for the SMOOTH_PRED
strategy with the strong oscillatory problem, includ-
ing details at the origin.

Figure 427. Log-Log plot of the convergence of
the ALTERNATE strategy with the strong oscilla-
tory problem.

Figure 425: Example grid for the T3S strategy with
the strong oscillatory problem, including details at
the origin.
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Figure 428: Log-Log plot of the convergence of the Figure 430: Log-Log plot of the convergence of
APRIORI strategy with the strong oscillatory prob- the COEF_ROOT strategy with the strong oscilla-
lem. tory problem.

Figure 429: Log-Log plot of the convergence of Figure 431: Log-Log plot of the convergence of
the COEF_DECAY strategy with the strong oscil- the H&P _ERREST strategy with the strong oscilla-
latory problem. tory problem.
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Figure 432: Log-Log plot of the convergence of the Figure 434: Log-Log plot of the convergence of the
NEXT3P strategy with the strong oscillatory prob- PRIOR2P strategy with the strong oscillatory prob-
lem. lem.

Figure 435: Log-Log plot of the convergence of the

Figure 433: Log-Log plot of the convergence of the REFSOLN_EDGE strategy with the strong oscilla-
NLP strategy with the strong oscillatory problem. tory problem.
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Figure 436: Log-Log plot of the convergence of the Figyre 438: Log-Log plot of the convergence of the

REFSOLN_ELEM strategy with the strong oscilla- T35 strategy with the strong oscillatory problem.
tory problem.

Figure 437: Log-Log plot of the convergence of the Figure 439: Log-Log plot of the convergence of
SMOOTH _PRED strategy with the strong oscilla- the TYPEPARAM strategy with the strong oscilla-
tory problem. tory problem.
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Figure 440: Log-Log plot of the convergence of all strategies with the strong osédtory problem.
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strategy A B C strategy A B
ALTERNATE 7.11x103 -35.32 0.054 ALTERNATE 1.33x10°  -0.073
APRIORI 4.11x10%  -10.82 0.13 APRIORI 530.95 -0.53
COEF_DECAY 3.38 -3.09x10 3 0.62 COEF_DECAY 6.39x10°  -0.23
COEF_ROOT 1.82 -6.87x104 0.69 COEF_ROOT 1.24x10*  -0.18
H&P _ERREST 5.31x10% -22.33 0.046 H&P _ERREST 0.026 -0.060
NEXT3P 7.83x10%!  -64.98 0.020 NEXT3P 7.27x10 ® -0.061
NLP 2.55x103!  -65.75 7.62x103 | NLP 7.89 -0.027
PRIOR2P 1.49x10"  -1.66 0.17 PRIOR2P 2.18 -0.080
REFSOLN_EDGE 14.32 -5.33x103  0.74 REFSOLN_EDGE 2.92x1¢f  -0.75
REFSOLN_ELEM 4.77x10° -0.59 0.36 REFSOLN_ELEM 2.38x10°  -0.79
SMOOTH_PRED 287.34 -0.24 0.38 SMOOTH_PRED 2.17x1¢*°  -0.43
T3S 2.03x14  -0.19 0.45 T3S 1.14x16  -0.83
TYPEPARAM 3.43x1035  -40.95 0.077 TYPEPARAM 6.62x104  -0.62

Table 57: Parameters of the least squares t for Table 59: Parameters of the least squares t for

jienpiie = AeBN & for the strong oscillatory prob- jienpiie = Ae®N o for the strong oscillatory prob-
lem. lem.

strategy factor strategy factor
APRIORI 1.00 T3S 1.00
T3S 1.45 APRIORI 1.14
TYPEPARAM 1.60 REFSOLN _EDGE 1.18
REFSOLN_EDGE 1.75 REFSOLN _ELEM 1.26
REFSOLN _ELEM 1.83 TYPEPARAM 1.37
SMOOTH _PRED 2.55 SMOOTH _PRED 2.62
NEXT3P 2.83 COEF_DECAY 19.39
H&P ERREST 9.48 COEF_ROOT 42.57
COEF_DECAY 22.37 NEXT3P 57.15
COEF_ROOT 51.26 H&P _ERREST 110.63
PRIOR2P 52.76 PRIOR2P 133.66
ALTERNATE 458.20 ALTERNATE 652.42
NLP 2:78x10 NLP 5:19x10°°

Table 58: Factor by which N is larger than the best Table 60: Factor by which N is larger than the best
strategy for the strong oscillatory problem at low ac- strategy for the strong oscillatory problem at high
curacy, 1:0x10 3. accuracy, 10x10 6.
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Figure 441: The solution of the mild wave front problem.

5.16 Wave Front, Mild

The circular wave front problem is often used as an example in adaptive dgd re nement papers. It is
Poisson's equation with Dirichlet boundary conditions on the unit square. The solution is

tan 1( (r ro))

wherer = P (X Xc)2+(Yy VYc)?. The location of the wave front is de ned by a circle with radius ro and

center (X¢;Yc).  determines the steepness of the wave front. In addition to the wae front, the solution

has a mild singularity at the center of the circle, if the center is located in the closure of the domain. For
the easy form of this problem we use = 20, (X¢;yc) = ( :05 :05), andrg = 0:7. The center is chosen
outside the domain so that only the wave front is a factor in the adaptivity, not the singularity. =10 *

for the grid images. For the APRIORI strategy, re ne by h if the element touches the circle that de nes the
location of the wave front and has degree at least 3 (chosen arbitrarily), ad by p otherwise.
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Figure 442: Example grid for the ALTERNATE Figure 445: Example grid for the COEF.ROOT
strategy with the mild wave front problem. strategy with the mild wave front problem.

Figure 443: Example grid for the APRIORI strategy Figure 446: Example grid for the H&P_ERREST
with the mild wave front problem. strategy with the mild wave front problem.

Figure 444: Example grid for the COEF.DECAY Figure 447: Example grid for the NEXT3P strategy
strategy with the mild wave front problem. with the mild wave front problem.
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Figure 448: Example grid for the NLP strategy with Figure 451: Example grid for the REFSOLN_ELEM
the mild wave front problem. strategy with the mild wave front problem.

Figure 449: Example grid for the PRIOR2P strategy Figure 452: Example grid for the SMOOTH_PRED
with the mild wave front problem. strategy with the mild wave front problem.

Figure 450: Example grid for the REFSOLN_EDGE Figure 453: Example grid for the T3S strategy with
strategy with the mild wave front problem. the mild wave front problem.
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Figure 454: Example grid for the TYPEPARAM
strategy with the mild wave front problem.

Figure 456: Log-Log plot of the convergence of the
APRIORI strategy with the mild wave front problem.

Figure 455: Log-Log plot of the convergence of
the ALTERNATE strategy with the mild wave

front problem. Figure 457: Log-Log plot of the convergence of

the COEF_DECAY strategy with the mild wave
front problem.
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Figure 458: Log-Log plot of the convergence of
the COEF_ROOT strategy with the mild wave
front problem.

Figure 460: Log-Log plot of the convergence of the
NEXT3P strategy with the mild wave front problem.

Figure 459: Log-Log plot of the convergence of
the H&P _ERREST strategy with the mild wave
front problem.

Figure 461: Log-Log plot of the convergence of the
NLP strategy with the mild wave front problem.
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Figure 462: Log-Log plot of the convergence of the Figure 464: Log-Log plot of the convergence of

PRIOR2P strategy with the mild wave front problem. the REFSOLN_ELEM strategy with the mild wave
front problem.

Figure 463: Log-Log plot of the convergence of Figure 465: Log-Log plot of the convergence of
the REFSOLN_EDGE strategy with the mild wave the SMOOTH_PRED strategy with the mild wave
front problem. front problem.
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Figure 466: Log-Log plot of the convergence of the
T3S strategy with the mild wave front problem.

Figure 467: Log-Log plot of the convergence of
the TYPEPARAM strategy with the mild wave
front problem.
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Figure 468: Log-Log plot of the convergence of all strategies with the mild waverént problem.
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strategy A B C strategy A B
ALTERNATE 12.84 -1.00 0.26 ALTERNATE 0.75 -0.37
APRIORI 253.01 -2.60 0.19 APRIORI 0.53 -0.41
COEF_DECAY 38.63 -1.47 0.25 COEF_DECAY 1.59 -0.50
COEF_ROOT 6.85 -0.88 0.28 COEF_ROOT 1.20 -0.43
H&P _ERREST 5.75x10' -11.85 0.093 H&P _ERREST 0.14 -0.34
NEXT3P 1.78x10* -5.39 0.14 NEXT3P 0.23 -0.37
NLP 0.35 -0.018 0.70 NLP 136.67 -0.80
PRIOR2P 232.22 -2.76  0.18 PRIOR2P 0.32 -0.35
REFSOLN_EDGE 0.73 -0.12  0.52 REFSOLN_EDGE 59.61 -0.88
REFSOLN_ELEM 0.97 -0.12  0.52 REFSOLN_ELEM 84.36 -0.92
SMOOTH_PRED  2.95 -0.34 040 SMOOTH_PRED 1797 -0.68
T3S 2.88 -0.17 0.46 T3S 112.05 -0.73
TYPEPARAM 0.74 -0.11  0.52 TYPEPARAM 41.17  -0.77

Table 61: Parameters of the least squares t for Table 63: Parameters of the least squares t for
. . Cc . 1=3
jienpiie = Ae®N @ for the mild wave front problem. jiey,jie = Ae®N«r for the mild wave front problem.

strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_ELEM  1.00
H&P ERREST 1.01 REFSOLN_EDGE  1.08
REFSOLN_ELEM  1.03 TYPEPARAM 1.49
NEXT3P 1.10 NLP 1.55
COEF_DECAY 1.17 SMOOTH _PRED 1.85
APRIORI 1.17 T3S 2.18
PRIOR2P 1.28 COEF_DECAY 291
SMOOTH _PRED 1.36 APRIORI 3.88
TYPEPARAM 1.37 COEF_ROOT 4.22
COEF_ROOT 1.48 NEXT3P 4.32
NLP 2.09 H&P ERREST 4.73
ALTERNATE 2.13 PRIOR2P 5.41
T3S 2.24 ALTERNATE 6.15

Table 62: Factor by which N is larger than the best Table 64: Factor by which N is larger than the best
strategy for the mild wave front problem at low ac- strategy for the mild wave front problem at high ac-
curacy, 10x10 2. curacy, 1:0x10 6.
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Figure 469: The solution of the steep wave front problem.

5.17 Wave Front, Steep

In the hard version of the wave front problem (Section 5.16) the location otthe wave front is the same, but it
is much steeper. The parameters are = 1000, (X¢;Ye) = ( :05 :05), andrg =0:7. =10 ?* for the grid
images. For the APRIORI strategy, re ne by h if the element touches the circle that de nes the location of
the wave front and has degree at least 3 (chosen arbitrarily), and byp otherwise.
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Figure 470: Example grid for the ALTERNATE Figure 473: Example grid for the COEF.ROOT
strategy with the steep wave front problem. strategy with the steep wave front problem.

Figure 471: Example grid for the APRIORI strategy Figure 474: Example grid for the H&P_ERREST
with the steep wave front problem. strategy with the steep wave front problem.

Figure 472: Example grid for the COEF.DECAY Figure 475: Example grid for the NEXT3P strategy
strategy with the steep wave front problem. with the steep wave front problem.
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Figure 476: Example grid for the NLP strategy with Figure 479: Example grid for the REFSOLN_ELEM
the steep wave front problem. strategy with the steep wave front problem.

Figure 477: Example grid for the PRIOR2P strategy Figure 480: Example grid for the SMOOTH_PRED
with the steep wave front problem. strategy with the steep wave front problem.

Figure 478: Example grid for the REFSOLN_EDGE Figure 481: Example grid for the T3S strategy with
strategy with the steep wave front problem. the steep wave front problem.
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Figure 482: Example grid for the TYPEPARAM
strategy with the steep wave front problem.

Figure 484: Log-Log plot of the convergence of the
APRIORI strategy with the steep wave front prob-
lem.

Figure 483: Log-Log plot of the convergence of

the ALTERNATE strategy with the steep wave )
front problem. Figure 485: Log-Log plot of the convergence of

the COEF_DECAY strategy with the steep wave
front problem.
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Figure 486: Log-Log plot of the convergence of
the COEF_ROOT strategy with the steep wave
front problem.

Figure 488: Log-Log plot of the convergence of the
NEXT3P strategy with the steep wave front problem.

Figure 487: Log-Log plot of the convergence of
the H&P _ERREST strategy with the steep wave
front problem.

Figure 489: Log-Log plot of the convergence of the
NLP strategy with the steep wave front problem.
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Figure 490: Log-Log plot of the convergence of the Figure 492: Log-Log plot of the convergence of
PRIOR2P strategy with the steep wave front prob- the REFSOLN_ELEM strategy with the steep wave
lem. front problem.

Figure 491: Log-Log plot of the convergence of Figure 493: Log-Log plot of the convergence of
the REFSOLN_EDGE strategy with the steep wave the SMOOTH _PRED strategy with the steep wave
front problem. front problem.
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Figure 494: Log-Log plot of the convergence of the
T3S strategy with the steep wave front problem.

Figure 495: Log-Log plot of the convergence of
the TYPEPARAM strategy with the steep wave
front problem.
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Figure 496: Log-Log plot of the convergence of all strategies with the steep wavieont problem.
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strategy A B C strategy A B
ALTERNATE 19.59 -0.10 0.39 ALTERNATE 87.43 -0.23
APRIORI 94.82 -0.70  0.23 APRIORI 1.68 -0.13
COEF _DECAY 552.77 -1.23 0.20 COEF_DECAY 126 -0.13
COEF_ROOT 5.72 -0.33  0.27 COEF_ROOT 079 -0.11
H&P _ERREST 4.61x1¢ -3.45 0.15 H&P _ERREST 244  -0.15
NEXT3P 5.41x10° -491 0.12 NEXT3P 0.31 -0.098
NLP 6.64x10°®* -66.67 0.019 NLP 0.19 -0.067
PRIOR2P 1.55x10* -3.28 0.13 PRIOR2P 0.35 -0.095
REFSOLN_EDGE 1.17 -0.028 0.49 REFSOLN_EDGE 53.68 -0.26
REFSOLN_ELEM 9.37 -0.11  0.38 REFSOLN_ELEM 46.81 -0.23
SMOOTH_PRED  539.94 -0.97 0.22 SMOOTH_PRED 3.33 -0.16
T3S 3.98 -0.024 0.48 T3S 82.83 -0.20
TYPEPARAM 1.46 -0.023 0.49 TYPEPARAM 74.60 -0.23

Table 65: Parameters of the least squares t for Table 67: Parameters of the least squares t for
. . Cc 1=3
Nenplle = AeBN & for the steep wave front problem. jienplie = AeBN i for the steep wave front problem.

strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_EDGE 1.00
REFSOLN_ELEM  1.45 REFSOLN_ELEM  1.48
SMOOTH _PRED 1.53 ALTERNATE 1.61
NEXT3P 1.63 TYPEPARAM 1.61
COEF_DECAY 1.64 T3S 2.14
H&P ERREST 1.65 SMOOTH _PRED 2.69
PRIOR2P 1.68 H&P ERREST 3.09
TYPEPARAM 1.70 COEF_DECAY 3.93
COEF_ROOT 1.84 APRIORI 4.55
ALTERNATE 1.85 COEF_ROOT 5.94
APRIORI 2.00 NEXT3P 6.31
NLP 2.30 PRIOR2P 7.74
T3S 2.76 NLP 70.96

Table 66: Factor by which N is larger than the best Table 68: Factor by which N is larger than the best
strategy for the steep wave front problem at low ac- strategy for the steep wave front problem at high ac-
curacy, 10x10 2. curacy, 1:0x10 6.
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Figure 497: The solution of the asymmetric wave front problem.

5.18 Wave Front, Asymmetric

The asymmetric wave front is similar to the steep wave front excepthe wave front is not symmetric within
the domain. The parameters are = 1000, (X¢;Yc) = (1:5;:25), andro = :92. =10 ?! for the grid images.
For the APRIORI strategy, re ne by h if the element touches the circle that de nes the location of the ware
front and has degree at least 3 (chosen arbitrarily), and byp otherwise.
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Figure 498: Example grid for the ALTERNATE Figure 501: Example grid for the COEF.ROOT
strategy with the asymmetric wave front problem. strategy with the asymmetric wave front problem.

Figure 499: Example grid for the APRIORI strategy Figure 502: Example grid for the H&P_ERREST
with the asymmetric wave front problem. strategy with the asymmetric wave front problem.

Figure 500: Example grid for the COEF.DECAY Figure 503: Example grid for the NEXT3P strategy
strategy with the asymmetric wave front problem. with the asymmetric wave front problem.
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Figure 504: Example grid for the NLP strategy with Figure 507: Example grid for the REFSOLN_ELEM
the asymmetric wave front problem. strategy with the asymmetric wave front problem.

Figure 505: Example grid for the PRIOR2P strategy Figure 508: Example grid for the SMOOTH_PRED
with the asymmetric wave front problem. strategy with the asymmetric wave front problem.

Figure 506: Example grid for the REFSOLN_EDGE Figure 509: Example grid for the T3S strategy with
strategy with the asymmetric wave front problem. the asymmetric wave front problem.
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Figure 510: Example grid for the TYPEPARAM
strategy with the asymmetric wave front problem.

Figure 512: Log-Log plot of the convergence of
the APRIORI strategy with the asymmetric wave
front problem.

Figure 511: Log-Log plot of the convergence of the

ALTERNATE strategy with the asymmetric wave _
front problem. Figure 513: Log-Log plot of the convergence of the

COEF_DECAY strategy with the asymmetric wave
front problem.
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Figure 514: Log-Log plot of the convergence of the Figure 516: Log-Log plot of the convergence of
COEF_ROQT strategy with the asymmetric wave the NEXT3P strategy with the asymmetric wave
front problem. front problem.

Figure 515: Log-Log plot of the convergence of the Figure 517: Log-Log plot of the convergence of the
H&P ERREST strategy with the asymmetric wave NLP strategy with the asymmetric wave front prob-
front problem. lem.
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Figure 518: Log-Log plot of the convergence of Figure 520: Log-Log plot of the convergence of
the PRIOR2P strategy with the asymmetric wave the REFSOLN_ELEM strategy with the asymmetric
front problem. wave front problem.

Figure 519: Log-Log plot of the convergence of Figure 521: Log-Log plot of the convergence of the
the REFSOLN_EDGE strategy with the asymmetric SMOOTH _PRED strategy with the asymmetric wave
wave front problem. front problem.

173



Figure 522: Log-Log plot of the convergence of the
T3S strategy with the asymmetric wave front prob-
lem.

Figure 523: Log-Log plot of the convergence of the
TYPEPARAM strategy with the asymmetric wave
front problem.
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Figure 524: Log-Log plot of the convergence of all strategies with the asymmetrigvave front problem.
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strategy A B C
ALTERNATE 3.07 -0.013 0.53
APRIORI 226.59 -0.89 0.21
COEF_DECAY 1.04x10* -2.14 0.17
COEF_ROOT 7.24 -0.36 0.26
H&P _ERREST 2.31x100 -2.94 0.16
NEXT3P 4.38x10° -7.95 0.093
NLP 0.68 -0.21 0.24
PRIOR2P 1.03x1¢¢ -4.18 0.12
REFSOLN_EDGE 0.80 -0.019 0.51
REFSOLN_ELEM 4.85 -0.071 041
SMOOTH_PRED  1.00x1¢° -1.07 0.21
T3S 16.91 -0.068 0.40
TYPEPARAM 2.65 -0.034 0.46
Table 69: Parameters of the least squares

for jjenplie =
front problem.

AeBN i for the asymmetric wave for jienpiie =

strategy

factor

strategy A B
ALTERNATE 22752 -0.22
APRIORI 1.69 -0.12
COEF_DECAY 1.56 -0.13
COEF_ROOT 0.83 -0.11
H&P _ERREST 4.14 -0.15
NEXT3P 0.24 -0.091
NLP 0.20 -0.045
PRIOR2P 0.44 -0.096
REFSOLN_EDGE 31.24 -0.24
REFSOLN_ELEM 41.67 -0.21
SMOOTH_PRED 4.12 -0.15
T3S 108.10 -0.19
TYPEPARAM 57.80 -0.21
t Table 71: Parameters of the least squares

AeBN c:ilo:f3
front problem.

REFSOLN_EDGE
REFSOLN_ELEM
NEXT3P

H&P _ERREST
SMOOTH _PRED
PRIOR2P
COEF_DECAY
TYPEPARAM
COEF_ROOT
APRIORI
ALTERNATE

T3S

NLP

1.77

2.77

1.00
1.46
1.52
1.63
1.69
1.70
1.74

1.86
1.97

2.96
6.90

strategy factor
REFSOLN_EDGE 1.00
REFSOLN_ELEM 1.52
TYPEPARAM 1.64
ALTERNATE 1.88
T3S 2.42
H&P ERREST 2.79
SMOOTH _PRED 2.93
COEF_DECAY 4.01
APRIORI 4.52
COEF_ROOT 5.99
NEXT3P 6.92
PRIOR2P 7.67
NLP 96.23

t

for the asymmetric wave

Table 70: Factor by which N is larger than the best Table 72: Factor by which N is larger than the best
strategy for the asymmetric wave front problem at strategy for the asymmetric wave front problem at

low accuracy, 10x10 2.

high accuracy, 10x10 6.
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Figure 525: The solution of the singular well problem.

5.19 Singular Well

In the wave front problems of the previous three sections, the cemr of the circle was placed outside the
domain so the mild singularity at the center of the circle was not a factor In the singular well problem, the
center of the circle is placed at the center of the domain and the waverént is relatively mild, e ectively
creating a well with a mild singularity at the center. =50, (X¢;Ye) = ( :5;:5), and ro = :25. =10 8 for
the grid images. For the APRIORI strategy, re ne by h if the element touches the circle that de nes the
location of the wave front and has degree at least 3 (chosen arbitrarily), otouches the center of the circle,
and by p otherwise.
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Figure 526: Example grid for the ALTERNATE Figure 529: Example grid for the COEF.ROOT
strategy with the singular well problem. strategy with the singular well problem.

Figure 527: Example grid for the APRIORI strategy Figure 530: Example grid for the H&P_ERREST
with the singular well problem. strategy with the singular well problem.

Figure 528: Example grid for the COEF.DECAY Figure 531: Example grid for the NEXT3P strategy
strategy with the singular well problem. with the singular well problem.
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Figure 532: Example grid for the NLP strategy with Figure 535: Example grid for the REFSOLN_ELEM
the singular well problem. strategy with the singular well problem.

Figure 533: Example grid for the PRIOR2P strategy Figure 536: Example grid for the SMOOTH_PRED
with the singular well problem. strategy with the singular well problem.

Figure 534: Example grid for the REFSOLN_EDGE Figure 537: Example grid for the T3S strategy with
strategy with the singular well problem. the singular well problem.
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Figure 538: Example grid for the TYPEPARAM
strategy with the singular well problem.

Figure 540: Log-Log plot of the convergence of the
APRIORI strategy with the singular well problem.

Figure 539: Log-Log plot of the convergence of the
ALTERNATE strategy with the singular well prob-

lem Figure 541: Log-Log plot of the convergence of the

COEF _DECAY strategy with the singular well prob-
lem.

180



Figure 542: Log-Log plot of the convergence of the
COEF _ROOT strategy with the singular well prob-
lem.

Figure 544: Log-Log plot of the convergence of the
NEXT3P strategy with the singular well problem.

Figure 543: Log-Log plot of the convergence of the
H&P _ERREST strategy with the singular well prob-
lem.

Figure 545: Log-Log plot of the convergence of the
NLP strategy with the singular well problem.
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Figure 546: Log-Log plot of the convergence of the Figure 548: Log-Log plot of the convergence of

PRIOR2P strategy with the singular well problem.  the REFSOLN_ELEM strategy with the singular
well problem.

Figure 547: Log-Log plot of the convergence of Figure 549: Log-Log plot of the convergence of
the REFSOLN_EDGE strategy with the singular the SMOOTH_PRED strategy with the singular
well problem. well problem.
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Figure 550: Log-Log plot of the convergence of the
T3S strategy with the singular well problem.

Figure 551: Log-Log plot of the convergence of the
TYPEPARAM strategy with the singular well prob-
lem.
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Figure 552: Log-Log plot of the convergence of all strategies with the singular weproblem.
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strategy A B C strategy A B
ALTERNATE 2.01 -0.39 0.30 ALTERNATE 0.82 -0.24
APRIORI 36.10 -1.26 0.23 APRIORI 0.56 -0.27
COEF _DECAY 279.76 -2.27 0.18 COEF_DECAY 0.60 -0.26
COEF_ROOT 10.49 -0.92 0.24 COEF_ROOT 054 -0.23
H&P _ERREST 1.61x10° -16.68 0.065 H&P _ERREST 0.093 -0.18
NEXT3P 7.76 -0.84 0.25 NEXT3P 0.63 -0.26
NLP 3.96x10°® -71.95 0.015 NLP 0.10 -0.11
PRIOR2P 428.91 -2.78 0.16 PRIOR2P 025 -0.20
REFSOLN_EDGE 2.47 -0.24 040 REFSOLN_EDGE 19.52 -0.56
REFSOLN_ELEM 0.43 -0.048 0.52 REFSOLN_ELEM 2456 -0.48
SMOOTH_PRED  3.58 -0.33 0.35 SMOOTH_PRED 5.38 -0.40
T3S 2.72x16® -31.13 0.052 T3S 0.27 -0.26
TYPEPARAM 0.82 -0.16  0.39 TYPEPARAM 260 -0.31

Table 73: Parameters of the least squares t for Table 75: Parameters of the least squares t for

jienpiie = AeBN @ for the singular well problem. jienpiie = AeBN w for the singular well problem.
strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_EDGE 1.00
T3S 1.28 REFSOLN_ELEM 1.64
H&P _ERREST 1.36 SMOOTH _PRED 2.13
SMOOTH _PRED 1.62 T3S 3.62
COEF_DECAY 1.67 TYPEPARAM 3.95
APRIORI 1.69 APRIORI 4.19
NEXT3P 1.74 COEF_DECAY 4.97
REFSOLN_ELEM 1.75 NEXT3P 5.04
PRIOR2P 1.93 ALTERNATE 6.90
COEF_ROOT 2.28 COEF_ROOT 7.15
TYPEPARAM 2.40 PRIOR2P 8.38
ALTERNATE 2.69 H&P _ERREST 9.63
NLP 2.80 NLP 326.76

Table 74: Factor by which N is larger than the best Table 76: Factor by which N is larger than the best
strategy for the singular well problem at low accu- strategy for the singular well problem at high accu-
racy, 1:0x10 2. racy, 1:0x10 6.
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Figure 553: The solution of the intersecting interfaces problem.

5.20 Intersecting Interfaces

The intersecting interfaces problem has piecewise constant coeients which create a very strong singularity
at the center of the domain and discontinuous derivatives along thex and y axes. The boundary conditions
are Dirichlet on the domain ( 1;1) ( 1;1). For the grid images, =5x10 3. For the APRIORI strategy,
re ne by h if the element touches the origin and byp otherwise.
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Figure 554: Example grid for the ALTERNATE Figure 558: Example grid for the H&P_ERREST
strategy with the intersecting interfaces problem, in- strategy with the intersecting interfaces problem, in-
cluding details at the singularity. cluding details at the singularity.

Figure 555: Example grid for the APRIORI strat- Figure 559: Example grid for the NEXT3P strat-
egy with the intersecting interfaces problem, includ- egy with the intersecting interfaces problem, includ-
ing details at the singularity. ing details at the singularity.

Figure 556: Example grid for the COEF.DECAY Figure 560: Example grid for the NLP strategy with
strategy with the intersecting interfaces problem, in- the intersecting interfaces problem, including details
cluding details at the singularity. at the singularity.

Figure 557: Example grid for the COEF.ROOT Figure 561. Example grid for the PRIOR2P strat-
strategy with the intersecting interfaces problem, in- egy with the intersecting interfaces problem, includ-
cluding details at the singularity. ing details at the singularity.
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Figure 562: Example grid for the REFSOLN_EDGE
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 566: Example grid for the TYPEPARAM
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 563: Example grid for the REFSOLN_ELEM
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 564. Example grid for the SMOOTH_PRED
strategy with the intersecting interfaces problem, in-
cluding details at the singularity.

Figure 567: Log-Log plot of the convergence of the
ALTERNATE strategy with the intersecting inter-
faces problem.

Figure 565: Example grid for the T3S strategy with
the intersecting interfaces problem, including details
at the singularity.
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Figure 568: Log-Log plot of the convergence of Figure 570: Log-Log plot of the convergence of the
the APRIORI strategy with the intersecting inter- COEF_ROOT strategy with the intersecting inter-
faces problem. faces problem.

Figure 569: Log-Log plot of the convergence of the Figure 571: Log-Log plot of the convergence of the
COEF_DECAY strategy with the intersecting inter- H&P _ERREST strategy with the intersecting inter-
faces problem. faces problem.
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Figure 572: Log-Log plot of the convergence of Figure 574: Log-Log plot of the convergence of
the NEXT3P strategy with the intersecting inter- the PRIOR2P strategy with the intersecting inter-
faces problem. faces problem.

Figure 573: Log-Log plot of the convergence of the Figure 575: Log-Log plot of the convergence of the
NLP strategy with the intersecting interfaces prob- REFSOLN_EDGE strategy with the intersecting in-
lem. terfaces problem.
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Figure 576: Log-Log plot of the convergence of the Figure 578: Log-Log plot of the convergence of the
REFSOLN_ELEM strategy with the intersecting in- T3S strategy with the intersecting interfaces prob-
terfaces problem. lem.

Figure 577: Log-Log plot of the convergence of the Figure 579: Log-Log plot of the convergence of the
SMOOTH _PRED strategy with the intersecting in- TYPEPARAM strategy with the intersecting inter-
terfaces problem. faces problem.
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Figure 580: Log-Log plot of the convergence of all strategies with the interseatg interfaces problem.
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strategy A B C strategy A B
ALTERNATE 1.95 -0.14 0.29 ALTERNATE 147 -0.075
APRIORI 1.07x10® -3.13 0.15 APRIORI 8.29 -0.35
COEF_DECAY 22.60 -0.77 025 COEF _DECAY 6.51 -0.29
COEF_ROOT 31.67 -0.99 0.22 COEF_ROOT 5.48 -0.27
H&P ERREST 3.45 -0.16 0.32 H&P _ERREST 3.12 -0.14
NEXT3P 3.64 -0.14 0.35 NEXT3P 423 -0.18
NLP 3.58 -0.14 0.34 NLP 3.90 -0.16
PRIOR2P 331.68 -2.72 0.13 PRIOR2P 3.86 -0.23
REFSOLN_EDGE 1.56x1C*®* -70.97 0.014 REFSOLN_EDGE 6.68 -0.33
REFSOLN_ELEM 5.46 -0.19 0.37 REFSOLN_ELEM 7.58 -0.28
SMOOTH_PRED 4.86 -0.15 0.40 SMOOTH_PRED 8.59 -0.30
T3S 7.68 -0.71  0.17 T3S 143 -0.061
TYPEPARAM 199.54 -229 0.15 TYPEPARAM 3.65 -0.23
Table 77: Parameters of the least squares t Table 79: Parameters of the least squares

for jjenplie =
faces problem.

strategy factor
REFSOLN_EDGE 1.00
APRIORI 1.08
COEF_DECAY 1.71
COEF_ROOT 1.83
TYPEPARAM 1.83
PRIOR2P 1.92
SMOOTH _PRED 2.35
REFSOLN_ELEM  2.41
NEXT3P 5.88
NLP 7.08
H&P ERREST 8.58
ALTERNATE 18.30
T3S 19.15

Table 78: Factor by which N is larger than the best Table 80: Factor by which N is larger than the best
strategy for the intersecting interfaces problem at low strategy for the intersecting interfaces problem at

accuracy, 20x10 1.

AeBNér for the intersecting inter- for jienpiie = Ae®M dot

3

faces problem.

for the intersecting inter-

strategy factor
APRIORI 1.00
REFSOLN_EDGE 1.47
COEF_DECAY 1.56
SMOOTH _PRED 1.67
REFSOLN_ELEM  1.83
COEF_ROOT 1.84
TYPEPARAM 2.32
PRIOR2P 2.63
NEXT3P 5.57
NLP 7.07
H&P ERREST 10.01
ALTERNATE 38.16
T3S 65.48

high accuracy, 20x10 2.
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Figure 581: The solution of the multiple di culties problem.

5.21 Multiple Di culties

The multiple di culties problem combines several of the dicult ies of the other problems into a single
problem. It contains a reentrant corner point singularity, wave front, peak and boundary layer. For the
selected parameters, the peak falls on the wave front, and the wavednt intersects the boundary layer and
point singularity. The parameters are:

reentrant corner! =3 =2

center of circle for wave front (G, 3=4)
radius of circle for wave front 3=4
strength of wave front =200

center of peak F 5=4; 1=4)

strength of peak = 1000

strength of boundary layer = 1=100

For the grid images, = 10 2. The APRIORI method re nes by h in the same cases as it did in the
individual problems.
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Figure 582: Example grid for the ALTERNATE
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 583: Example grid for the APRIORI strat-
egy with the multiple di culties problem, including
details at the singularity.

Figure 584: Example grid for the COEF.DECAY
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 585: Example grid for the COEF.ROOT
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 586: Example grid for the H&P_ERREST
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 587: Example grid for the NEXT3P strategy
with the multiple di culties problem, including de-
tails at the singularity.

Figure 588: Example grid for the NLP strategy with
the multiple di culties problem, including details at
the singularity.

Figure 589: Example grid for the PRIOR2P strat-
egy with the multiple di culties problem, including
details at the singularity.
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Figure 590: Example grid for the REFSOLN_EDGE
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 594: Example grid for the TYPEPARAM
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 591: Example grid for the REFSOLN_ELEM
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 592: Example grid for the SMOOTH_PRED
strategy with the multiple di culties problem, in-
cluding details at the singularity.

Figure 595: Log-Log plot of the convergence of the
ALTERNATE strategy with the multiple dicul-
ties problem.

Figure 593: Example grid for the T3S strategy with
the multiple di culties problem, including details at
the singularity.
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Figure 596: Log-Log plot of the convergence of Figure 598: Log-Log plot of the convergence of the
the APRIORI strategy with the multiple di cul- COEF_ROOT strategy with the multiple di cul-
ties problem. ties problem.

Figure 597: Log-Log plot of the convergence of the Figure 599: Log-Log plot of the convergence of the
COEF_DECAY strategy with the multiple di cul- H&P _ERREST strategy with the multiple di cul-
ties problem. ties problem.
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Figure 600: Log-Log plot of the convergence of the Figure 602: Log-Log plot of the convergence of

NEXT3P strategy with the multiple di culties prob- ~ the PRIOR2P strategy with the multiple di cul-
lem. ties problem.

Figure 603: Log-Log plot of the convergence of the

Figure 601: Log-Log plot of the convergence of the REESOLN _EDGE strategy with the multiple di cul-
NLP strategy with the multiple di culties problem. ties problem.
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Figure 604: Log-Log plot of the convergence of the Figyre 606: Log-Log plot of the convergence of the

REFSOLN_ELEM strategy with the multiple dicul- T35 strategy with the multiple di culties problem.
ties problem.

Figure 605: Log-Log plot of the convergence of the Figure 607: Log-Log plot of the convergence of the
SMOOTH PRED strategy with the multiple di cul- ~ TYPEPARAM strategy with the multiple di cul-
ties problem. ties problem.
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Figure 608: Log-Log plot of the convergence of all strategies with the multiple dculties problem.
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strategy A B C strategy A B
ALTERNATE 275.97 -1.03 0.24 ALTERNATE 715 -0.25
APRIORI 2.97x10%" -75.72 0.018 APRIORI 0.021 -0.062
COEF_DECAY 149.10 -1.15 0.22 COEF_DECAY 1.32 -0.19
COEF_ROOT 3.14 -0.33  0.28 COEF_ROOT 0.82 -0.16
H&P ERREST 2.14x10* -19.96 0.066 H&P _ERREST 0.47 -0.17
NEXT3P 3.98x10° -7.65 0.098 NEXT3P 0.13 -0.12
NLP 1.41x10*® -68.91 0.016 NLP 0.18 -0.089
PRIOR2P 1.92x1¢ -2.69 0.15 PRIOR2P 0.37 -0.14
REFSOLN_EDGE 1.57 -0.073 0.46 REFSOLN_EDGE 28.18 -0.36
REFSOLN_ELEM 3.01 -0.076 0.45 REFSOLN_ELEM 60.29 -0.35
SMOOTH_PRED  3.29 -0.14 0.38 SMOOTH_PRED 11.05 -0.26
T3S 150.22 -0.84 0.24 T3S 461 -0.22
TYPEPARAM 70.19 -0.62 0.27 TYPEPARAM 7.86 -0.27

Table 81: Parameters of the least squares t for Table 83: Parameters of the least squares t for

fienplie = AeBN & for the multiple di culties prob- jienpiie = Ae®N w for the multiple di culties prob-

lem. lem.
Strategy factor strategy factor
REFSOLN_EDGE 1.00 REFSOLN_EDGE 1.00
H&P ERREST 1.40 REFSOLN_ELEM 1.26
REFSOLN_ELEM 1.43 TYPEPARAM 2.07
TYPEPARAM 1.49 SMOOTH _PRED 2.18
ALTERNATE 1.52 ALTERNATE 2.37
NEXT3P 1.53 T3S 3.34
SMOOTH _PRED 1.71 H&P _ERREST 4.02
COEF_DECAY 1.77 COEF_DECAY 4.13
PRIOR2P 1.90 COEF_ROOT 6.20
APRIORI 1.98 NEXT3P 7.82
T3S 2.05 PRIOR2P 8.00
COEF_ROOT 2.09 APRIORI 39.60
NLP 2.40 NLP 224.68

Table 82: Factor by which N is larger than the best Table 84: Factor by which N is larger than the best
strategy for the multiple di culties problem at low  strategy for the multiple di culties problem at high
accuracy, 10x10 2. accuracy, 10x10 6.
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5.22 Computation Time

In the previous sections we presented performance results for thep-adaptive strategies on a number of
test problems in terms of error vs. the number of degrees of freedom.t Would be interesting to also see
a comparison in terms of error vs. computation time. However, we do not beve we could perform a
fair comparison of that nature at this time for a number of reasons, not the last of which is that the
implementation of the strategies in PHAML emphasized correctness of th method and was not tuned for
optimal performance. Nevertheless, to satisfy one's curiosity about @amputation time, we present timing
results for one problem, the mild peak problem at a tolerance of 10°. These times should not be taken
too seriously; they should only be viewed as a rough estimate of the ralive time required by each of the
strategies.

These computations were performed in single user mode on a single cooé a Dell Latitude D630 with
the Intel Core 2 Duo processor T7700 operating under the CentOS 5.5 digbution of Linux with the 2.6.18
kernel. PHAML Version 1.8.1 was compiled with the Intel Fortran 95 compiler Version 11.1.072 using -O
for optimization.

The results are given in Table 85. The rst column gives the total wall clock time (in seconds) spent
in re nement. There is some variation in the number of times each stategy went through the re ne/solve
loop making it di cult to compare the time spent in a single re neme nt phase of the loop using only these
numbers. The second column gives the number of re ne/solve loops, anthe third gives the quotient of the
rst two columns to obtain the average time spent in a re nement phase. These gures show pretty much
what one would expecta priori. Most of the strategies use between 0.035 and 0.111 seconds per re nement
phase, which, due to the considerations above, should be considereghproximately equal in this context,
roughly .07 seconds. The H&PERREST strategy takes about twice as long, which makes sense because it
computes two error indicators instead of one. The NEXT3P strategy takes aboutten times longer, which
makes sense because, not only is it computing three error indicatorqyut those error indicators are more
expensive than the basic error indicator because they use a higher palomial degree. The two reference
solution strategies are roughly equal and take much longer than most strategi because they solve the
expensive reference solution. Finally, NLP is extremely expense, taking about 5000 times as long as the
typical strategy because it has to solve the optimization problem.

5.23 Summary and Observations

In this section, we summarize the results in Sections 5.1{5.21 to exame the relative performance of the
strategies in di erent situations. The test problems are grouped into six categories: easy problems, hard
problems, and singular problems at low accuracy and high accuracy. We prest the comparisons in two
forms.

Tables 86{91 give a straight-forward ranking of the strategies for each problenbased on the 3-parameter
least squares t. The four best strategies for each problem are highlighed in green, and the four worst in
red to make it easy to see which strategies are consistently good or bad & given category.
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strategy total time number of average time
in re nement ref/solve loops per re nement

(s.) (s./loop)

ALTERNATE 1.55 16 0.097
APRIORI 0.95 27 0.035
COEF_DECAY 0.94 11 0.085
COEF_ROOT 0.88 12 0.073
H&P _ERREST 1.44 11 0.131
NEXT3P 7.09 11 0.645
NLP 3969.16 13 305.32(
PRIOR2P 1.33 12 0.111
REFSOLN_EDGE 29.38 19 1.546
REFSOLN_ELEM 20.01 12 1.668
SMOOTH _PRED 1.03 11 0.094
T3S 0.38 8 0.048

TYPEPARAM 1.08 15 0.072

Table 85: Wall clock time for the re nement phases of the solution of the nild peak problem with =10 ©
the number of re ne/solve loops, and the average time for a re nement phase of the loops.
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strategy

analytic

mild peak

mild boundary layer
mild oscillatory

mild wave front

ALTERNATE
APRIORI

COEF _DECAY
COEF _ROOT
H&P _ERREST
NEXT3P

NLP

PRIOR2P
REFSOLN _EDGE
REFSOLN _ELEM
SMOOTH _PRED
T3S
TYPEPARAM
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Table 86: Low accuracy ranking of each strategy for Table 88: High accuracy ranking of each strategy for

easy problems.

mild boundary layer

analytic
mild peak

strategy
ALTERNATE
APRIORI

COEF _DECAY
COEF _ROOT
H&P _ERREST
NEXT3P

NLP

PRIOR2P
REFSOLN _EDGE
REFSOLN _ELEM
SMOOTH _PRED 5 6
T3S
TYPEPARAM
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easy problems.

mild oscillatory
mild wave front
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strategy

strong boundary layer
strong oscillatory
steep wave front
asymmetric wave front

ALTERNATE
APRIORI

COEF _DECAY
COEF _ROOT
H&P _ERREST
NEXT3P

NLP

PRIOR2P
REFSOLN _EDGE
REFSOLN _ELEM
SMOOTH _PRED
T3S
TYPEPARAM
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© »
©
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PN
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N NN PN

_m-m ~ ‘“.w sharp peak

s £ = 3§ &
e 2 2 g E
s s s & 2
strategy & b7 b7 b7 @
ALTERNATE
APRIORI 8 9 9
COEF _DECAY 10 8 7 8 8
COEF _ROOT o |1 s [ B
H&P _ERREST 6 o |H 7 6
NEXT3P 7 9
NLP 5
PRIOR2P
REFSOLN _EDGE
REFSOLN _ELEM
SMOOTH _PRED 5 6 6 7
T3S 7 B 5 >
TYPEPARAM 6 5 @ &

Table 87: Low accuracy ranking of each strategy for Table 89: High accuracy ranking of each strategy for

hard problems.

hard problems.
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strategy c B - c ® IS IS o ‘» £ IS
ALTERNATE 5
APRIORI 9 5 |8 3 2 8 5 6 2 [H
COEF _DECAY i B B B B B B B 5 |8 8
COEF _ROOT s o H B s 5 424 BB 2 B
H&P _ERREST 13 7 8 8 8 5 |1 [3 M 2
NEXT3P 2 5 8 9 9 e @ 3 7 9 6
NLP 4 7 4 H B E o +EFE B B
PRIOR2P 8 6 6 6 7 9 6 6 9 6 9
REFSOLN _EDGE 6 @4 2 B B B @@ @ 5B 2
REFSOLN _ELEM 9 8 9 5 6 |4 7 |2 8 8 |3
SMOOTH _PRED 8 M 7 7
T3S 'l B |
TYPEPARAM 7 7 |4 'l B 5 4

Table 90: Low accuracy ranking of each strategy for singular problems.

The ranking of the strategies indicates which strategies did best, bt it does not indicate how much better
one strategy is than another (or how close they are to being nearly the same For this we can examine
the factor by which N for a particular strategy is larger than N for the best strategy, as described at the
beginning of Section 5. The factors are illustrated in Figures 609{614. Each cole represents the factor for
one problem in the given category. If there is a number at the top of the grap, it indicates the number of
factors that are larger than 10. The strategies that performed the best in that category have all the circles
near the bottom of the graph, as in REFSOLN.EDGE, REFSOLN _ELEM and TYPEPARAM in Figure
609. To the right of the graph, the strategies are ranked according to the avage of the factors for that
category.

Based on the tables and gures in this section and Section 5.22, we make thelfowing observations.

REFSOLN_EDGE and REFSOLN_ELEM are the top two strategies in all categories except singular
problems at low accuracy where they are in the top 5 with factors less thn 2. Also note that REF-

SOLN_EDGE would have been the best strategy in that category if it had not performed poorly on

the battery problem. The two strategies are equally good with each of tlem having the better average
factor in three categories, and the largest ratio of their average factors biag about 1.35. However, these
strategies are considerably more expensive than most strategies.

TYPEPARAM is the third best strategy in all categories of nonsingular proble ms, and is in the middle
of the pack for singular problems where it has an average factor of 2.26 for low agacy and 3.27 for
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ALTERNATE
APRIORI

8

COEF _DECAY
COEF _ROOT
H&P _ERREST
NEXT3P

NLP

PRIOR2P

REFSOLN _EDGE

REFSOLN _ELEM

SMOOTH _PRED

T3S

TYPEPARAM

Table 91: High accuracy ranking of each strategy for singular problems.
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Figure 609: Factors by whichN is larger than the best strategy for each easy problem at low accuracy. The
table contains the average over all problems in the category.

Figure 610: Factors by which N is larger than the best strategy for each easy problem at high accuracy.
The table contains the average over all problems in the category.
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Figure 611: Factors by whichN is larger than the best strategy for each hard problem at low accuracy. The
table contains the average over all problems in the category.

Figure 612: Factors by which N is larger than the best strategy for each hard problem at high accuracy.
The table contains the average over all problems in the category.
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Figure 613: Factors by whichN is larger than the best strategy for each singular problem at low accuracy.
The table contains the average over all problems in the category.

Figure 614: Factors by whichN is larger than the best strategy for each singular problem at high accuracy.
The table contains the average over all problems in the category.
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high accuracy.

SMOOTH _PRED is in the top 5 in all categories at high accuracy, and is the third bes strategy for
singular problems at high accuracy. But at low accuracy its average factors a in the middle of the
pack and it is in the bottom four for many problems.

APRIORI performs very well on singular problems with known point singularities and three of the ve
easy problems at both low and high accuracy. But it performs poorly on the lard problems, except for
the strong oscillatory problem, and very poorly with the boundary layer.

NEXT3P performs very well on nonsingular problems at low accuracy and fairy well on singular prob-
lems at low accuracy, but it is a bit more expensive than most strategis. It is below the middle of the
pack at high accuracy with average factors around 5.

T3S performs fairly well on nonsingular problems, but very poorly on sirgular problems where it has
the largest average factor at both low and high accuracy, and is the worst straggy on about half of the
singular problems.

PRIOR2P performs poorly on nonsingular problems, but did very well on sngular problems at low
accuracy and fairly well on singular problems at high accuracy.

COEF _DECAY is in the middle of the pack in all categories except for singular poblems at low accuracy
where it has the smallest average factor and is in the top four for most prot@ms.

H&P _ERREST is in the middle of the pack in all categories except easy probims at high accuracy
where it performed poorly.

COEF _ROOT performed poorly on nonsingular problems and is in the middle of tre pack on singular
problems.

ALTERNATE performs very poorly in all categories, although it did well on a few of the hard problems.

NLP performs poorly in most cases and is extremely expensive.

6 Conclusion and Future Work

In this paper we presented the results of a study of strategies for th hp-adaptive nite element method for
2D linear elliptic partial di erential equations using newest nod e bisection of triangles. Thehp-strategies are
methods for determining how to select between the di erent posibilities of h- and p-re nement. Thirteen
strategies were described and compared in a numerical experimentsing 21 test problems. The primary
metric for comparison was the convergence of the relative energy norm of ¢herror vs. the number of degrees
of freedom. A rough comparison of computation time was also presented, conming the a priori expectations
of the relative expense of the strategies.

We found that the REFSOLN _EDGE and REFSOLN_ELEM strategies performed best overall, in con-
vergence, and are comparable to each other. However, they are considerghhore expensive than other
viable strategies. For problems with known point singularities and noother signi cant features, APRIORI
appears to be the less expensive method of choice. For nonsingular piems, TYPEPARAM performs very
well and is quite inexpensive. Another inexpensive strategy that grformed very well at high accuracy is
SMOOTH _PRED. Most of the other strategies have their good and bad moments.

210



Since the determination of what strategies to include in this study other strategies have come to our
attention or have come into existence. For future work we will exterd the results of this study to include
additional strategies as they are discovered. Also, we hope to use thessons learned from this study to
develop a better general purposehp-strategy. For example, is it possible to get the excellent convergere
performance of the reference solution strategies without the expemsof computing the reference solution
by combining some aspects of the reference solution strategies wittome aspects of other strategies? Our
conclusion is that, at this time, there is still much opportunity for the development of a general purpose
hp-adaptive strategy that is both e cient and e ective.
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