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Abstract— Micromagnetic simulation of domain wall mo-
tion in thin, narrow strips leads to a simplified analytical
model. The model accurately predicts the same domain
wall velocity as full micromagnetic calculations, including
dependence on strip width, thickness, and magnitude of ap-
plied field pulse. Domain wall momentum and retrograde
domain wall motion are both observed and explained by the
analytical model.

I. Introduction

The effects of the shape and small dimensions on magne-
todynamics are important so that devices can be produced
to meet magnetization reversal design requirements. In
this study we first use micromagnetic simulation to exam-
ine domain wall motion in thin, narrow strips of magnetic
material. Inspired by the simulation results, we then pro-
duce a simpler analytical model that agrees with the full
micromagnetic simulation remarkably well. Both models
predict a few unexpected behaviors.

II. Simulation

Using the OOMMF micromagnetic software package [1],
we examined domain wall motion in a strip T = 5 nm thick
and L = 1250 nm long. Our simulations included strips of
width W ranging from 5 nm to 35 nm. Material param-
eters approximating Permalloy were chosen, with satura-
tion magnetization MS = 800 kA/m and exchange energy
coefficient A = 13 pJ/m. Crystalline anisotropy was not
included in the simulation of this soft material. Landau-
Lifshitz magnetization dynamics are computed:

dm

dt
=

γ

1 + α2
m × Heff − αγ

1 + α2
m × Heff × m, (1)

where γ = −221 kHz/(A/m) is the gyromagnetic constant,
α is a dimensionless phenomenological damping parameter,
m = M/MS is normalized magnetization, and Heff is the
effective field representing the effect of all energies included
in the simulation.

From a prior simulation study [2] of static domain walls
in thin, narrow strips, we expect head-to-head domains to
be separated by a transverse domain wall as illustrated in
Fig. 1. We have used the same technique as in that prior
study to suppress edge effects, to focus on the behavior of
a domain wall down the length of a strip, far removed from
the ends.

The initial transverse domain wall is established in the
element. A field pulse is applied along the strip axis,

µ0Hx(t) = µ0Happ(1 − cos 2πft), 0 < t < 1 ns (2)
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z

Fig. 1. Transverse domain wall in thin, narrow strip.

where f = 1 GHz, so that the 1 ns pulse includes one full
cosine period. Pulse magnitudes µ0Happ from 1 to 10 mT
were applied. In response to each applied field pulse, the
transverse domain wall moves in the positive x direction.
After the pulse ends, the domain wall continues to move
with a momentum of its own. Simulations with α = 0
demonstrate that the domain wall motion is primarily a
precessional effect.

Because the transverse domain wall holds its shape and
the domains remain uniformly magnetized along the strip
axis, the wall velocity can be derived from the average mag-
netization of the whole element,

v(t) =
L

2
d < mx(t) >

dt
. (3)

When α = 0, the domain wall momentum moves the wall
at constant velocity. When α > 0, the domain wall stops
some time after the pulse ends, although for large enough
applied field pulses, the wall velocity increases after the
pulse ends before slowing to a stop.

Figure 2 graphs constant wall velocities observed when
α = 0 for several values of strip width W and pulse magni-
tude µ0Happ. For each W , there is a pulse magnitude that
maximizes wall velocity. For wider strips, a lesser pulse
magnitude produces the maximum velocity and that max-
imum velocity is greater.

Another set of simulations applied a constant field rather
than a pulse. The remarkable observation was that for large
enough applied field, the domain wall velocity becomes neg-
ative part of the time, leading to a retrograde motion of the
domain wall.

III. Domain Wall Structure

As a first step toward deriving an analytical model to
explain these simulation results, we examine the structure
of the domain wall itself. First we note that within the
scales under study, the magnetization can be considered to
vary along only the x axis, M(x, y, z) = M(x).
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Fig. 2. Domain wall velocity for various strip widths and applied
field pulse magnitudes

Exchange energy prefers to spread the wall along the
entire length of the strip. The shape anisotropy of the strip,
however, tends to expand the domains at the expense of
the wall. The actual width of the domain wall comes from
a balancing of these two energies, in a manner precisely
analogous to the well-known one-dimensional domain wall
model where exchange and crystalline anisotropy energies
are balanced.

Most of the shape anisotropy energy comes from surface
charges due to the transverse components of magnetiza-
tion. As an approximation, we neglect the magnetostatic
energy from bulk charges, and compute the demagnetiza-
tion energy of an in-plane transverse wall as

E = −µ0MS

2

∫
V

my(x)Hy(x, y, z)dxdydz, (4)

where Hy(x) arising from the surface charges is

Hy(x, y, z) =
∫ L

0

∫ T

0 my(x′) MS{f(x − x′, y − W, z − z′)
−f(x − x′, y, z − z′)}dz′dx′,

where
f(x, y, z) =

y

[x2 + y2 + z2]
3
2
. (5)

After rearrangement and simplification

E =
µ0M

2
S

2

∫ L

0

∫ L

0

my(x)my(x′)Φ(x − x′)dxdx′, (6)

where Φ is integrable and has most weight near zero, so
acts approximately as a Dirac delta function. Following
the same calculus of variations analysis as for crystalline
anisotropy energy,

E = Ky

∫ L

0

m2
y(x)dx, (7)

leads to the expression for an effective shape anisotropy
constant for a given strip width W and thickness T ,

Ky(W, T ) =
µ0M

2
S

2
{1 − 2

π
tan−1(

W

T
) (8)

+
1
2π

T

W
log(1 + (

W

T
)2) − 1

2π

W

T
log(1 + (

T

W
)2)}.

By an analogous argument, the shape anisotropy constant
for a domain wall directed out of the plane in the z direction
is

Kz(W, T ) = Ky(T, W ). (9)

Following the classical analysis of one-dimensional mod-
els of domain walls, this approximation predicts the width
of a domain wall tilted at angle θ out of the plane to be

a = π

√
A

Ky cos2 θ + Kz sin2 θ
. (10)

From the simulations, we can compute a different estimate
of the domain wall width of the magnetization state,

â = L(< my >2 + < mz >2)
1
2 . (11)

The â estimate from simulations are consistently slightly
larger (10 - 20 %) than the predicted value a, presumably
due to the neglected bulk charges. To compensate for this
difference, in the remainder of the paper we use a value of
a that is 15% greater than the value predicted by (10).

IV. Analytical Model

Consider a partition of the strip into three regions: the
two domains, each uniformly magnetized, and the domain
wall uniformly magnetized in the transverse direction over
a length a of the strip. The domains are magnetized paral-
lel to the applied field, so they do not respond to it . The
domain wall region does respond. Damping toward the
applied field causes the domain wall to rotate toward the
positive x axis. Precession about the applied field causes
the domain wall magnetization to tilt out of the plane at
an angle θ. After the magnetization tilts out of plane, it
is no longer anti-parallel to the demagnetization field. The
component of demagnetization field perpendicular to the
magnetization, H⊥

D , is

H⊥
D = MS(Nz − Ny) cos θ sin θ, (12)

where Ny and Nz are the demagnetizing factors of the a×
W ×T region containing the domain wall [3]. For non-zero
θ, H⊥

D is also non-zero, and the domain wall magnetization
will precess around it, contributing to the rotation toward
the positive x axis. The complete expression for velocity
of the domain wall predicted by this simple model is

(1 + α2)v = (|γ|/π)(H⊥
D + αHapp)a. (13)

After Happ returns to zero, the precession about the demag-
netizing field sustains the momentum of the domain wall.
This phenomenon is completely analogous to the momen-
tum predicted by a 1D model of a Bloch wall [4]. Damping
will slowly draw energy from the system, and eventually
bring the domain wall to a stop.

It is clear from these expressions that for any particu-
lar strip geometry, there is a tilt angle θ that maximizes



domain wall velocity. The time rate of change of the tilt
angle is

(1 + α2)
dθ

dt
= |γ|(Happ − αH⊥

D). (14)

For the applied field pulses, the total tilt angle θ achieved
by the end of the pulse is proportional to the area under
the applied field pulse. It is also clear that larger veloci-
ties are expected as (Nz −Ny) grows larger; that is, as the
width-to-thickness ratio of the strip increases. These rela-
tionships explain the features of the micromagnetic simula-
tion results in Fig. 2. When the applied field pulse creates
a tilt angle θ greater than that which maximizes velocity,
the model predicts that after the pulse, as damping de-
creases θ, the wall velocity will actually increase before it
decreases and the wall comes to a stop, just as observed in
micromagnetic simulation.

This analytical model can also explain the response of
domain walls to a constant applied field. When the applied
field is small enough, its tendency to increase the tilt angle
θ will eventually be exactly balanced by the tendency of the
damping to push θ back to zero. Specifically, for Happ <
α maxθ H⊥

D , a constant θ is reached and the wall moves at
the constant velocity determined by that tilt angle.

For larger Happ, θ will continue to grow as precession
about the applied field continues past the z axis (θ = π/2).
Once θ exceeds π/2, both precession and damping com-
bine to accelerate the magnetization back into the plane.
Though precession continues clockwise around H⊥

D , the
transverse direction of magnetization is reversed, so that
precession moves the wall in the reverse direction. That is,
the domain wall velocity becomes negative. As θ exceeds
π, the magnetization passes through the plane of the strip,
and the direction of H⊥

D is reversed, causing the precession
direction to reverse, yielding another reversal of wall di-
rection. The same pattern repeats as the precession about
the applied field continues for π < θ < 2π. The number
of cycles of domain wall direction reversal is exactly twice
the number of precession rotations about the applied field.

For Happ > α−1 maxθ H⊥
D , we know from (13) that wall

velocity will not be negative, so for such large fields retro-
grade motion will cease, though the domain wall tilt angle
θ will continue to precess around the strip axis.

Figure 3 depicts how well the simple analytical model
succeeds in predicting the same domain wall position as a
function of time as a full micromagnetic calculation. The
solid line is the wall trajectory predicted by numeric in-
tegration of (13). Wall width a ranges from 24 to 39 nm
during each precession cycle. Figure 4 is a direct illustra-
tion of the retrograde motion of the domain wall in the
presence of a constant applied field.

Equations (12) - (14) are substantially similar to those
derived in a previous study of domain wall dynamics in
nanowires [5]. However, in our work, we have derived the
dependence of H⊥

D on W , T , and θ, while the previous
work assumed a simple uniaxial anisotropy form of the de-
magnetization energy. If we made the same assumptions,
our threshold for observing retrograde domain wall motion
would be Happ < αMS(Nz − Ny)/2 which corresponds to
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Fig. 3. Comparison of the predictions of the analytical model with
the results computed by a full micromagnetic simulation. Response of
a transverse domain wall to an applied field ramped up to a constant
value. µ0Happ = 25 mT, W = 15 nm, α = 0.001 and α = 0.01.
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Fig. 4. A sequence of magnetization patterns, illustrating retrograde
domain wall motion driven by a constant applied field. At 3470 ps
the wall is tilted up. At 4190 ps the wall is tilted down.

the “Walker field” predicted by the earlier work. It should
be noted that although the analytical work in Ref. 5 is
sound, the simulation results reported are invalid because
the demagnetization fields are computed using a sampling
technique rather than an averaging technique, a simulation
error we have fully described elsewhere [6].
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