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Abstract

Given an undirected network, we describe a two-
dimensional graphical measure based on the con-
nected component distribution of its degree-limited
subgraphs. This process yields an unambiguous vi-
sual portrait which reveals important network proper-
ties. It can be used as a classification tool, as graphs
from similar application areas have striking similari-
ties. It can also be used as an efficient algorithm to
demonstrate graph non-isomorphism for large graphs
with identical degree distributions. Finally, it can be
used as an analysis tool to help distinguish real-world
networks from their synthetic counterparts.

1 Introduction

Attempting to represent a large-scale network as a
small picture or a thumbnail image can prove to be
a challenging task. Most application networks (e.g.
biological, information, social) tend to have large
hubs (heavy-tailed degree distributions) [2] and ex-
hibit small-world properties [15], making their lay-
out difficult to embed in two or three-dimensional
spaces [6]. Current state-of-the-art algorithms for
graph layout and visualization often render such ob-
jects as densely colored disks, or entangled “hair-
balls,” making it difficult to extract meaningful infor-
mation from their appearance. Furthermore, graph
layout algorithms do not yield unique images; a sin-
gle graph may yield many variations, depending on
parameter and algorithmic choices. This situation is
certainly understandable – it would be rather opti-
mistic to expect graphs containing millions of ver-
tices and edges crammed into a small snapshot (say,
a 300x300 pixel image) to yield much insight.

Instead, we offer a different approach based on a
simple idea: rather than draw the graph itself, rep-
resent the component size distribution of its degree-
limited subgraphs. We define the Q-matrix of an
undirected graph G to be the matrix formulation Q,
where Qij is the number of connected components of

size j of the degree-limited subgraph of G consist-
ing of vertices with degree i or lower. The matrix
Q, which is typically sparse, can be thought of as a
generalization of the graph’s degree-distribution, but
also reveals such things as the number of connected
components, the formation and growth of the giant
component, and the effect of node-removal (site per-
colation) [4] on the connectivity of the remaining sub-
graphs –useful, for example, in simulations of network
reliability[13] and the spread of infectious diseases[5].

Visualizations of the matrix Q can serve as use-
ful network portraits. That is, networks from differ-
ent application areas yield visually distinct portraits
(Fig. 3) while networks from the same application
area bear a strong resemblance. Furthermore, given
a network graph, there is only one Q-matrix repre-
sentation. Visualizations, such as those in Fig. 3, are
just a three-dimensional view obtained by mapping
the nonzero values of the Q matrix to the z-axis, and
can be easily rendered within scientific software pack-
ages 1 such as MATLAB [11] or Mathematica [10].

2 Mathematical formulation

Given an undirected graph G = (V,E), its degree

distribution can be described as a vector ~d(G) ≡
〈d0, d1, d2, . . .〉, where each di is the number of ver-
tices in G with degree equal to i. Note that if D
denotes the largest degree of any vertex in G, then
di = 0 for all i > D, so ~d is typically truncated to a fi-
nite length. We can then define the degree-limited
subgraph Gi = G|Vi as the induced subgraph cre-
ated from vertices of G which have degree less than
or equal to i. That is, Gi ≡ (Vi, Ei) where

Vi = {v ∈ V | degree(v,G) ≤ i} (1)

1Certain commercial hardware and software platforms are
identified in this paper in order to specify the experimental
procedures adequately. Such identification is not intended to
imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor is it intended to imply
that the products or equipment are necessarily the best avail-
able for the purpose.
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Figure 1: A small graph G and its 4 distinct degree-
limited subgraphs.

and
Ei =: {(u, v) ∈ E |u, v ∈ Vi} (2)

where degree(v,G) denotes the degree of vertex v in
graph G.

Alternately, the subgraphs Gi can be thought of as
what remains when every vertex of degree larger than
i, together with every edge touching such vertices are
removed from the original graph. Viewed either way,
these degree-limited subgraphs are often comprised of
disconnected components, even if the original graph
is completely connected. By analyzing not only the
number of components, but also their size distribu-
tion we can render interesting visualizations that are
unique for each network (i.e., invariant under graph
isomorphisms) and illustrate fundamental properties
of the graph’s structure.

Define the Q-matrix of a graph G as the two-
dimensional component size distribution of its degree-
limited subgraphs. Specifically, let Π(j)A be the
number of connected components of graph A which
have j vertices; then

Qi,j ≡ Πj(Gi) (3)

In other words, Qij is the number of connected com-
ponents of size j in Gi. Note that Gi = G for i ≥ D.
If M(G) denotes the number of vertices in the largest
component of G, then Q is a matrix with row indices
[0, 1, . . . , D] and column indices [1, 2, . . . ,M(G)]. Al-
though Qi,j is defined for any i ≥ 0 and j ≥ 1, it is
zero beyond these values, so we typically truncate Q
to be of size (D + 1) ×M(G). If the degree distri-
bution is sparse then there will be repeated degree-
limited subgraphs, as (di = 0) ⇒ (Gi = Gi−1). In
such cases, the Q-matrix will therefore have duplicate
rows.

Consider for example the graph G in Fig.1, which
has 8 vertices and 10 edges. It has a degree distribu-

tion of ~d = 〈0, 4, 0, 2, 1, 0, 1〉 and gives rise to four dis-
tinct degree-limited subgraphs, G1, G3, G4, and G6.
Since the maximum degree of G is 6, and the largest
component size is 8, the corresponding Q-matrix of
G is given by the 7× 8 matrix

Q(G) =



0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0
3 0 0 1 0 0 0 0
3 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


(4)

The ith row gives the component size distribution for
Gi. At i = 4, for example, we see that there are
three components of size 1 (i.e. isolated vertices) and
one component of size 4 in G4. Thus, Q4,1 = 3 and
Q4,4 = 1. (The first element in the upper left-hand
corner of Q is Q0,1, rather than Q1,1.) Furthermore,
GD = G, so G6 contains the original graph, consist-
ing of a single connected component of size 8, thus
Q6,8 = 1. We note that Q is sparse and contains re-
dundant rows: G2 = G3 and G5 = G4. For practical
considerations, we define a compact representation,
the Q∗-matrix

Q∗i,j ≡
{

Πj(Gi) if di > 0
0 otherwise

(5)

which zeros out these redundant rows of Q:

Q∗(G) =



· · · · · · · ·
4 ·
· ·
4 1 ·
3 1 ·
· ·
· · · · · · · 1


(6)

Here, only the non-zero values are explicitly shown.
The matrices Q and Q∗ convey the same information
–given one, the other can be easily derived. In prac-
tice, Q∗ provides an economical storage format which
more clearly conveys the information content of Q.

The graph characteristics captured by the Q-
matrix may not be fully apparent for this small exam-
ple –it is simple enough to explain the basic ideas, but
too coarse to reveal structural patterns. In the next
section we examine large real networks in which the
usefulness of this representation become apparent.

For directed graphs, the Q-matrix can be in-
terpreted as the number of weakly connected compo-
nents. This essentially ignores the direction of edges
and allows the same algorithms and analysis to be ap-
plied to both directed and undirected graphs. Other
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extensions to the Q-matrix are described in later sec-
tions.

The process of removing or adding specific vertices
to a graph, as is done here, is a particular type of
site percolation process and arises in several areas
of network science, such as modeling the failure of
routers in computer networks (information technol-
ogy) or the spread of infectious diseases in popula-
tions (epidemiology). Various mathematical models
have been developed to analyze the resilience to tar-
geted attacks.[3] In the Q-matrix formulation, the
site percolation process is rather specific (by order-
ing the removal of nodes by their degree) and oc-
curs in discrete “bulk” steps (i.e., at each percola-
tion step all nodes of a given degree are processed si-
multaneously). This last stipulation differs from con-
ventional approaches in percolation studies, but this
slight twist ensures that the process yields consistent
results which do not exhibit statistical fluctuations
and reduces the overall size of the Q-matrix .

3 Q-matrix visualization

For large networks, it is impractical to display the Q-
matrix explicitly, as in Eq. 4 or even Eq. 6. Instead,
we lay the matrix down on the x-y plane and plot the
nonzero values on the z-axis, creating a three dimen-
sional scatter plot of component size distributions.
In this way the degree, component size, and num-
ber of components comprise the x, y, and z-axis, re-
spectively. Furthermore, because the values on these
axes span several orders of magnitude, it is conve-
nient to render the plot on a log-log-log scale and
use the Q∗ formulation to provide images which are
less cluttered. We refer to this representation as the
Q-matrix plot to distinguish it from the array rep-
resentation in Eq. 6. In the sequel we use the term
Q-matrix to refer both to the matrix and its plot; the
context should make it clear which we mean.

For example, the Q-matrix in Fig. 2 is that of an
undirected email communication network [7][8] with
36,692 vertices and 183, 831 edges, where each vertex
is an individual email address and two vertices are
connected by an edge if there was at least one message
sent from one to the other. The original graph is too
large to render in its entirety, but its Q-matrix values
consist of individual points (non-zeros) which can be
effectively plotted. The top-left (0,1) corner of the
Q-matrix is now on the floor in the rear corner, with
the degree values running along the left rear wall, and
component sizes running along the right rear wall.

The comb-like “lines” appearing in the plot are
constant component size contours, for component

Figure 2: The Q-matrix for an email communication
network with 36,692 nodes and 183,831 edges. [7]

sizes of k = 1, 2, 3, and so on. They are discrete
points, but they are so densely represented as to ap-
pear as continuous lines when viewed at these scales.

Moving from the left wall (x-z plane) towards us,
the resulting image appears to resemble a hill, with
a hook-like trail appendage closest to us, moving to-
wards the lower right of the matrix, where the degree
and component size are greatest. Upon closer inspec-
tion we can identify three loosely-defined regions in
this type of image: the wall occurs near the x-z plane
and shows how the small component sizes vary for
each Gi; the hill middle region shows how small and
medium component sizes vary, and the characteristic
hook on the floor (x-y plane) represents the birth
and growth of the largest component. These are not
precise mathematical boundaries, but these charac-
teristics do seem prevalent in Q-matrix plots, so the
nomenclature is useful in describing these renderings.

4 Application Examples

Fig. 3 shows the Q-matrix plots of real-work
networks found in the Stanford Large Network
Collection[7]. Their detailed descriptions are found
in Table 1. In some cases these are directed graphs,
and as previously noted, the Q-matrix then refers to
the distribution of weakly connected components.

First and foremost, the experimental data shows
that Q-matrix images of graphs from distinct appli-
cation areas do, in fact, appear different. In each
subfigure of 3 the wall, the hill and hook all have
different shapes and aspect ratios.

Surprisingly, Q-matrices of graphs from the same
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NETWORK NODES EDGES REFERENCE[7]

Collaboration Astro Physics 18,772 396,160 ca-AstroPh
Networks Condensed Matter 23,133 186,936 ca-CondMat
(Fig. 4) High Energy Physics 12,008 237,010 ca-HepPh

High Energy Physics Theory 9,877 51,971 ca-HepTh

Web graphs Google 875,713 5,105,039 web-Google
(Fig. 5) Notre Dame 325,729 1,497,134 web-NotreDame

Stanford 281,903 2,312,497 web-Stanford
Berkeley-Stanford 685,230 7,600,595 web-BerkStan

Road networks California 1,965,206 5,533,214 roadNet-CA
(Fig. 6) Pennsylvania 1,088,092 3,083,796 roadNet-PA

Texas 1,379,917 3,843,320 roadNet-TX

Citation High Energy Physics 34,546 421,578 cit-HepPh
Networks High Energy Theoretical Physics 27,770 352,807 cit-HepTh
(Fig. 7) US Patents 3,774,768 16,518,948 cit-Patents

Co-purchasing March 2 262,111 1,234,877 amazon0302
networks March 12 400,727 3,200,440 amazon0312
(Fig. 8) May 5 410,236 3,356,824 amazon0505

June 1 403,394 3,387,388 amazon0601

Email networks Enron 36,692 183, 831 email-Enron
(Fig. 9) European University 265,214 420,045 email-EuAll

Online social Epinons 5,879 508,837 soc-Epinions1
(Fig. 10) LiveJournal 4,847,571 68,993,773 soc-LiveJournal1

Slashdot (11-2008) 77,360 905,468 soc-Slashdot0811
Slashdot (02-2009) 82,168 948,464 soc-Slashdot0922

Table 1: Example datasets from the Stanford Large Network Collection [7] used for Q-martrix experiments.
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(a) co-purchasing network (b) webgraph

(c) citation graph (d) road network

(e) peer-to-peer (p2p) network (f) autonomous network

(g) email network (h) Wikipedia network

Figure 3: Q-matrices of networks graphs from the Stanford Large Network Collection[7].
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(a) Astrophysics (b) Condensed Matter

(c) High Energy Physics (d) High Energy Physics
Theory

Figure 4: Q-matrices of co-authorship networks.

application area appear to have similar characteris-
tics, as demonstrated in Fig.s 4-9. In such cases, each
group shares similar shape and slope of the wall, hill,
and hook regions for every network studied in our
experiments. This suggests that the Q-matrix may
be used as a crude classification tool to help iden-
tify “families” of large network graphs. Indeed, it
is a canonical visual representation of the original
graph, and unlike matrix structure plots, or graph
drawing algorithms, there is only one representation
for each graph, invariant under graph isomorphisms.
This makes it useful for labeling large graphs with
a compact image, and using this visual representa-
tion to categorize graphs into distinct groups. In
particular, it is useful for tagging network graphs in
databases with thumbnail images that actually yield
distinguishable characteristics.2 In other words, Q-
matrix plots provide a compact data set and a thumb-
nail image that may serve as a network “identification
badge”, or a “photo ID,” capturing important char-
acteristics beyond its size and degree distribution.

5 Extracting conventional mea-
sures

Embedded within the Q-matrix are basic networks
measures, which can be inspected visually, or can
be computed exactly with simple matrix/vector op-
erations. For example, the nonzeros in the bottom

2Current graph-drawing techniques have difficulty render-
ing meaningful visualizations for large graphs with heavy-tail
degree distributions.

(a) Google (b) Notre Dame

(c) Stanford (d) Berkeley-Stanford

Figure 5: Q-matrices of Web graphs.

(a) California (b) Pennsylvania

(c) Texas

Figure 6: Q-matrices of U.S. road networks.
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(a) High Energy Physics (b) High Energy Physics
Theory

(c) US Patents

Figure 7: Q-matrices of citation networks.

(a) March 2 (b) March 12

(c) May 5 (d) June 1

Figure 8: Q-matrices of Amazon co-purchasing net-
works (2003).

(a) Enron (b) European University

Figure 9: Q-matrices of email networks.

(a) Epinions (b) LiveJournal

(c) Slashdot (Nov. 2008) (d) Slashdot (Feb. 2009)

Figure 10: Q-matrices of online social networks.

row (QD+1,∗) enumerate the connected components
of each size in the original network; the first element
of Q, Q0,1 tells us how many isolated vertices, if any,
are present in G; the height and extension of the left
wall capture leaf and low-degree vertex behavior as
one increases the degree i for Gi.

Using |x|1 to denote the vector 1-norm, and [0 : N ]
to denote the vector of N + 1 nonnegative integers
< 0, 1, 2, . . . , N >, we can derive the following quan-
tities:

• number of components in Gi is the row sum
of Qi,∗

Π(()Gi) =
∑
j

Qi,j (7)

= |Q(i,∗)|1

In particular, GD = G, so Π(G) = |Q(D,∗)|1

• size of largest component in Gi, denoted
M(Gi|)M((), is the index of the last non-zero
in the i-th row:

M(Gi) = max
j
{j |Qi,j > 0} (8)

• number of vertices in Gi is the number of
vertices with degree less than or equal to i, which
is the number of components in the i-th. row of
Q multiplied by their respective sizes:

|Vi| =

M(G)∑
j=0

(Q(i,j) × j) (9)

= Q(i,∗) · [0 : M(G)]

In particular, |V | = |VD| = Q(i,∗) · [0 : M(G)].
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• degree distribution of G, ~d =< di >: The
number of vertices in G with exactly degree i can
be seen as the difference between the number of
those with degree i or less, and those with degree
i− 1 or less:

di = |Vi| − |Vi−1| (10)

=
[
Q(i,∗) −Q(i−1,∗)

]
· [0 : M(G)]

For i = 0, we just have d0 = |V0| = Q(0,∗) ·
[0 : M(G)] as the number of isolated nodes in
the original graph.

• number of edges in G for an undirected graph
is the sum of the degrees of each vertex divided
by two:

|E| =
1

2

∑
i

i× di (11)

=
1

2
[0 : D] · ~d

where ~d = {d0, d1, . . . , dD} is given by Eq.(11).

6 Practical considerations

The Q-matrix plot works best for large, complex net-
works with non-trivial degree distributions, where the
Q-matrix contains sufficient non-zeros to yield a visu-
ally interesting image. For small graphs, like our toy
example (Fig. 1) it is difficult to identify the wall, the
hill and the hook. In fact, the Q-matrix plot works
best precisely where other approaches, such as con-
ventional graph drawing layouts fail, thus creating a
useful complement to conventional methods for an-
notating network graphs.

In practice, the Q-matrix is sparse for large net-
work graphs: there are relatively few distinct degrees
(nonzeros in ~d) and it is unlikely to find a component
of particular size j in Gi. Hence, although the dimen-
sions of Q are (D+1) by M(G), the actual number of
nonzeros is quite small. Fig. 11 illustrates the ratio
between the number of nonzeros in the Q-matrix and
the number of edges in original graph from a sample
of 44 applications , ranging in size from several hun-
dred to several million. The results are plotted on a
log-log scale, and we see that the number of nonzeros
in Q grows roughly as O(n0.4) where n is the num-
ber of edges in G. Networks with millions of edges
are often represented by Q-matrices with just a few
thousand numbers.

Computing the Q-matrix is pratical for large net-
works. In another paper [12], we describe an efficient
algorithm which builds the Q-matrix incrementally,

Figure 11: The size of the Q-matrix (number of
nonzeros) grows at about O(n0.4) compared to the
size of graph (number of edges).

without calculating Gi explicitly in the intermediate
steps. It begins by sorting and partitioning the ver-
tices by their percolation order (degree) and growing
equivalence classes corresponding to the intermediate
subgraph components. Large network graphs with
millions of edges can be processed in a few seconds
on a desktop computer.

Furthermore, because a small perturbation to the
graph structure (e.g., edge swap) could have a cascad-
ing effect to the resulting Q-matrix , provides a fast
method for identifying graph non-isomorphism of
two large networks with identical size and degree
distributions. On the other hand, proving the con-
verse remains challenging –different graphs may yield
the same Q-matrix . For example, any k-regular
graph (i.e., where every vertex has the same degree
k) will yield a Q-matrix that has exactly one non-
zero: Qk,|V | = 1. In particular, two non-isomporphic
3-regular (cubic) graphs, cited in [1]: the Desargue
graph, and the Dodecahedral graph (Fig. 12) have
20 nodes and 30 edges each, and identical degree dis-
tributions. Both yield identical Q-matrices . Thus,
the Q-matrix for a graph is not an invertible rep-
resentation, and there are specific counter-examples
where comparing two Q-matrix pilots may yield lit-
tle insight. Nevertheless, the interesting idea here is
that the Q-matrix works best precisely when there is
diversity in the degree-distribution, and when large
hubs are present: two key characteristics that sep-
arate real-world networks from structured and uni-
formly random graphs.

We can also use the Q-matrix to investigate how
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(a) Desargues graph (b) Dodecahedral
graph

Figure 12: Two non-isomorphic cubic graphs of same
size (20 nodes and 30 edges) and degree distributions,
which yield the same Q-matrix , i.e. G → Q(G) is
not one-to-one.

various graph properties compare to those of random
graphs with similar degree sequences. For example,
how does the growth of the giant component compare
between real-world graphs and randomized versions
with the same degree distribution? While formula-
tions exist for calculating expected size at a given
degree point [9], it is insightful to see how the varia-
tions behave over the complete degree spectrum. Fig.
13, for example, shows the giant component growing
much faster for the randomized graphs, in some re-
gions by almost three orders of magnitude. In this ex-
periment, we computed random variations of the orig-
inal network by accumulative edge swaps that pre-
served the degree distribution. (That is, each edge in
the graph was randomly swapped with another edge
in such a way to preserve the original degree distri-
bution.) We then computed the Q-matrix for these
randomized versions, and compared the largest com-
ponent size growth. The results demonstrate that
original and randomized graphs have a completely
different signature, and that the Q-matrix can be
used as a validation tool to help separate real-world
graphs from their synthetic counterparts.

7 Comparing graphs

Given two graphs, A and B, and their respective Q-
matrices , Q(A) and Q(B), we may define a distance
function ∆(A,B) between these two graphs as the
Q-metric :

∆(A,B) ≡ ||Q(A)−Q(B)|| (12)

=
∑
i

∑
j

|Q(A)i,j −Q(B)i,j |

In cases where the matrices Q(A) and Q(B) are of
different sizes, the smaller one can be padded with
zeros so they are conformant. This formulation is es-
sentially the vector 1-norm, interpreting the elements

Figure 13: The growth of the giant component for
the email network (Fig. 2) shown in red, compared
to random graphs of same size and degree distribu-
tion, all computed directly from their corresponding
Q-matrices . The original graph behaves significantly
different, and this technique can be used to identify
real networks from their synthetic counterparts.

Q(A) and Q(B) as a long vector. This definition is
chosen over the more common Frobenius matrix norm
to keep all computation in integer arithmetic, and
hence its numerical value exact.

Note that ∆ does satisfy the requirement for a
pseudometric space. Namely, for any graph A,
B, C

∆(A,A) = 0 (13)

∆(A,B) = ∆(B,A) (14)

∆(A,C) ≤ ∆(A,B) + ∆(B,C) (15)

(Since ∆(A,B) = 0 does not imply that A = B, the
requirements for conventional metric space are not
met.) We can use this distance function as a way to
measure how different two graphs are in respective Q-
matrix formulation. For example, Fig. 14 shows this
metric applied to the email communication network
(Fig. 2) and 100 random graphs generated as before
with identical degree distribution. Here, a distribu-
tion of the

(
101
2

)
= 5, 050 pairwise Q-metrics are plot-

ted on a logarithmic x-axis. The result is a bimodal
distribution illustrating the difference between ran-
dom graphs (left mode) and the original graph. That
is, the pairwise ∆ for each random graph is over 40
times smaller than the ∆ between the original graph
and its random counterparts. If we normalize this
difference by the number of vertices in the graph, the
mean difference between random matrices is 0.7964
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Figure 14: Comparison between the email network
(Fig. 2) and 100 random graphs with identical de-
gree distribution. Here, a distribution of the 5,050
pairwise Q-metrics are plotted on a logarithmic x-
axis. showing that the original graph (right mode)
is quite different than its random counterparts (left
mode).

with a standard deviation of 0.2494, while the mean
difference between the original graph and all 100 ran-
dom graphs is 34.9570, with a standard deviation of
0.2941. Once again, the original graph behaves sig-
nificantly different than its random counterparts and
such a test can help identify real networks from those
generated synthetically.

8 Generalizations and exten-
sions

The Q-matrix has been defined for directed and undi-
rected graphs, but further refinements could be made
for the directed graph case by distinguishing be-
tween weakly-connected and strongly-connected
components. One possible generalization of the Q-
matrix formulation would be to define a version that
creates two Q-matrices for directed graphs: one each
for in-degree and out-degree distributions, and mea-
sure strongly-connected components for each.

Likewise, the Q-matrix formulation could also be
extended to weighted graphs, where each edge has
a weight, ωe for e = {1, 2, . . . , |E|}, by extending the
notion of degree of a vertex to the sum of its edge
weights.

Also, we may create alternate versions of the Q-
matrix using other node orderings (centralities) in
place of degree, e.g. between-ness, eigenvalue, or

Pagerank centralities. A similar framework can be
developed for edge centralities, in which edges,
rather than vertices are removed (sometimes referred
to as bond-percolation).

Finally, we note that the Q-matrix of G can it-
self be interpreted as a weighted graph, written in
adjacency format. That is, Q(G) is itself a graph.
In this case one could apply this formulation twice,
Q(Q(G)), to create a Q2-matrix, or any number of
times to create the Qn-matrix. Such an approach
would produce a family of graph reductions that
could collapse a large network graph into a single
number. We are just beginning to investigate the
implications of these extended interpretations.

9 Conclusion

The Q-matrix is a condensed representation of a net-
work graph, which provides a meaningful visualiza-
tion and encodes several measures of the graph’s un-
derlying topological structure. It is small, relatively
easy to compute, and provides a convenient identifica-
tion of the original network graph. (The Q∗ formula-
tion is used in practice, but both are mathematically
equivalent.)

We have illustrated Q-matrix identities for comput-
ing the degree distribution, giant component growth,
and basic parameters of undirected graphs (Eqs. 8,
8, 10, 11, and 12.)

Computing the Q-matrix is computationally effi-
cient. Optimized algorithms allow networks with mil-
lions of edges to be processed in a few seconds on a
laptop. Furthermore, the resulting Q-matrix is com-
pact. The size of a Q-matrix grows around O(n0.4)
as the number of edges in the original graph, thus
the file size ratio approaches zero for large networks.
For example, the LiveJournal network[7] has nearly
69 million edges, yet its Q-matrix requires less than
67 thousand values – a reduction ratio about 1,000:1.

Experimental data indicates that the visualiza-
tion provided by the Q-matrix distinguishes between
graphs from different applications areas (Fig. 3) and
that graphs from the same application area share
visual similarities (Fig. 4-9). This includes exam-
ples from citations graphs, web graphs, road net-
works, peer-to-peer networks, autonomous networks,
email networks, and Wikipedia networks, ranging
from sizes of just a few thousand to nearly 70 mil-
lion edges[14] [7]. While these experiments are not
exhaustive of all network data available, they do sug-
gest that the approach appears promising in practice.

The Q-matrix approach can also reveal differences
between an organic (real-world) graph and random-
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ized variations from its corresponding configuration
model (ensemble of random graphs with identical de-
gree distribution). We have shown example cases
where the giant component grows much slower, by as
much as three orders of magnitude, and such differ-
ence can be computed exactly from their correspond-
ing Q-matrices .

Furthermore, the difference between Q-matrices of
different graphs may be quantified by the induced
Q-metric ∆(A,B), as given by Eq.13. This defines
an exact, reproducible measure for network graphs
which can be also be useful in identifying application
graphs from their randomized counterparts (Fig.14).

Finally, we have outlined extensions to this ap-
proach that for directed and weighted graphs, as well
as generalized percolation orderings, like eigenvalue
or between centrality. We have also proposed a recur-
sive Q-matrix formulation approach that can reduce
a large network graph to a single number.

The understanding of large-scale networks remains
a challenging problem, and hopefully such approaches
may shed light on our comprehension of systems.
There is still much work to be done, and we hope
that these formulations can help further that under-
standing.
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