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Micromagnetics is a continuum model of magnetization processes at the nanome-
ter scale. It is largely a computational science, and as such it faces the same
issues of clarity, confidence and reproducibility as any computational effort. A
curated collection of well-defined reference problems, accepted by and solved by
the associated research community, can address these issues by aiding commu-
nication and identifying model shortcomings and computational obstacles. This
chapter reports on one such collection, called the µMAG Standard Problems, used
by the micromagnetic research community. The collection examines hysteresis,
scaling across length scales, detailed computation of magnetic energies, magneto-
dynamic trajectories, and spin momentum transfer. Each reference problem has
proven useful in improving the micromagnetics state of the art. Recommendations
distilled from this experience are presented.

1. Introduction

The design and function of many modern devices rely on an understanding of pat-

terns of magnetization in magnetic materials at the scale of nanometers. Examples

include recording heads, field sensors, spin torque oscillators, and nonvolatile mag-

netic memory (MRAM). To study such systems researchers employ micromagnetic

models, which are continuum models of magnetic materials and magnetization pro-

cesses at this scale. These models are encoded in software, and simulations compute

predictions of magnetic behavior used both to design devices and to interpret mea-

surements at the nanoscale.

For many years now there has been a discussion of how to characterize the in-

creasing role of computation in the pursuit of scientific discovery. Notably a 2005

report1 from the U.S. Presidential Information Technology Advisory Committee an-

nounced that “computational science now constitutes the ‘third pillar’ of scientific

inquiry,” taking a position alongside theory and experiment as key components of

science. While the vital importance of computation in science cannot be denied, this

proposition was criticized as a claim taken too far. A strongly opposing statement

1



May 31, 2018 18:6 ws-rv961x669 Book Title porter page 2

2 D. Porter & M. Donahue

was the observation that “computation... does not yet deserve elevation to third-

branch status because current computational science practice doesn’t generate rou-

tinely verifiable knowledge.”2 The key criticism is that a large amount of published

knowledge in the peer-reviewed literature has not included sufficient information to

reproduce the computations that generated it. To be fair, the PITAC report itself

took note of these and other shortcomings and included recommendations aimed at

making improvements. While the deductive and empirical foundations of science

have well-established practices developed over long periods of time, the expectations

about the best ways to carry out and publish computational results are still taking

shape. We are still far from the day where every researcher is as well-versed in

verification of a computation as in calibration of an instrument, but as we continue

in a world where all science now includes some element of programming, that is the

goal we must pursue.

Ever since the significant growth in the reach and capacity of the Internet in the

1990s suggested feasible solutions to the problem of large-scale sharing of data and

programs, there have been parties making note of the shortcomings in the publica-

tion of computational results and calling for new habits and standards to address

them. A prominent example is the WaveLab collection of MATLAB routines3 im-

plementing wavelet analysis algorithms underlying contemporary research. While

these researchers have published their findings in wavelet analysis, they have also

written on the importance of the reproducibility of their work. In support of these

aims they have published the tools underlying their findings as well, including the

software and datasets. By the power of example, the advantages of tool re-use,

and the viral effect of collaborations, the WaveLab library has grown to a place of

prominence in its field of study.

Over the same period of time, the practices of software development itself have

developed in parallel so as to better support digital sharing and reproducibility.

We have reached the point where most people employed in the practice of software

development have a familiarity with toolsets explicitly designed to distribute de-

velopment efforts on a global scale with a high degree of openness and freedom to

extend and revise. The task still underway is the effort to bring the lessons and

tools of the software engineers into the hands of scientists in ways that can be used

effectively without undue burden. Efforts such as the Software Carpentry project4

play a key role in finding the path that delivers the greatest benefits available at a

burden researchers are willing to bear.

The same trends in increasing connectivity and computational power at rea-

sonable costs that drive the ability to compute and share results have also driven

increases in expectations. More and more publications and institutions are estab-

lishing policies meant to incent and even require the sort of sharing needed to

support reproducibility. Large scale projects like the Materials Genome Initiative

(MGI) seek to harness the increasing capabilities to achieve the bold goal of cut-

ting in half the time required to discover, develop and deploy new materials useful
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in commercial products. MGI’s Strategic Plan5 includes as one of four key chal-

lenges the aim of “making digital data accessible.” Achieving this aim will involve

establishing habits, practices and tools for effective distribution of the artifacts of

reproducible computation.

This chapter examines one way the field of micromagnetic modeling has ad-

dressed questions of confidence and reproducibilty by the definition of standard

problems, and the collection and distribution of contributed solutions to them.

Many problems of interest in micromagnetics demand computations on a large

scale, where custom and research-level algorithms and implementations are nec-

essary. The computational playing field is not fully settled and researchers benefit

from significant freedom in the choice of data structures, algorithms, hardware and

other details of implementation. Establishing the confidence and trust of repro-

ducible computation in such an unstructured environment requires methods that

accommodate that level of flexibility. The standard problem approach reviewed

here has been suitable in service of those ends.

2. Micromagnetics

Micromagnetics is the use of computation to determine the spatial distribution of

magnetization in magnetic materials as determined by the environment and the

nature of the materials.

2.1. Equations of Magnetodynamics

Magnetization is conceived as a vector field M, where the magnitude at each point

in space is fixed while the direction may vary. The starting point of micromagnetics

is the Landau-Lifshitz-Gilbert (LLG) equation6,7 that connects the changing mag-

netization direction at any point to a magnetic field H at that point and a set of

material parameters describing the material at that point,

dM

dt
= −|γ|M×H +

α

|M|

(
M× dM

dt

)
. (1)

When expressed in SI units, both the magnetization M and the magnetic field H are

quantities measured in amperes per meter (A/m). The first term on the right hand

side of the LLG equation describes the precession of M about H. The gyromagnetic

ratio γ is typically given the value

|γ| = 2.21× 105
m

A s
(2)

so that the frequency of precession agrees with the precession of a free electron spin

in the presence of the same magnetic field. There is some ambiguity in the published

literature concerning the sign of γ; we insert the absolute value into LLG to be clear.

The second LLG term is a phenomenological term introduced to account for energy

loss in the system. It describes a damping or friction operating against the rotation
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of the magnetization, characterized by the value of a dimensionless, positive value,

α.

The total energy of the system, W , measured in joules, is the integral over the

volume of interest of the pointwise energy density E (in J/m3)

W =

∫
V

E(r) d3r. (3)

The energy density E is a function of the magnetization M and the position r, and

the total energy W = W [M] is a functional of the magnetization M. We define the

effective magnetic field H as the variational (or functional) derivative of the total

energy,

H = − 1

µ0

δW

δM
(4)

where µ0 is the SI permeability of free space,

µ0 = 4π × 10−7
J

A2 m
. (5)

The variational derivative can be defined component-wise as

δW

δMi

∣∣∣∣
r0

= −µ0Hi(r0) = lim
u→0

W [M + uei]∫
V
|u(r)| d3r

(6)

where Mi denotes the i-th component of M, ei is the unit vector in the i-th co-

ordinate direction, and u = u(r) is a smooth function that is zero outside of a

neighborhood of r0. The limit is taken such that both max(|u|) and the support

of u (and hence
∫
|u|) go to zero.8 (The variational derivative may also be defined

somewhat more generally in terms of a weak limit.9) The units on u are A/m, so∫
|u| has units A m2, and therefore the units on H are (A2 m/J)(J/(A m2)), or A/m.

Historically, the first equation for magnetodynamics was introduced by Landau-

Lifshitz in 1935.6 Known as the Landau-Lifshitz (LL) equation, it expresses dM/dt

as the sum of two orthogonal terms:

dM

dt
= −γ̄M×H +

λ

|M|
M×H×M. (7)

The quantities M and H are the same as in the LLG equation. The coefficients γ̄

and λ both have units of meters per ampere-second (m/(A s)). The M×H×M term

is sometimes written as −M× (M×H). In this regard note that M× (H×M) =

−(H ×M) ×M = (M ×H) ×M, so parentheses are not needed when written as

in (7).

If γ̄ and λ are defined in terms of the LLG coefficients γ and α by

γ̄ =
|γ|

1 + α2
(8)

λ =
|γ|α

1 + α2
, (9)

then (1) and (7) are mathematically the same equation.10 Any trajectory of M

that solves one also solves the other. Nevertheless, each formulation has value for
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interpretation and understanding. The LLG form (1) is most commonly used to

invest the equation with physical meaning, while analysis of the LL form (7) can

often reveal useful information more easily. The LL form can also be easier to work

with numerically because it defines dM/dt explicitly in terms of M and H.

In the LLG formulation, we can imagine the degree of damping to increase with-

out limit, but it’s clear when we transform back to the LL form that an arbitrarily

large α simply leads to shrinking values for both γ̄ and λ. (The maximum value for

the ratio α/(1+α2) is 1/2, which occurs at α = 1.) That is, an increasingly viscous

system simply grinds to a standstill. Practical scenarios include only values of α

less than or equal to 1. Within those limits, the particular value of α appropriate

to a calculation is a property of the material under simulation.

In either LLG or LL form, it is clear that dM/dt is orthogonal to M. This

means that the pointwise magnitude of the magnetization does not vary over time,

|M(r, t)| = Ms(r) for all t. This is one of the fundamental constraints in canonical

micromagnetics.

For the purposes of analyzing the magnetization dynamics, the LL form is some-

what simpler than the LLG form because the two terms on the right hand side of

the LL equation are not only orthogonal to M but also orthogonal to each other.

The M × H term is orthogonal to H and therefore describes precession about

H. Moreover, if we view the energy W as a surface over the space of magnetiza-

tion configurations, then by (4) we see that H is aligned with the downhill (lower

energy) direction on that surface. Therefore, motion perpendicular to H is en-

ergy neutral. Conversely, it follows from the vector triple product identity that

M × H ×M/M2
s = H − (M · H)M/M2

s , which is the projection of H onto the

space orthogonal to M. In other words, the damping term in the LL equation is

in the direction of the component of H compatible with the magnetization norm

constraint, and so motion in this direction tends to align M with H and lowers the

energy.

It is clear from the LL form that stationary configurations, where dM(r)/dt = 0

for all r, occur exactly when M(r)×H(r) = 0 (or equivalently, M(r) is parallel to

H(r)) for all r. In this case both terms on the right hand side of (7) are individually

zero. It follows from (4) that stable stationary configurations correspond to local

energy minima. Therefore, we see that terminating configurations of LLG trajecto-

ries are local minima of the energy. For many purposes the complete dynamics of

the magnetization are not important, so long as these energy-minimizing magneti-

zation states can be determined. In such cases direct energy minimization, using

for example conjugate-gradient methods, can be many times faster than solving the

LLG equation.

Energy minimization is at the core of the technique known as quasi-static mi-

cromagnetics. A local energy minimum is computed at one applied field held static

over the minimization step. After the equilibrium configuration is found the applied

field is changed slightly (stepped) and then a new energy minimizing configuration
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is sought starting from the previous energy minimum. This process is repeated

across the full desired range of applied field. This method is at the heart of the first

two µMAG Standard Problems. The third µMAG Standard Problem also directly

addresses the task of energy computation.

Of course, there are many instances where the full magnetization dynamics are

important, in which case there is no alternative to solving the LLG equation for the

time varying magnetization. The fourth and fifth µMAG Standard Problems are of

this class.

The LLG equation is the most commonly encountered representation of mag-

netization dynamics for micromagnetics, and it is also the most basic. Various

extensions have been proposed which can more faithfully reproduce experimental

observations in some circumstances. For example, the damping factor α in the

LLG equation is a phenomenological term representing the simplest way to model

energy loss in a dynamic magnetic system. More complex, non-isotropic and non-

local models of damping are possible.11–13 More radically, the norm constraint

|M(r, t)| = Ms(r) for all t can be relaxed with the introduction of a restoring

force that instead causes |M(t)| to only tend toward Ms. This property under-

pins the Landau-Lifshitz-Bloch (LLB)14–17 and Landau-Lifshitz-Baryakhtar (LL-

Bar)18–20 equations. New physics, such as the spin-torque effect, can be introduced

with the addition of the Slonczewski spin-transfer torque term (LLGS),21–25 which

is the subject of the fifth µMAG Standard Problem.

Each of the µMAG Standard Problems is presented in detail in Sec. 4. To

prepare for that presentation we first examine the energy components that make

up a micromagnetic simulation.

2.2. Magnetic Energy Components

The LLG equation predicts the dynamics of magnetization as a function of the mag-

netization configuration and the total effective field H. At each point in space, H(r)

can be described as a sum of magnetic fields arising from different sources. The four

fundamental sources in micromagnetics are the anisotropy energy, the quantum-

mechanical exchange energy, the self-magnetostatic (dipole-dipole) energy, and the

Zeeman energy. Some of these components depend only on material properties and

the magnetization configuration M. For those terms H(r) may depend on M at only

the point r itself (e.g., anisotropy), on M in a small neighborhood of r (exchange),

or on M globally across the entire volume of the simulation (self-magnetostatic).

Other components of H may be independent of the magnetization configuration M.

These represent the influence of the environment outside of the material of interest,

and are represented as applied fields (Zeeman).
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2.2.1. Anisotropy Energy

One of the simpler energy source terms is the anisotropy energy. It is the tendency

of electron spins to interact with the atomic structure of the material in such a

way that magnetization in certain directions is favored over others. The anisotropy

energy is defined to prefer favored directions with an energy penalty for moving

away from the such directions. As an example, a material with a single favored

direction along an axis determined by unit vector u, may be represented by the

energy term

WK =

∫
V

−K
(

M

|M|
· u
)2

d3r. (10)

Such a material is said to have a uniaxial anisotropy. The anisotropy is characterized

by the value of anisotropy energy density K in units of joules per cubic meter

(J/m3). The values of K and u may vary spatially. If K > 0 then u is an easy

(energetically preferred) axis for the magnetization. If K < 0 then u is a hard

axis, that is, it is energetically favorable for the magnetization to lie in the plane

orthogonal to u (which is known as the easy plane for magnetization).

It follows from (4) that the anisotropy field corresponding to (10) is

HK =
2K

µ0|M|2
(M · u)u. (11)

Other anisotropies favoring multiple axes, or having higher-order dependencies,

may be specified by analogous energy terms.26–29 In many of these cases, the

crystalline structure of the material is reflected in the energy term, and it is then

known as the magneto-crystalline anisotropy. As an example, cubic anisotropy can

be represented by

WK,cubic =

∫
V

K

|M|4
(
M2

xM
2
y +M2

xM
2
z +M2

yM
2
z

)
d3r (12)

with associated field

HK,cubic = − 2K

µ0|M|4
[
Mx

(
M2

y +M2
z

)
ex +My

(
M2

x +M2
z

)
ey

+Mz

(
M2

x +M2
y

)
ez
]
.

(13)

2.2.2. Exchange Energy

Micromagnetics is conceived as a continuum theory. The vector fields are taken to be

continuous functions of continuous space. As a physical matter, magnetization arises

from the quantum mechanical exchange interaction. In ferromagnetic materials, the

effect of this quantum phenomenon is to align magnetic moments of electrons with

the magnetic moments of other nearby electrons. This leads to the formation of

magnetic domains within magnetic materials. In continuum micromagnetics, an

exchange energy term that penalizes large spatial rates of change in magnetization
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configurations achieves the same end. A conventional formulation for exchange

energy is

Wexch =

∫
V

A

|M|2
(
|∇Mx|2 + |∇My|2 + |∇Mz|2

)
d3r, (14)

where A is an exchange coefficient measured in joules per meter (J/m). This can

also be written as30

Wexch =

∫
V

− A

|M|2
M ·

(
∂2M

∂x2
+
∂2M

∂y2
+
∂2M

∂z2

)
d3r. (15)

The corresponding expression for the exchange field is

Hexch =
2A

µ0|M|2

(
∂2M

∂x2
+
∂2M

∂y2
+
∂2M

∂z2

)
(16)

Since these expressions are founded on spatial derivatives of the magnetization,

a set of suitable boundary conditions must be defined. When the boundary of our

volume of interest corresponds to the boundary separating a magnetic material from

space where magnetization is zero, the natural Neumann constraint

∂M

∂n
= 0 (17)

takes hold, while in other situations, other choices are possible.30

More complex forms for the exchange interaction are sometimes used, including

anisotropic variants.31

2.2.3. Self-Magnetostatic Energy

Any spatial pattern of magnetization gives rise to a magnetic field Hdemag as de-

termined by the simultaneous solution of the relevant Maxwell equations,

∇ ·Hdemag = −∇ ·M, (18)

∇×Hdemag = 0. (19)

The quantity Hdemag is known by many names, including “self-magnetostatic field,”

“dipole-dipole field,” and “demagnetizing field.” The effects of this field are at

work when matters of shape anisotropy are considered. If we imagine our contin-

uum representation of magnetization as an approximation to a collection of discrete

elementary magnets, the magnetostatic field is the field required to represent the

sum of the dipole-dipole interactions of the collection of magnets. For a volume of

interest V bound by a closed surface S with normal vector n, the magnetostatic

field is computed as

Hdemag(r) =
1

4π

∫
V

−∇′ ·M(r′)
r− r′

|r− r′|3
d3r′ +

1

4π

∫
S

n ·M(r′)
r− r′

|r− r′|3
d2r′ (20)

The demagnetizing field at each point is seen to be a function of M throughout

the volume of interest. This is a field describing long-range interactions, unlike

the other energies that describe interactions in a local volume. The consequence is
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that the largest part of the computational burden in a micromagnetic model is the

calculation of the self-magnetostatic fields and energies.

While the exchange energy favors the formation of magnetic domains (i.e., re-

gions of generally uniform magnetization), the magnetostatic energy tends to favor

anti-parallel alignments that break up domains. The task of micromagnetics is of-

ten the computation of what equilibrium arises from these competing tendencies.

Given the quantity A in J/m which characterizes the exchange energy, and the sat-

uration magnetization Ms = |M| in A/m characterizing the magnetostatic energy,

the expression

lex =

√
2A

µ0M2
s

(21)

is a length in meters. This quantity is known as the (magnetostatic) exchange length

of the material; it is typically around 5 nm for the more common magnetic materi-

als. For magnetically soft materials (i.e., ones with small anisotropy constant K),

this is the scale of spatial features found in energy minimizing magnetization config-

urations, and so provides a guide to the required spatial resolution of discretizations

for micromagnetic simulations. For magnetically hard materials (those with large

|K|), another distance of interest is the magnetocrystalline-exchange length, given

by

lex,K =

√
A

K
. (22)

Here K is in J/m3, so again this is a length in meters. Typically the simulation

discretization should be chosen smaller than either exchange length; in other words,

the smaller exchange length is the controlling length scale.

2.2.4. Zeeman Energy

The effect of magnetic fields arising from outside the materials in the volume of

interest is represented in a term known as the Zeeman energy. Since their origin is

from outside the system, they enter the computation as inputs, typically as an ap-

plied field Happ specified by magnitude and direction within the volume of interest.

The relation between the energy and field is simply

Wapp = −µ0

∫
V

Happ ·M d3r. (23)

These four energies, anisotropy, exchange, self-magnetostatic, and Zeeman, are

the most commonly encountered energy sources in micromagnetic simulations. How-

ever, it is straightforward to include additional energy/field terms to represent

other effects, such as thermal agitation,32–36 magnetoelastic behavior,37–39 or the

Dzyaloshinskii-Moriya interaction (DMI).40–43
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2.3. States, Energies and Solver Requirements

The sum of the four magnetic energy terms, anisotropy, exchange, magnetostatic,

and Zeeman, form the foundation of micromagnetic simulations. For many values of

the parameters identifying the environmental state, and the relevant properties of

the simulated materials, multiple local minima of the magnetic energy are possible.

Which minimum is to be chosen is controlled by the trajectory by which it is reached,

which in turn reflects the history of environmental states. This feature of the

micromagnetic model provides for a representation of hysteresis in the calculation

matching the hysteresis of magnetization observed in physical magnetic materials.

The ability to store in the magnetic state of a material a record of the history of its

environment is precisely what makes magnetic materials interesting as a building

block for information storage technologies.

Magnetic materials are often characterized by their bulk properties. Given any

set of parameter values characterizing material properties that govern the internal

magnetic energy terms, we can find an applied field of sufficient magnitude so that

the Zeeman energy term overwhelms all the others. In that extreme, in principle,

only a single local minimum of magnetic energy remains, the state in which mag-

netization is nearly uniformly aligned with the applied field. In physical terms,

we can say that we have placed the material in a state of saturation. From the

saturation state, the magnitude of applied field may be reduced to zero, and then

raised to a saturation value in the opposite direction and back again. In response,

the bulk magnetization of the material will pass from a positive value of saturation

to a negative value of saturation and back again, in a sequence of states known

as the major hysteresis loop of the material. The micromagnetic model is capable

of representing and computing this behavior. Key points of the major hysteresis

loops are of interest in characterizing materials. The value of bulk magnetization

remaining when the applied field has been reduced to zero is known as the rema-

nent magnetization. The magnitude of reversing applied field necessary to reduce

the bulk magnetization to zero is known as the coercive field, or coercivity. A va-

lidity check that a micromagnetic model properly represents a physical material is

to see whether computed values of remanence and coercivity match with physical

measurements.

Any software claiming to be a micromagnetic solver will have the ability to com-

pute the energies and fields so far described, represent magnetization states, accept

as inputs the material properties and initial and boundary conditions needed to

describe the simulation, and output some suitable representation of the magneti-

zation states computed as equilibrium states. The set of computations might be a

numerical solution to LLG, or might be an energy-minimization approach to finding

the same set of energy minima states, as appropriate to the needs of the user.
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3. Obstacles to Clear Communication and Accurate Results

While there is broad common understanding in the foundations of micromagnetic

modeling just described, there are also many points where variations of understand-

ing or approach may lead to miscommunication.

The study of magnetism has a long history that has been characterized by the

use of multiple systems of units. Although the SI system is becoming predominant,

other systems, notably the Gaussian system, are still in use and are prevalent in

historical works. This is a particular challenge because the different unit systems

are not mere rescalings of one another, but the fundamental relations differ. For

example, in SI we have B = µ0(M+H), with B in T and M and H in A/m. In the

Gaussian system this renders as B = H + 4πM with H in Oe and B and 4πM in

G. The implication is that we not only have to contend with different sets of units,

but with different equations representing the same physical phenomena. Without

care, it is a common error to interact with software built on one understanding, yet

select input values for it founded on a different incompatible understanding.

Another source of potential disagreement among the solutions of different micro-

magnetic solvers arises when the equations to be solved are mapped into representa-

tions on which to perform computations. The elements of the model equations are

continuous vector and scalar fields, conceived at arbitrary precision and resolution.

When we enlist computation to solve our equations, those idealized components

must be reduced to one or another representation as collections of limited precision

floating-point numbers held in limited stores of memory. While there are many

sensible ways to do this, each brings with it limitations on the boundaries of ap-

plication. The question must always be asked whether any representation, or any

algorithm carried out on that representation, continues to make sense when applied

to any particular problem as posed. Because different choices of representations and

algorithms carry with them different limitations, it is not desirable to dictate one

or another choice. It is better to let different research teams explore the differing

capabilities of different choices. At the same time they must be assigned the burden

of reporting the computed results in a common language that can be shared beyond

the bounds of their particular assumptions.

There are sometimes also subtle issues surrounding implicit assumptions. For

example, consider how one might specify the initial state of a simulation. When

we speak of a part being magnetically saturated, we envision the magnetization

as being uniformly oriented in the direction of an applied field. But unless the

part is ellipsoidal, exactly uniform alignment is not an equilibrium state. Rather,

the self-magnetostatic field will cause some canting of the magnetization near part

edges and corners, as illustrated in Fig. 1. The canting will diminish as the applied

field is strengthened, even to the point where it is visually difficult to distinguish

between the various states, but nonetheless the differences will reemerge when the

field is reduced and can influence subsequent magnetization activity. This means

that specifying that a simulation begin in a saturated state is not sufficient to pin
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Splayed “S” “C”

H

Fig. 1. Three nominally saturated magnetization states.

down subsequent behavior. Even identifying all the available equilibrium states is

a non-trivial problem, a point demonstrated in Standard Problem 3.

We should point out too the difficulties posed by symmetric states, such as the

“splayed” state in Fig. 1. These frequently are or devolve into saddle points on the

energy surface. There are multiple, equally-valid paths forward from such states.

For example, numerical round-off or other imprecisions can push the splayed state

into either of the other states in Fig. 1, or their mirror images. More generally,

this problem is called symmetry breaking, and must be taken into account when a

simulation is being designed or described.

Identifying saddle points, which are non-stable equilibrium states, is challenging

because discretization generally introduces artificial “divots” into the energy sur-

face. That is, the discretization process can transform saddle points into shallow

false minima. The size of the divots decreases as the discretization is refined, but

nonetheless it is difficult to distinguish between a true shallow minimum and a false

discretization-induced one.

Finally, whenever we deal with a computation performed by the execution of a

computer program, we must contend with the possibility of programming error or

numerical instabilities. Even with the clearest understanding of how our represen-

tations correspond to the equations we seek to solve and the physical phenomena

we seek to better understand, an error in the coding of the algorithms can destroy

all the value in the effort.

An ideal standard problem will take into account all of these issues. Implicit

assumptions must be made explicit, so that all reported results are to the same

problem. Differences in interpretations should be laid bare, so we can examine the

implications of each. And for maximum impact result comparisons should help
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uncover various types of programming errors.

4. A Tour of the µMAG Standard Problems

All of these concerns about reproducible results and clear communication led to the

formation of µMAG, the Micromagnetic Modeling Activity Group in 1995. This is

a loose collection of researchers, engineers, and others interested in improving the

general state of micromagnetic simulation. One µMAG activity has been the defi-

nition, publication, and sharing of solutions to a set of standard problems, intended

to demonstrate proper functioning of the large collection of micromagnetic software

suites. Here we examine the features and history of each standard problem.

4.1. Standard Problem 1: Hysteresis

The aim of micromagnetic modeling is to make predictions about the behavior of

physical magnetic materials. It is important to establish that computed quantities

have a correspondence to physical measurements. One common measurement taken

on magnetic materials is the major hysteresis loop and the quantities that describe

its key points. When quantities of remanence, coercivity, saturation magnetization,

and various susceptibilities computed by simulation match the values measured

from a physical material, we gain confidence the computed results are physically

meaningful.

The first standard problem was defined to explore the reliability of micromag-

netic programs carrying out this common practice. The task was to model a thin

film of material measuring 2000 nm by 1000 nm by 20 nm (Fig. 2). The material

was defined to have a single easy axis of anisotropy along the long dimension. The

magnetic energy terms were to be computed using the prescribed values:

Ms = 8.0× 105 A/m

A = 1.3× 10−11 J/m

K = 500 J/m3

Contributors of submitted soutions were asked to compute and report major

hysteresis loops in the plane of the modeled thin film, nominally along the long

axis and the short axis. Vector field data characterizing the remanent state of

their simulations was also requested, as well as descriptions of key features of the

modeling and representation choices embedded in the solvers.

The specification of the first µMAG standard problem requested anonymous

submission of all contributed solutions. The aim was to encourage the submission

of disappointing results as well as encouraging results, so that a complete “warts

and all” picture of the state of software being used to produce published results

could be sampled. Another aim was to avoid any dynamic of “proof by reputation”

to take hold when it came to making judgments about which results should be

trusted over others.
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Compute hysteresis loops with field
along (a) x-axis, and (b) y-axis

Ms = 8.0×105 A/m
 A = 1.3×10-11 J/m

K = 5.0×102 J/m3, uniaxial,
easy axis along x-axis

2 μm

1 μm

20 nmx

y
z

Fig. 2. Specifications for Standard Problem 1. This quasi-static problem involves anisotropy,

exchange, self-magnetostatic, and Zeeman energies.
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Fig. 3. Results for the eight submitted solutions to Standard Problem 1. The graph on the left

shows hysteresis loops of normalized, spatially averaged Mx for field applied along the long x-axis
of the sample; the right shows averaged My for field applied along the shorter y-axis.

Eight solutions were submitted, and the results were widely divergent. (Fig. 3).

Coercivity values differed by over an order of magnitude. Some vector field sub-

missions clearly presented non-physical results, indicating model failure, but even

among the submissions with plausible appearance, the variability of key computed

results was wide. The clear lesson was that published computations from micromag-

netic modeling needed additional evidence of correctness to be fully trustworthy.

Examination of the submitted solutions reached the conclusion that many suf-

fered from failures of representation (Table 1). From the specified material pa-

rameters, the exchange length is lex = 5.7 nm. This suggests a resolution into

computational cells with dimension of about 5 nm, or 320 000 cells for a proper

representation. Not one submission had so many cells. The largest number of cells

in a contributed solution was 28 026, while the smallest attempted to represent the

material with a mere 800 cells.

This first standard problem was based on discussions between Tom Koehler

(IBM Almaden) and Bob McMichael (NIST), following the first µMAG workshop

in 1995 in San Antonio, Texas. The intent was to design a problem relevant to
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Table 1. Standard Problem 1 submission details

Submission Grid Cell Count/ µ0Hc (mT)

Code Type Dimensions (nm) x-axis y-axis

du96a 2D hex 814 2.4 0.1

2D spins 62 × 54 × 20

fr96a 2D square 800 7.8 1.5
2D spins 50 × 50 × 20

lu96a 2D square 1800 32.9 9.8
3D spins 33 × 33 × 20

mo96a 2D square 5000 4.9 2.5
3D spins 20 × 20 × 20

ts96a Irreg tetra 3353 13.0 9.3

3D spins 103 × 103 × 8

ts96b Irreg tetra 2878 5.3 7.5

3D spins 66 × 67 × 20

pb97a 2D square 5000 4.9 3.4

2D spins 20 × 20 × 20

zn97a Irreg tetra 28026 13.8 6.6

3D spins 30 × 31 × 6

the then-current efforts at modeling the behavior of read sensors in contemporary

computer hard drives. It was not appreciated at the time, however, that the mag-

netization reversal inherent in Standard Problem 1 made for a significantly more

challenging problem than the small-signal behavior being studied at that time. It

should also be noted that the meager cell counts of the submitted solutions reflect

the computational limitations of that era; twenty years later it is now commonplace

to run fully 3D simulations comprising many millions of cells.

The computational limitations of that time prompted a number of simplifying

assumptions. For example, models of thin films typically supposed that there was

no need to represent magnetization variation through the thickness, so a single two-

dimensional layer of cells was sufficient. This assumption was often made even when

the material thickness measured multiple exchange lengths. Another common thin

film approximation was to presume that the large shape anisotropy of the film would

force all magnetization vectors into the plane of the film. This would be coded as

a hard assumption that the out-of-plane component of magnetization was always

zero. The language of the day spoke of “2D grids” for the former and “2D spins”

for the latter. The appeal of these assumptions is clear. They greatly reduce the

dimension of the problem, which in turn greatly reduces that volume of data that

must be stored and processed. Software always compromises to the capabilities of

hardware available at the time, but one must take care to not simplify away the

physics fundamental to the problem.

Several lessons can be drawn from the experience of µMAG Standard Problem 1.

For consumers of micromagnetic simulation results, the lesson is that skepticism is
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justified, and they should expect publishers of such calculations to include evidence

as to why their results can be trusted. For the developers of micromagnetic solver

software, the importance of representation limits was highlighted. The utility of

examining the difference of magnetizations in neighboring cells was confirmed as a

figure of merit. For those who aim to define standard problems, the key lesson was

the importance of choosing problems at the proper scale for the broad capabilities

among the submitters.

Some social lessons were learned as well. The amount of effort to contribute

a solution to a standard problem must be scaled appropriately. This is especially

so when an anonymous contribution is requested, as a researcher cannot expend a

large fraction of resources on a task for which they can not claim credit. Subsequent

standard problems have not had anonymous contributions. Instead, we expect

standard problem solutions to appear as a small part of a larger article published in

the regular literature. For example, oftentimes a standard problem result is included

in an article as evidence of the soundness of the calculations. These considerations

imply a suitable scale for being able to report results, and a suitable scale of resource

expenditure. These are constraints that must be taken into account during standard

problem design.

Some further design issues that were not fully appreciated until after the Stan-

dard Problem 1 results were digested were alluded to in Sec. 3. The initial state

was not specified, and symmetry breaking was not explicitly called out, including in

particular symmetry normal to the plane of the film. But an additional observation

is that it can be difficult to determine what has gone wrong when solutions diverge.

So it is a good idea when designing standard problems to try to build in support

for diagnosing such circumstances.

For additional details on any of the standard problems, visit the µMAG web-

site.44

4.2. Standard Problem 2: Scaling

In 1998 Tom Koehler, then retired, along with H. Neal Bertram, Alfred Liu, and

Chris Seberino from the Center for Magnetic Recording Research, University of

California at San Diego, proposed a new standard problem. The results of µMAG

Standard Problem 1 had exposed the importance of scaling a problem to be solved

with the capabilities of the solvers making the calculation, and this new problem,

µMAG Standard Problem 2, was devised to address this issue in a systematic way.

Rather than define a single simulation to perform, a parameterized family of sim-

ulations was defined and submitters were invited to contribute solutions over the

parameter range suitable for the capabilities of their software. The overlapping

parameter range of all contributed solutions could then be used as an arena of com-

parison. Also, if there was a parameter range where solutions agree, then the details

of how the solutions diverged at the boundaries of the agreement range would help

in understanding the causes of the divergence.
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Apply field H along (1,1,1) direction.
Compute remanence and coercivity
as a function of d.

K = 0 J/m3

lex = (2A/μ0Ms)
½2

x

y
z

t =
 d/10

d

L = 5d

Fig. 4. Specifications for Standard Problem 2. This quasi-static problem studies the effect of
part scaling on the interactions between exchange, self-magnetostatic, and Zeeman energies.

Anisotropy energy is omitted in µMAG Standard Problem 2. In other words,

K = 0 J/m3. (24)

The values of M and A are left unspecified. Values best suited to the functioning

of any contributing solver could be selected. Once values were selected, though, the

corresponding exchange length, lex, defines the scale of the sample.

The simulation sample was to be a rectangular prism of magnetic material. The

prism was to be 5d units long, d units wide, and d/10 units thick (see Fig. 4). The

parameter d, measured in units of lex, controls the scale of the particular simulation.

To illustrate, when d = 1, the prism is one exchange length wide, five exchange

lengths long, and one tenth an exchange length thick. The large ratio of width to

thickness was intended to increase the range for which solvers built on inherently

2D grids could be expected to have their constraints met.

Each contributor was free to choose key features of how magnetization patterns

of the prism were to be represented. The number and type of computation cells

were unspecified. However, each contributer was expected to have assured them-

selves that the solutions they contributed would not significantly differ with finer

resolution of representation. As larger and larger values of d were considered, the

expected resource consumption of a suitable computation would increase, and the

contributor would choose the limit they could reach.

Having defined the geometry and material parameters, the simulated measure-

ment to perform was once again a major hysteresis loop as in the first standard

problem. This time the axis of the applied field was specified as the [1, 1, 1] axis

so as to avoid any difficulties that arise near axes of symmetry. Contributed solu-

tions would identify the values of (d/lex) and the corresponding values of remanence

and coercivity. The stated assumption in the problem definition was that for small

values like (d/lex) = 0.1, the exchange energy would dominate, forcing uniform

magnetization. This scenario could be well-represented with a single-spin model,

relieving any burden of representation. Solution of a single-spin energy minimiza-

tion problem could in principle produce the correct result, so we assumed that all
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Fig. 5. Reported coercivity values for Standard Problem 2. The location marked “Theory” is the
theoretical value for an infinitely small part.

minimally competent micromagnetic solvers would agree on the result at the small

end of the parameter range. The expectation was that as (d/lex) grew larger the

solutions would diverge, and examining the differences would help us learn how

different modeling and programming choices affected simulation results.

Three solutions were published and contributed (the old OOMMF, Diaz, and

Streibl curves in Fig. 5).45–48 The results were much more tightly clustered together

than those of the first Standard Problem, and none of them included results that

were clearly nonphysical. The differences in the contributed coercivity values, for

example, were within a range of about 5%. Two of the solutions were in very tight

agreement (old OOMMF and Diaz), while the third (Streibl) reported coercivity

values about 5% smaller. All three solutions used a single layer of computational

cells to represent the magnetization, and all used representations at resolutions

believed suitable for the features expected in the magnetization patterns.

Most remarkable was the failure to have the expected agreement for small values

of (d/lex). One contributed solution did not even compute solutions for (d/lex) < 3.

The other two both reported computational difficulties arising with such simula-

tions. As the exchange energy grew to dominate the calculations, the micromagnetic

solvers encountered stiffness in the calculations. Progress toward convergence be-

came slow, and convergence with increasing spatial resolution could not be demon-

strated. The simple case that all solvers were expected to agree upon was in fact

not so simple.

In order to examine more carefully the particular causes of the failure of the

solutions to agree, a simplified form of the problem was examined in detail.49 When
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the exchange energy dominates to the extent that a uniform magnetization is the

only possible state, a single spin model can be analyzed.50 An energy minimization

analysis of a single spin can produce the remanence and coercivity values expected

in the limit as (d/lex) → 0. In Fig. 5, the coercivity value determined by analysis

of the single spin model is marked with the label “Theory”. This value agreed best

with the results of the lone solution (Streibl) among the three contributed solutions.

Even more important than determining which solution was more nearly correct, the

analytical results provided a target with which to examine where the other solutions

had gone wrong.

The analytical computation of coercivity is achieved via a balancing of Zeeman

energy and magnetostatic energy. (Exchange energy does not contribute to the

solution of a single spin simulation.) Attention is focused on how micromagnetic

solvers compute these quantities to determine why their results differ. In the single-

spin scenario, both applied field and magnetization are uniform. The Zeeman energy

calculation is clear, simple and correct. Only the magnetostatic energy is complex

enough to get something wrong. The total self-magnetostatic energy is defined as

Wdemag = −µ0

2

∫
V

Hdemag ·M d3r, (25)

where Hdemag is computed using (20). For a discretized representation of the mag-

netization as a collection of uniformly magnetized cells, the approximation used for

the calculation is

Wdemag ≈ −
µ0

2

∑
k

Hdemag,k ·Mk Vk, (26)

where Hdemag,k and Mk are the values of Hdemag and M at the centroid of cell

k, and Vk is the cell volume of cell k. This is a common discretized approach to

computing an integral, and it works well when the cell resolution is fine enough

to represent the integrand. This was the method employed by the old OOMMF

and the Diaz submissions; the Streibl code used an entirely different approach to

compute Hdemag. Examination reveals, though, that while Standard Problem 2 has

been scaled to represent the magnetization M well, the spatial features of Hdemag

are not captured well enough to avoid error. A finer resolution of computation could

improve this, but only if the discretization extends through the sample thickness,

i.e., a 3D discretization.

However, the computational cost of a 3D discretization is not needed in this case,

because instead one can revise the calculation used to approximate the integral.

Because we assume magnetization is uniform within each cell, we can compute a

correct per-cell energy by replacing a sample of the magnetostatic field with the

average value of the magnetostatic field over the volume of the cell.

Wdemag = −µ0

2

∑
k

<Hdemag>k ·Mk Vk. (27)

A revised simulation based on this change does indeed agree with the analytical

solution (“new OOMMF” in Fig. 5). This change also removed the stiffness and
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Fig. 6. Specifications for Standard Problem 3. This wholly static, direct energy minimization

problem studies the balance between anisotropy, exchange, and self-magnetostatic energies.

convergence issues observed previously. This is a powerful example of a standard

problem success. Although contributors worked with solvers founded on different

models and techniques, their solutions could be meaningfully compared. Working

through the details of disagreement on a standard problem result led to an improved

code and the correction of significant error that would have been difficult to detect

otherwise.

4.3. Standard Problem 3: Three Dimensional Energy Minimization

For the third standard problem, an expanded capability was demanded from solvers.

The problem is defined to consider the magnetization state of a material with three

significant dimensions. Any solver built on the inherent constraints and approxi-

mations of a 2D grid could not attempt this problem. This problem was proposed

by Alex Hubert of the University of Erlangen-Nüremberg in 1998.

Like the second standard problem, a scaling parameter was employed. The

values of Ms and A were left unspecified, but instead the corresponding exchange

length, lex, was used to define the scale. A cube of edge length L, measured relative

to lex, was to be simulated. A small anisotropy energy was also included to provide

a definite direction to the expected solution states. The easy axis of anisotropy

was aligned with the z-coordinate axis of the cube (Fig. 6). The magnitude of the
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Table 2. Standard Problem 3 solution component energies

Single Domain Vortex

Submitter L/lex etotal edemag eexch eanis edemag eexch eanis

Rave 8.47 .3027 .2794 .0177 .0056 .0783 .1723 .0521
Martins 8.4687 .3026 .2792 .0177 .0056 .0780 .1724 .0521

Hertel 8.57 .3032 .2332 .0466 .0233 .0821 .1689 .0521

anisotropy energy is defined relative to the saturation magnetization,

K = 0.05µ0M
2
s . (28)

The computed energy densities, e∗, were to be reported using the quantity

Km = 0.5µ0M
2
s (29)

as the scale of measure. On this scale, for example, the anisotropy energy eanis
could range from 0 to 0.1.

When (L/lex) is small enough, an energy minimizing configuration could only

be a (nearly) uniform magnetization, due to domination of the exchange energy. As

(L/lex) grows larger there remains only one energy minimizing configuration, though

the rising influence of the magnetostatic energy pulls it away from uniformity, with

a symmetric splay near the head and tail surfaces of the cube. This appearance

of opening up like a flower inspires the label of a “flower” state, still essentially

a single domain configuration. In this configuration there is rotational symmetry

about the easy axis through the center of the cube. As (L/lex) grows larger still,

it was expected that at some point the magnetostatic energy advantage of the

magnetization configuration closing upon itself in a vortex formation would become

important enough to break apart the single domain pattern. In this state the central

core region orients along the x-axis direction, while the magnetization outside the

core circulates around the core in the yz-plane. (There are also exactly equivalent

symmetric solutions with the vortex core pointing in the −x or ±y-axis directions.)

The challenge of the problem was to find the size (L/lex) for which the total energy

density of the flower state was the same as the total energy density of the vortex

state.

Three solutions were contributed (Table 2). The first two were in tight agree-

ment that a value of (L/lex) = 8.47 produced equal energies for the flower and

vortex states.51 The third contribution reported that flower and vortex states had

equal energies when (L/lex) = 8.52. However, the third contribution also reported

the discovery of a third stable configuration.52 The unexpected configuration was

similar to the flower state but with a helical twist along the z-axis. The contributors

named this the “twisted flower” state. At simulated sizes near the solution point,

the energy of the twisted flower state was less that that of the ordinary flower state.

The consequence is that the size at which the energy of the vortex state matches

the energy of any single-domain state is larger at (L/lex) = 8.57. The existence and
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properties of the “twisted flower” state have been subsequently verified by other

researchers. This is an example of the difficulties surrounding symmetry breaking

discussed in Sec. 3.

4.4. Standard Problem 4: Dynamics

The fourth µMAG Standard Problem was brainstormed by Bob McMichael (NIST),

Roger Koch (IBM), and Thomas Schrefl (TU Wien), and developed by Jason Eicke

(George Washington University) and Bob McMichael in 2000. This problem ex-

panded the demands on contributed solutions in a different way. The prior standard

problems centered around the computation of stable magnetization states. These

computations could be completed entirely from a perspective of energy minimiza-

tion, without an explicit need to compute full trajectories of the LLG equation.

The fourth µMAG Standard Problem explicitly calls for the reporting of those tra-

jectories. It is the first standard problem to probe the accurate solving of the LLG

equation itself. The problem dimensions are that of a thin film, however, so solution

can be attempted using a 2D grid.

The material properties are an adaptation of those from the first µMAG Stan-

dard Problem, but with anisotropy energy explicitly set to zero, and with explicit

values for the dynamic parameters γ and α,

A = 1.3× 10−11 J/m (30)

M = 8.0× 105 A/m (31)

K = 0 J/m3 (32)

γ = 2.211× 105 m/(A s) (33)

α = 0.02 . (34)

The sample to be simulated measured 500×125×3 nm in the x, y, and z directions

respectively (Fig. 7). To produce the initial state of the simulation, a saturating

field in the [1, 1, 1] direction was to be applied, and “slowly” reduced until a rema-

nent state was reached. The precise sequence of applied fields to reach this initial

state was not specified, but the initial state was prescribed to be an “S-state”,

where the bulk of the sample is magnetized in a single domain along the long axis,

while two end domains both have magnetization turned in the positive y direction

(Fig. 8(a)). This description leaves some room for differences in the initial state of

different simulations so that each simulation can begin in a state it considers to be

an energy minimum within the constraints of its selection of representations and

approximations.

From the initial state, two calculations of LLG trajectories are to be completed

in response to two described applied fields. The first simulation calls for the instan-

taneous application of a uniform applied field with magnitude

µ0|Happ| = 25 mT (35)
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From an equilibrium S-state, apply     (a) µ0H = (-24.6 mT, 4.3 mT, 0 mT)     (b) µ0H = (-35.5 mT,-6.3 mT, 0 mT)  and solve the LLG equation    dM/dt = -|𝛾0|(M×H)+𝛼(M×dM/dt)/Ms 

 

S-state

Fig. 7. Specifications for Standard Problem 4. This dynamic problem studies interactions be-

tween exchange, self-magnetostatic, and applied fields during magnetization reversal.

directed in the second quadrant of the xy-plane at an angle of 170◦ from the positive

x axis. The magnitude is chosen to be comfortably large enough to cause a magne-

tization reversal, and the direction is chosen so that the reversal occurs primarily by

in-plane counterclockwise rotation across the sample. The dynamics of the reversal

are illustrated by the snapshots in Fig. 8. We refer to this as the “easy” reversal.

While long term behavior is determined ultimately by energy minization consid-

erations and hence the damping term in the LL equation (λM×H×M), for most

materials the damping parameter λ = |γ|α/(1 + α2) is relatively small, and so over

short time scales the precession term −|γ|M ×H tends to dominate. That is the

case here; when Happ is first applied the magnetization precesses about the applied

field and into the −z direction. The darker background in Fig. 8(b) indicates this

behavior. The out-of-plane movement is strongest at the ends (in the center the

magnetization is nearly anti-parallel to the applied field and so the M×H torque

is weak), but the perturbation is towards −z throughout the sample. This displace-

ment invokes a strong self-magnetostatic field in the opposite, +z direction. The

magnetization then precesses about the reaction field, as seen by the counterclock-

wise rotation evident in Fig. 8(b) and (c). The strength of the reaction field varies

spatially, so the rotation is not uniform. The non-uniformity causes domain walls

to form. The domain walls then collapse inward until the magnetization reversal

is complete (Fig. 8(b) through (d)). After this the magnetization continues to ring

down for several nanoseconds as the excess energy is damped away.

The second simulation calls for the instantaneous application of a uniform ap-

plied field with magnitude

µ0|Happ| = 36 mT (36)
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(a) t = 0 ps

(b) t = 125 ps

(c) t = 150 ps

(d) t = 200 ps

Fig. 8. Magnetization reversal Standard Problem 4 with field applied in the xy-plane at 170◦

from the +x-axis (“easy” reversal). Dark/light background indicates magnetization is pointing
into/out of the plane. Arrow color marks the in-plane angle.

directed in the xy-plane at an angle of 190◦ from the positive x axis (third quad-

rant). The mechanics of the reversal are similar to the previous one, and indeed

the magnetization at the ends of the part rotate as before. But in the central part

of the sample the different applied field direction causes the magnetization there

to rotate upward, into the +z direction. This rotation is seen in Fig. 9(a), where

the light background indicates magnetization pointing upward out of the plane of
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(a) t = 100 ps

(b) t = 200 ps

(c) t = 450 ps

Fig. 9. Magnetization reversal Standard Problem 4 with field applied in the xy-plane at 190◦

from the +x-axis (“complicated” reversal). The initial (t = 0 ps) state, shading, and color is the

same as in Fig. 8. (Simulation here and in Fig. 8 performed with the OOMMF48 package.)

the film. The component Mz produces a counter self-magnetostatic field in the −z
direction, and precession about this reaction field rotates the magnetization in the

clockwise direction. With the magnetization at the ends rotating counterclockwise

and the center rotating clockwise, by t = 200 ps two 360◦ domain walls have formed

(Fig. 9(b)). As the magnetization continues to rotate these domain walls are forced

outward (Fig. 9(c)) until eventually they are pushed off the ends of the part and

the magnetization settles down into a new equilibrium.

The dynamics in this reversal are considerably more complex than in the preced-

ing case. Angles between spins in adjacent computation cells are expected to grow

large, challenging the approximations of representation. This “more complicated”

reversal is anticipated to have greater chance of exhibiting differences among the

contributed solutions.

For each simulation, contributors were asked to submit time series of the compo-
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nents of spatially averaged magnetization as a characterization of the LLG trajecto-

ries. Contributions were also to include an image of the magnetization at the time

when the x-component of the spatially averaged magnetization first crosses zero.

The image would allow for a visual confirmation of whether different solutions had

trajectories passing through visibly different intermediate states.

Nine solutions were contributed, though only a few solutions were published in

conference proceedings.53,54 The trajectories of the “easy reversal” did indeed show

close agreement among all contributions (Fig. 10 (a)). This is an important baseline

result, demonstrating that when the problem is defined to avoid difficulties, many

diverse solvers achieve results in agreement. It is remarkable that this is so, even

though the programs in question employ a large variety of representations, models,

and algorithms. The agreement among contributed solutions was less good for the

“more complicated” reversal as expected (Fig. 10 (b)). Still the differences were not

great, with only one significant outlier and a small amount of trajectory variation

otherwise. This standard problem has become a useful tool for new micromagnetic

modeling algorithms and programs to demonstrate their baseline functioning.55,56

4.5. Standard Problem 5: Spin Momentum Transfer

The fifth µMAG Standard Problem originated as a proposal in a published article.57

For the first time a standard problem called for solutions of a problem requiring an

extended model beyond just the LLG equation. The problem calls for an examina-

tion of the phenomenon of spin momentum transfer when an electric current flows

through a magnetic material. The key observation is that electrons carry spin as

well as charge. At the same time their motion creates current, that same motion

moves spins through space, and those spins interact with the magnetic features of

the material. The manipulation of electron spins and the interaction of those spins

with patterns of magnetization form the basis of spintronics, where devices are de-

signed to derive their functioning from these phenomena. The large and growing

interest in spintronics calls for computer programs known to correctly simulate these

phenomena.

The LLG equation does not contain electric currents. It must be extended to

simulate spin momentum transfer. The article proposing the standard problem cites

one such extension,22 expressed as the equation,

dM

dt
= −γM×H +

α

|M|

(
M× dM

dt

)
− b

|M|2
(M× [M× (J · ∇)M])− ξ b

|M|
(M× (J · ∇)M) . (37)

Here J is the current density in amperes per square meter. The dimensionless

quantity ξ represents the degree of non-adiabaticity. These two values together

specify the equation to be solved. The quantity b pulls together a number of material
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Fig. 10. Submitted results for Standard Problem 4. Part (a) shows the averaged normalized My

value vs. simulation time for a 25 mT field applied at 170◦ from +x-axis at time t = 0. Part (b)

is for a 36 mT field applied at 190◦ from +x-axis.

parameters into a value with units of cubic meters per ampere per second (m3/(A s)),

b =
PµB

e|M|(1 + ξ2)
, (38)

but it does not represent an additional independent parameter. As derived, the

value b is limited to a maximum computed from the other material parameters,

reaching that limit in proportion to the polarization rate of the current, P , which

can be treated as a third input parameter, though one which can also be fully joined

into the value of J. The quantity µB is the Bohr magneton in joules per tesla, and

the quantity e is the charge of an electron in coulombs,

µB = 9.274× 10−24 J/T, (39)

e = 1.6022× 10−19 C. (40)
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The proposed standard problem re-uses several parameter values from earlier

problems,

A = 1.3× 10−11 J/m (41)

M = 8.0× 105 A/m (42)

K = 0 J/m3, (43)

and the value of ξ = 0.05 is chosen to be sure the effects of the polarized current

are clear in the simulation results. The corresponding exchange length is 5.7 nm.

The current density is specified as

P |J| = 1012 A/m2, (44)

with the current specified to flow in the direction of the positive x axis. This

specification opens the problem to solvers that do not solve the extended equation

in general form, but are restricted to be able to solve only problems where electric

current is uniformly in some favored direction. The material to be simulated is a

thin film in the xy-plane with dimensions of 100 nm × 100 nm × 10 nm. A full

dynamic solution is to be computed using the extended LLG equation with

γ = 2.211× 105 m/(A s) (45)

α = 0.1 . (46)

An initial magnetization configuration of an in-plane vortex was specified, with

a preliminary computation with J = 0 performed to verify an initial state that was

a stable configuration of magnetization in the sample when no current flows. Having

found that initial state, the current is set to its non-zero value, and the equations

are solved as simulated time passes. The position of the vortex is expected to move

while the structure of the vortex remains undisturbed. The computation results

to compare are the final position of the vortex, as well as data characterizing the

trajectory by which the vortex reaches that position.

The article proposing this standard problem also included the computed solu-

tions produced by four software tools available to the authors, demonstrating good

agreement among them all, and attributing the minor differences to different ap-

proximations made in the calculation of magnetostatic fields and energies.

Two difficulties arose in the consideration of this proposed problem to be adopted

by µMAG. First it became clear that the extension terms of the equation involve

spatial derivatives of magnetization. Just as for the exchange energy calculation,

matters of boundary conditions must be handled with care, and all solvers must

agree on what they are in order to truly be solving the same problem. This short-

coming was easily handled by adding to the problem the constraint that the applied

current must deliver zero spin torque to the magnetization at the boundary surface

(i.e., the current is unpolarized at the boundary).

The second difficulty proved to be far more serious. Other developers of software

to simulate spin momentum transfer had chosen to base their efforts on a formally
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different extension of LLG,23

dM

dt
= −γM×H +

α

|M|

(
M× dM

dt

)
− (u · ∇)M +

β

|M|
(M× (u · ∇)M) . (47)

As newly discovered and measured phenomena are first represented as mathemat-

ical models, it is not uncommon for multiple formalisms to be presented until one

becomes accepted. This work takes place in parallel with the development of com-

puter models, so different programs founded on different modeling approaches are

also not uncommon. When a problem to be solved is specified in the context of

one equation, but it must be solved with software derived from the assumption of

a different equation, the relationship between the two approaches needs to be un-

derstood at a very fine level of detail. What does it mean to set the value ξ = 0.05

as an input to a program that has no connection to anything named ξ?

A careful analysis of Eq. (37) and Eq. (47) determines they represent the same

equation when

β = ξ, (48)

u = −bJ. (49)

However the derivation of Eq. (47) calls for the relationship,

u = −gPµB

2e|M|
J. (50)

The new quantity g is the dimensionless electron g-factor, and it must have the

value g = 2 to agree with the value of γ already specified for this problem. The

consequence is that the derivation of Eq. (47) demands the relationship,

u = −b(1 + ξ2)J. (51)

That is, the two derivations are based on different assumptions about the way the

degree of non-adiabaticity ξ influences the parameters of the equation. They agree

precisely only when ξ = 0 and disagree more and more as the value of ξ grows

larger. When a solution to Eq. (37) is to be computed, and the tool at hand is

software founded on the prescriptions of Eq. (47), the inputs have to adjusted to

compensate for the different models incorporated in the programs. Within the

usual constraints on which values are available to modify as inputs, it is most likely

the adjustment will be made by scaling the value of J to produce the prescribed

solution. When ξ is near zero, as is most often the case in simulations of physical

interest, the consequences of this detail are small, and can easily go undetected.

The unit dimensions offer no clue that anything has gone wrong either.

To improve the ability of the standard problem to highlight this issue and cap-

ture any errors rooted in a mistranslation between the two formulations, µMAG

Standard Problem 5 calls for four simulations to be performed for the values of

ξ = 0, 0.05, 0.1, and 0.5 (Fig. 11).

Two solutions have been contributed. They show good agreement with each

other over all four simulations and with the other four solutions included in the orig-

inal proposal on the single common simulation performed by all of them (Fig. 12).
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Starting from equilibrium vortex state, apply
polarized in-plane current P|J| = 1012 A/m2,
and solve LLGS with non-adiabaticity factor
𝜉 set to (a) 0, (b) 0.05, (c) 0.1, and (d) 0.5.

x

y

z

10 nm

100 nm

 

 

100 nm

Vortex state

Ms = 8.0×105 A/m 

A = 1.3×10-11 J/m

K = 0 J/m3

𝛾0 = 2.211×105 m/(A s)

𝛼 = 0.1

Fig. 11. Specifications for Standard Problem 5. This dynamic problem solves the Landau-

Lifshitz-Gilbert-Slonczewski (LLGS) spin-torque equation with contributions from exchange and

self-magnetostatic fields.

5. Conclusions

The collection of µMAG standard problems has made positive contributions toward

the aim of reliable and reproducible computation from micromagnetic modeling soft-

ware. Their development has brought attention to the importance of many subtle

issues in the development and use of such programs. Program errors have been

located and corrected. Programs have been revised to more faithfully compute ac-

cording to the assumptions of their models. Models have been carefully analyzed to

determine which ones are different but equivalent formulations of the same math-

ematical relationships, and which ones have lurking within them true modeling

disagreements. These analyses point the way to the parameter values and physical

materials with the potential to select between them.

The µMAG Standard Problems have been key in the development of best prac-

tices for effective comparisons of work from different teams employing different

approaches. Some problems have exhibited the failures while others have demon-

strated effective ways of addressing those same difficulties. When defining standard

problems, consider these recommendations.

• A standard problem needs to be clearly stated. Write out all equations. Identify

units of all quantities. Spell out any implicit assumptions like boundary condi-

tions. Do not confuse clarity with overconstraint. Leave freedom for different

approaches to solving a clearly stated problem.

• When possible, design a problem that has an analytic solution, or one that can

be solved using simplified models less likely to encounter errors.

• A parameterized collection of problems is often better than a single problem. The
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Fig. 12. Standard Problem 5 results, normalized My(t) vs. Mx(t) for ξ = 0.05.

differences among solutions to one problem are not as enlightening as the trends

of differences amond solutions to a sequence of related problems.

• Design the problem to be suitable for the known capabilities of those teams

expected to submit solutions. Take care not to impose barriers that exclude

submissions for reasons unrelated to the aims of the problem. Seek to discover any

consequences of known different approaches. Avoid or address known confounding

issues like symmetry breaking and numerical instability that are not related to

the problem’s purpose.

• Collect enough information in submitted solutions to not only discover differences,

but to analyze the sources of those differences. Seek to establish figures of merit

for establishing solution correctness.

• Design the problem to be solveable and to have its solutions submittable at an

appropriate scale of effort. This includes an assessment of both computational

burden and researcher effort.

The existence of the µMAG standard problems, and the noteworthy failure of

some of them to produce widespread agreement on solutions has focused attention

on the need for care and judgment when reporting or relying on any computa-

tional result. Increased attention leads to more careful work, which builds greater

confidence in the use of computation to establish new scientific knowledge.
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Many of the problems defined and published many years ago still find use as

proving grounds for new models, algorithms and implementations. It is common

for researchers crafting a new program to demonstrate correctness with standard

problem results, while presenting the benefits of the program in terms of increased

performance, scale, or applicability to new computing hardware.58,59

New standard problems will be developed as guided by the interest and partic-

ipation of the µMAG membership. Tests of more model extensions to account for

newly demonstrated physical phenomena are likely, driven by both scientific and

engineering interest. Published proposals already include examinations of the re-

liability of simulations of ferromagnetic resonance measurements60 and spin wave

dispersion.61 There is also interest in examination of the parameters that control

computation, distinct from those that represent physical variations. The results

computed by the conjugate gradient method of energy minimization can vary with

computational choices. A carefully chosen problem62 brings that issue into clear

focus.

Continued interest in the physics of nanomagnets and continued development

of scientific computing make continued relevance and interest in micromagnetic

standard problems very likely. In combination with other efforts to improve repro-

ducibility of computation in research, confidence in the contributions of micromag-

netic modeling should only improve.
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for a standard problem for micromagnetic simulations including spin-transfer torque,
Journal of Applied Physics. 105(11):113914, (2009). doi: 10.1063/1.3126702.

58. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. V.
Waeyenberge, The design and verification of mumax3, AIP Advances. 4(10), 107133,
(2014). doi: 10.1063/1.4899186.

59. L. Exl, J. Fischbacher, A. Kovacs, H. zelt, M. Gusenbauer, and T. Schrefl, Precondi-
tioned nonlinear conjugate gradient method for micromagnetic energy minimization
(01. 2018).



May 31, 2018 18:6 ws-rv961x669 Book Title porter page 36

36 D. Porter & M. Donahue

60. A. Baker, M. Beg, G. Ashton, M. Albert, D. Chernyshenko, W. Wang, S. Zhang,
M.-A. Bisotti, M. Franchin, C. L. Hu, R. Stamps, T. Hesjedal, and H. Fangohr,
Proposal of a micromagnetic standard problem for ferromagnetic resonance simu-
lations, Journal of Magnetism and Magnetic Materials. 421, 428 – 439, (2017).
ISSN 0304-8853. doi: https://doi.org/10.1016/j.jmmm.2016.08.009. URL http://

www.sciencedirect.com/science/article/pii/S0304885316307545.
61. G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev, M. Mruczkiewicz, H. Fangohr,

A. Barman, M. Krawczyk, and A. Prabhakar, Proposal for a standard micromagnetic
problem: Spin wave dispersion in a magnonic waveguide, IEEE Trans. Magn. 49(1),
524–529 (Jan, 2013).

62. J. Fischbacher, A. Kovacs, H. Oezelt, T. Schrefl, L. Exl, J. Fidler, D. Suess, N. Sakuma,
M. Yano, A. Kato, T. Shoji, and A. Manabe, Nonlinear conjugate gradient methods
in micromagnetics, AIP Advances. 7(4), 045310, (2017). doi: 10.1063/1.4981902.


