Simulation of radiographs

Michael J. Donahue

May 7, 1991
I. Introduction

II. 2D Simulations
 (a) Spheres and rectangles
 (b) Coordinate transformations

III. 3D Simulations
 (a) Building blocks
 (b) Parallel beam versus cone beam
 (c) Program flowchart

IV. Examples
The resulting intensity of an X-ray of initial intensity I_0 passing along line L through a body with linear attenuation coefficient $\mu(x)$ is given by

$$I = I_0 \exp \left\{ - \int_L \mu(x) \, dx \right\}$$

If the body is homogeneous (i.e., $\mu(x)$ is constant inside the body, 0 outside), then this reduces to

$$I = I_0 \exp \left\{ - \mu \|L \cap \text{Body}\| \right\}$$

In particular, we will call $\mu \|L \cap \text{Body}\|$ the **linear attenuation** due to the body.
T-joint with trace of X-ray path.
Length of intersection of line L with circle centered at the origin with radius R is

$$\Phi(L_{\theta, w}) = 2\sqrt{R^2 - w^2}$$
Parameterize line L by

$$(x_1(s), x_2(s)) = L \vec{v}, \vec{w}(s) = s \vec{v} + \vec{w}$$

where \vec{v}, \vec{w} satisfy $\|\vec{v}\| = 1$ and $\langle \vec{v}, \vec{w} \rangle = 0$.

We then have the following 4 conditions on s:

$$-e_1 \leq x_1(s) = sv_1 + w_1 \leq e_1$$
$$-e_2 \leq x_2(s) = sv_2 + w_2 \leq e_2$$
Solving yields

\[s_{\text{min}} = \max \left[\min \left(\frac{\pm e_1 - w_1}{v_1} \right), \min \left(\frac{\pm e_2 - w_2}{v_2} \right) \right] \]

\[s_{\text{max}} = \min \left[\max \left(\frac{\pm e_1 - w_1}{v_1} \right), \max \left(\frac{\pm e_2 - w_2}{v_2} \right) \right] \]

The length of the intersection of \(L \) with the rectangle is

\[\Phi(L_{\vec{v}, \vec{w}}) = \max(s_{\text{max}} - s_{\text{min}}, 0) \]
Illustration of intersection of line L with a rotated and translated rectangle.
Let U be the orthogonal transformation given by

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

and let T be the rigid body motion

$$T\vec{w} = U(\vec{w} - \vec{P})$$

Then the line $L_{\vec{v},\vec{w}}$ becomes in the new coordinate system $L_{\vec{v}',\vec{w}'}$, where

$$\vec{v}' = U\vec{v}$$

$$\vec{w}' = T\vec{w} - \langle T\vec{w}, \vec{v}' \rangle \vec{v}'$$
BASE ELEMENT TYPES:

Sphere
Ellipsoid*
Cylinder
Elliptical Cylinder*
Box*
Free Form*
Erehwon

where * indicates those element types supporting cut-planes.
Ellipsoid:

\[
(x_1/e_1)^2 + (x_2/e_2)^2 + (x_3/e_3)^2 \leq 1
\]
Let
\[\vec{v'} = (v_1/e_1, v_2/e_2, v_3/e_3)^t \]
\[\vec{w'} = (w_1/e_1, w_2/e_2, w_3/e_3)^t \]

And further define
\[a = \langle \vec{v'}, \vec{v'} \rangle \]
\[b = \langle \vec{v'}, \vec{w'} \rangle \]
\[c = \langle \vec{w'}, \vec{w'} \rangle - 1 \]
\[\Delta = \sqrt{b^2 - ac} \]

Then the line-ellipsoid intersection points are at
\[s_1 = \frac{-b - \Delta}{a} \quad s_2 = \frac{-b + \Delta}{a} \]
/******************************* ELLIPSOID *******************************
float ellipsoid(ELEMENT *ell, LINE *ray)
 /* This routine returns the length of the intersection between */
 /* the ellipsoid ell and the line *ray. The object ell definition */
 /* includes the size, density and orientation of the ellipsoid. */
 {
 int i;
 float eff_length,a,b,c,det,t1,t2;
 LINE newray;

 /* Crude out-of-bounds check */
 for(i=0; i<3; i++) if(fabs(ray->offset[i])<=ell->param[i]) break;
 if(i>2) return 0.0;

 /* Convert to elliptical coordinates */
 for(i=0; i<3; i++) {
 newray.dir[i]=ray->dir[i]/ell->param[i];
 newray.offset[i]=ray->offset[i]/ell->param[i];
 }

 a=dot(newray.dir,newray.dir);
 b=dot(newray.dir,newray.offset);
 c=dot(newray.offset,newray.offset)-1.0;

 /* Compute crossing times */
 det=b*b-a*c;
 if(det<TOO_SMALL*TOO_SMALL) return 0.0; /* No intersection! */
 det=sqrt(det);
 t1=(-b-det)/a; t2=(-b+det)/a;

 /* Incorporate "cut plane" restrictions */
 plane_limits(&t1,&t2,ell,ray);

 /* Compute total length, including density */
 if(t2<t1) eff_length=0;
 else eff_length=(t2-t1)*ell->density;
 return eff_length;
 }

Subroutine for calculation of ellipsoid linear attenuation.
Simulated radiograph of an ellipsoid with cut-plane.
ELLIPSOID
1 0 0
0 0.707107 -0.707107
0 0.707107 0.707107
0 100 0
.3
500 100 50
0 0.707107 0.707107 50 1

Data file for ellipsoid with 1 cut-plane.
Triangular prism constructed as a “free form” element.
Simulated radiograph of triangular prism with parallel beam geometry.
Simulated radiograph of triangular prism with cone beam geometry.
Flowchart for radiograph simulation package.
Simulated radiograph of a pipe with internal spherical and cylindrical inclusions.
Data file for pipe simulation with inclusions.
<table>
<thead>
<tr>
<th>CYLINDER</th>
<th>1 0 0</th>
<th>0 1 0</th>
<th>0 0 1</th>
<th>0 0 0</th>
<th>.01</th>
<th>218 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYLINDER</td>
<td>1 0 0</td>
<td>0 1 0</td>
<td>0 0 1</td>
<td>0 0 0</td>
<td>-.01</td>
<td>200 50</td>
</tr>
<tr>
<td>CYLINDER</td>
<td>1 0 0</td>
<td>0 1 0</td>
<td>0 0 1</td>
<td>0 70 0</td>
<td>.015</td>
<td>10 50</td>
</tr>
<tr>
<td>CYLINDER</td>
<td>1 0 0</td>
<td>0 1 0</td>
<td>0 0 1</td>
<td>0 65 0</td>
<td>-.015</td>
<td>2.5 50</td>
</tr>
<tr>
<td>CYLINDER</td>
<td>1 0 0</td>
<td>0 1 0</td>
<td>0 0 1</td>
<td>0 75 0</td>
<td>-.015</td>
<td>2.5 50</td>
</tr>
</tbody>
</table>

Data file for simulation of experimental sample.
Simulated projections: 0°, 45°, 90°.
Experimental projections: 0°, 45°, 90°.
Reconstruction from simulated data, 65 projections.
Reconstruction from simulated data, 315 projections.
Reconstruction from experimental data, 315 projections.
Simulated T-joint, top view.
Data file for T-joint simulation, Page 1/2.
ELLIPTICAL CYLINDER
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
64 -64 0
0.0075
16 16 100
1 0 0 0.5 -1
0 -1 0 0 -1

BOX
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
64.5 0 0
-0.0075
2 10 100

ELLIPTICAL CYLINDER
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
72 -72 0
-0.0075
3 2 100

Data file for T-joint simulation, Page 2/2.
Projections at 45° increments.
Projections at 2.3° increments.
T-joint reconstruction from simulated data, 315 projections.
Reconstruction from simulated data, 20° missing angle.
Reconstruction from simulated data, 20° missing angle, lower 20% of frequency range filled with ideal data.