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Magnetization reversal modes and coercivities were calcu-
lated for a magnetic particle with thickness : width : length
aspect ratios 0.1 : 1 : 5 as a function of the reduced parti-
cle width d/lex, where d is the particle width and lex is the
intrinsic magnetostatic exchange length. With only exchange
energy and magnetostatic energy included, the particle corre-
sponds to µMAG standard problem #2. The problem is mod-
eled with 2D grids of 3D spins, and the results are compared
for two methods of calculating magnetostatic energies, the
“constant magnetization” method and the “constant charge”
method.

For both magnetostatic computational methods, the coer-
civity decreases from Hc/Ms = 0.06 ± 0.003 to 0.014 ± 0.003
over the range 3 < d/lex < 80, where the uncertainties re-
flect the field step size. Also over this interval, as d/lex in-
creases, the magnetization exhibits three modes of reversal:
nearly uniform rotation, transverse switching of end domains
followed by propagation of head-to-head domain walls from
the ends to the center of the particle, and nucleation and
propagation of vortices accompanied by more complex do-
main structures.

I. INTRODUCTION

The particle defined by µMAG standard problem #2
is rectangular, with thickness : width : length aspect
ratios 0.1 : 1 : 5. Only the exchange energy, character-
ized by the stiffness constant, A, and the magnetostatic
energy, characterized by the spontaneous magnetization,
Ms, are considered. Fields are applied along the [1,1,1]
axis1. Calculations were done as a function of the re-
duced particle width d/lex, where d is the particle width
and lex = (2A/µ0M

2
s )1/2 is the intrinsic exchange length.

For computational convenience, we have assumed 1)
that the magnetization is uniform across the thickness of
the sample, and 2) that it is sufficient to calculate mag-
netostatic fields in the mid plane of the film. The first
assumption is implicit in our use of 2D grids. These as-
sumptions make it possible to separate the computation
of the self-magnetostatic field, H

D, into in-plane, H
D
x,y,

and out-of-plane, HD
z , components where only Mz con-

tributes to HD
z and only Mx,y contributes to H

D
x,y.

Because the calculation of the magnetostatic energy
and/or field in micromagnetic simulations is the most
time consuming part of the calculation, there has been a
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FIG. 1. The geometry of µMAG standard problem #2, a
0.1:1:5 aspect ratio rectangular block of magnetic material
with exchange energy, magnetostatic energy and Zeeman en-
ergy only.

great deal of interest in finding optimal computational
techniques for magnetostatics. This paper describes
magnetization reversal mechanisms and critical fields for
µMAG standard problem #2 using two methods of cal-
culating the in-plane components of magnetostatic fields,
the constant magnetization method2, and the constant
charge method3,4.

The magnetization was relaxed according to Landau-
Lifshitz damping, dM/dt = −

λ
Ms

M × (M × H), where

H includes H
D, the applied field, and the exchange field,

computed using an eight-neighbor cosine scheme5.
For both of the methods for calculating H

D described

b)a)

FIG. 2. Illustration of the magnetostatic charge distribu-
tions surrounding a single misoriented spin a) in the constant
magnetization method and b) in the constant charge method.
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below, we use real fast Fourier transform (FFT) tech-
niques to evaluate convolution integrals. To eliminate
periodic image charges introduced by the discrete FFT,
we embed the region of interest in zero-padded arrays at
least twice as large as the sample grid in each dimension.

Also, for both methods of computing H
D
x,y, HD

z is
calculated by a constant magnetization method (see be-
low) because the magnetization is assumed to be uniform
through the thickness of the sample. The computation
of HD

z contributes two real FFT’s to the cost of each of
the methods of computing H

D.
In the constant magnetization method, M is assumed

to be uniform throughout each grid cell, and discontinu-
ous at the cell boundaries. The Fourier transforms of Mx

and My are multiplied by a kernel which is the Fourier
transform of the in-plane demagnetization tensor, com-
puted using an analytic expression2. In the final step, in-
plane magnetostatic fields are obtained by inverse trans-
forms of the tensor product.

The computational cost of this method of computing
H

D
x,y includes four real FFT’s per evaluation.
The constant charge method is described in detail in

Refs. 3, 4 for the case where one dimension of the sample
is infinite. We have modified the technique for the case
of thin films. For the constant charge method it is con-
venient to assume that spins lie on the corners of a grid
as illustrated in Fig. 2b. Each cell of the grid is assumed
to contain a uniform magnetostatic charge density, de-
termined via a discrete approximation to ρ = −∇ · M.

To calculate the potential from the charge distribution
in the particle, the Fourier transform of the charge dis-
tribution is multiplied by a kernel which is the Fourier
transform of the potential due to a single cell with unit
uniform charge. The inverse transform of this product
yields the potential. In the final step, the in-plane mag-
netostatic field is calculated by a discrete approximation
to the gradient of the potential.

The computational cost of this method for computing
H

D
x,y includes two real FFT’s, and two numerical differ-

entiations for computation of ρ = −∇·M, and H = −∇Φ
per evaluation.

II. RESULTS AND DISCUSSION

For each value of d/lex, hysteresis loops were calculated
using cell sizes ranging from 0.1d down to 0.02d. Starting
from from Hx = Hy = Hz = −7.96 × 10−2Ms (µ0Hx =
-100 mT, Ms = 106 A/m), the applied field was increased
to zero in 10 steps. The field was then incremented in
the [1,1,1] direction in steps of ∆Hx = ∆Hy = ∆Hz =
7.96 × 10−4Ms.

As a function of d/lex, it is convenient to label the coer-
civity of the particle according to the instability that ini-
tiates the magnetization reversal: nonuniform rotation,
end domain reversal, or vortex formation. Magnetiza-
tion states associated with these processes are shown in

a)

b)

c)

d)

e)

f)

g)

FIG. 3. Magnetization state images calculated using the
constant magnetization method a) just before switching,
d/lex= 3.0, and b)–e) for various fields at d/lex=17.8 includ-
ing b) and c) the field steps just before and after end domain
switching, and d) and e) the field steps just before and after
magnetization reversal via end domain propagation. Tran-
sient states f) and g) were captured during end domain prop-
agation and vortex propagation at d/lex= 31.6 and d/lex=
40, respectively. The grey scale displays Mx, with white for
Mx = −1.0 and black for Mx = 1.0.

Fig. 3.
Nearly uniform rotation is the reversal mechanism for

the smallest values of d/lex, d/lex<≈ 10, where the re-
manent state is symmetric about the long axis of the
sample. Magnetization reversal for these length scales
is nearly uniform, (see Fig. 3a) but with magnetization
near the ends tending to rotate more easily in the applied
field than in the center of the strip. At H <≈ Hc, only
a small component of the magnetization appears out of
plane (Mz/Ms < 0.05), and the average M is nearly per-
pendicular to H (M ||/Ms < 0.003). Because Mz is small,
this result can be compared with the Stoner-Wohlfarth
model, which predicts that with the field applied at 45◦

to the particle axis, the magnetization lies perpendicular
to the field at fields approaching coercivity.

For intermediate values of d/lex, 10 <≈ d/lex <≈ 32,
the remanent state is asymmetric, with transverse end
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FIG. 4. Critical fields for µMAG standard problem #2 as
a function of reduced particle width d/lex. The symbol size
is approximately equal to the uncertainty in Hc/Ms due to
the field step size. Filled and open symbols are results ob-
tained using the constant magnetization and constant charge
methods, respectively. Superimposed data points are enclosed
by parentheses. Labels a–g correspond to magnetization pat-
terns displayed in Fig. 3

domains formed in opposite corners of the sample at re-
manence (see Fig. 3b). As the field is increased in mag-
nitude along the [1,1,1] direction, a critical field Heds is
reached for end domain switching where the magnetiza-
tion in the end domain switches from the −y direction
to the +y direction (see Figs. 3b,c). At the coercive field
Hedp the end domains propagate inwards from the ends
of the sample and annihilate. These traveling walls are
very reminiscent of the static transverse head-to-head do-
main walls calculated previously for infinitely long thin
magnetic strips6.

For 29 <≈ d/lex <≈ 35, Heds is greater than Hedp. In
this range, the end domains switch and propagate with-
out an intermediate stable state.

For d/lex >≈ 35, the end domains lose stability not
by switching, but by nucleation of vortices on the long
edges of the sample near the ends. These vortices then
move across the ends of the sample as the magnetization
reverses. The transient structure that appears after vor-
tex formation bears a striking resemblance to a similar
vortex end domain structure that has been observed in
lithographically prepared structures7. It appears that the
vortex end structures are formed at a field that exceeds
their stability limit because in the same field step that
produces the vortex end domains, the magnetization re-
verses by extension and collision of the end domains. We
suspect that because the vortex end domains are spa-
tially larger than the transverse end domains, there is
not enough room for vortex head-to-head domain walls6

of the type observed by Rürhig et al.7 to be clearly sep-
arated from the ends.

It is interesting to note that the minimum energy head
to head domain wall configuration in infinite strips has
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FIG. 5. Critical fields for µMAG standard problem #2
as a function of normalized cell size ∆/lex with d/lex=17.8.
Squares indicate end domain propagation fields (Hedp) and
circles indicate end domain switching fields (Heds). Filled and
open symbols are results obtained using the constant magne-
tization and constant charge methods, respectively.

been reported6 to change from transverse wall to vor-
tex wall at t · d = 65l2ex, corresponding to d/lex= 25.5
here, which is in the neighborhood of the transition from
transverse end domain propagation to vortex formation
reported above.

III. COMPARISON OF TECHNIQUES

The convergence properties of the constant magneti-
zation and constant charge methods are illustrated in
Fig. 5. The constant magnetization method is less sen-
sitive to cell size, and converges with a more straight-
forward extrapolation to zero cell size than the constant
charge method.

The magnetostatic computational methods described
above share the approximations that the magnetostatic
field is calculated only at a single location in each cell,
and that for constant particle thickness, the cell aspect
ratio changes with cell size. These two approximations
are related in that when the cell aspect ratio is very dif-
ferent from 1.0, the field at the cell center may not be
a good approximation to the field average, even for very
small cell sizes.

The constant charge method carries a further approx-
imation that the surface magnetostatic charges on the
sample edges are represented by blocks of charge, rather
than a true surface charge. As the cell size is reduced,
the bulk edge charge distribution approximates a surface
charge, but we suspect that changes in edge charge dis-
tribution with cell size may be responsible for the poorer
convergence properties of this method. Edge charge cor-
rections may be incorporated into this scheme at addi-
tional computational cost3.

While the computational cost of the constant charge
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method without edge correction is less than that of the
constant magnetization method, the constant magnetiza-
tion method appears to have superior convergence prop-
erties when edge and surface effects are important.
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