Precession Axis Modification to a Semi-analytical Landau-Lifshitz Solution Technique

Don Porter
Mike Donahue

Mathematical & Computational Sciences Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, Maryland
Background

- For fixed H, the Landau-Lifshitz equation

$$\frac{dm}{dt} = \frac{|\gamma|}{1 + \alpha^2} H \times m + \frac{\alpha |\gamma|}{1 + \alpha^2} m \times H \times m$$ (1)

has analytical solution.

- In spherical coordinates based on H and initial m,

$$\phi(t) = |\gamma H| t$$ (2)

$$\theta(t) = 2 \tan^{-1}(\tan(\frac{\theta(0)}{2}) \exp(-|\alpha \gamma H| t))$$ (3)

- While H remains fixed, exact trajectory $m(t)$ can be computed for any time step.
Semi-analytical Solution Technique

- Apply analytical solution only over time steps small enough that fixed H assumption remains an acceptable approximation.
- Computed trajectories satisfy $|m| = 1$.
- No renormalization scheme required.
- Naturally avoids errors in energy computations, dissipation rates, etc. that renormalization schemes can introduce.
- Semi-analytical step extends to predictor-corrector scheme.

Limitations

- H is a function of m; varies over simulation time scales.
- When exchange or demagnetization dominates, H is expected to vary at same rate as m.
- Semi-analytical technique only valid for small time steps
Landau-Lifshitz Analysis

• In LLG, H appears only as part of $H \times m$

$$\frac{dm}{dt} = \frac{|\gamma|}{1 + \alpha^2} H \times m + \frac{\alpha|\gamma|}{1 + \alpha^2} m \times H \times m.$$ \hspace{1cm} (4)

• Torque $T = H \times m$ drives the equation, not field.

• Changes to field that preserve torque, preserve LLG solution.

• Consider adding any scalar multiple of m to H

$$\tilde{H} = H + \lambda m$$ \hspace{1cm} (5)

• Compute torque

$$\tilde{T} = \tilde{H} \times m = H \times m + \lambda m \times m$$ \hspace{1cm} (6)

$$= H \times m = T.$$ \hspace{1cm} (7)

• Modified \tilde{H} computes same torque; same LLG solutions.
Axis Modification

- Freedom to choose \tilde{H}
- What choice for \tilde{H} best suits semi-analytical step?
- Value of λ determines direction of \tilde{H}.
- Select λ value equivalent to select axis direction, a.
- For long time steps, want single fixed \tilde{H} suitable for all $m \in \Omega$, in a neighborhood of a long trajectory segment.
\[a = T_0 \times T_1 \]

- \(\tilde{H} / \| \tilde{H} \| \) independent of \(m \in \Omega \)
- \(\implies \tilde{H} \parallel T_0 \times T_1 \) for any \(m_1, m_2 \) in \(\Omega \).
Modified Axis Semi-analytical Algorithm

• From current value of \(m \), compute current \(H \).

• Use current and past torque values (\(T \) and \(T_{\text{past}} \)) to determine axis \(a \).

• From \(m \) and \(H \), compute \((m \times H \times m) \).

• Solve \(\tilde{H} = \beta a = H + \lambda m \); see figure below.

• Take semi-analytical step based on \(\tilde{H} \).

• Extend this semi-analytical foundation to predictor-corrector scheme.
\[H \cdot (m \times H \times m) = \beta a \cdot (m \times H \times m) \]

\[\beta = \frac{H \cdot (m \times H \times m)}{a \cdot (m \times H \times m)} \]
Coupled Two-spin System
Comparison Results

- Simulate two-spin system with several energy terms.
 - Exchange ($A = 13 \text{nJ/m}; \Delta = 5 \text{ nm}$)
 - Demag ($M = 800 \text{kA/m}$)
 - Cubic Anisotropy ($K = 57 \text{ kJ/m}^3$)
- Compute trajectories for $\alpha = 0.01$ over 10 ps interval.
- Compute with three solvers
 - Baseline solution via 5/4 Runge-Kutta-Fehlberg
 - Time steps reduced to achieve converged solution
 - Original semi-analytical predictor corrector
 - Modified axis semi-analytical predictor corrector
- Plot error at $t = 10 \text{ ps}$ against time step.
Error at $t = 10$ ps

Time step (fs)
Comparison Results

- Axis corrected solver achieves...
 - ...order of magnitude less error at the same time step.
 - ...same error magnitude with three times longer time steps.
- Both semi-analytical solvers exhibit second order convergence.
 - Suitable for adjustable time step algorithms
Adjustable Time Step Comparison

- Another two-spin system.
- Zeeman energy added.
- Simulation over 5 ns duration.
- Baseline solution computed by the Runge-Kutta-Fehlberg solver with 1 fs time step.
- Both semi-analytical solvers compute solutions within 2×10^{-6} relative error.
- Original semi-analytical solver time steps all < 2 fs.
- Axis corrected solver reaches time step > 200 fs.
- Overall thirty times less computation.
Exchange-only Analysis

- Consider two-spin system with only exchange energy.
- Effective field:
 \[H_1 = \frac{2A}{\mu_0 M \Delta^2} m_2. \]
 \[(8) \]
- Axis-corrected field:
 \[\tilde{H} = \tilde{H}_1 = \tilde{H}_2 = \frac{2A}{\mu_0 M \Delta^2} (m_1 + m_2). \]
 \[(9) \]
- Time-evolution of axis-corrected field:
 \[\frac{d\tilde{H}}{dt} = \frac{2A}{\mu_0 M \Delta^2} \left(\frac{dm_1}{dt} + \frac{dm_2}{dt} \right) \]
 \[= \frac{4A^2 \alpha \gamma}{(\mu_0 M \Delta^2)^2} \sin(\theta) \tan(\frac{\theta}{2}) \frac{m_1 + m_2}{2}, \]
 \[(11) \]
Exchange-only Analysis

- Both \tilde{H} and $d\tilde{H}/dt$ in fixed direction $(m_1 + m_2)$.
- Two spins precess around common, fixed axis, synchronized opposite each other.
- For $\alpha > 0$, $|\tilde{H}|$ increases to a limit.
- Thus precession frequency also increases to a limit:

$$f_{\text{max}} = \frac{2A|\gamma|}{\pi \mu_0 M \Delta^2}.$$ \hspace{1cm} (12)

- For smaller Δ
 - Precession frequency increases.
 - Precession period decreases.
 - Small time steps to represent precession.
Summary

- LLG driven by torque, not field.
- Field axis may be chosen to serve computing needs.
- Axis corrected version of semi-analytical solver more efficiently solves LLG when strong coupling undermines fixed H assumption.
- Semi-analytical solvers have second order convergence.
- Semi-analytical solvers support adjustable time step algorithm.
- Analysis of exchange-only two-spin system suggests finer spatial resolution may force smaller time steps.