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Abstract—For a uniformly magnetized rectangular particle
with dimensions in the ratio 5 : 1 : 0.1, the coercive and
switching fields in the (1, 1, 1) direction are determined to be
Hc/Ms = 0.057069478 and Hs/Ms = 0.057142806. Previous
micromagnetic computations of coercive and switching fields that
did not approach these values for small particles are analyzed. It
is shown that the disagreement was primarily due to a disparity
in the method of calculating demagnetization energy. Corrected
simulations are shown to agree with analytically determined
values.

I. I NTRODUCTION

When solutions to the firstµMAG standard problem failed
to show good agreement, [1] a simpler standard problem was
designed to examine the details of how different numerical
techniques yield different solutions. The secondµMAG stan-
dard problem considers a rectangular particle with dimensions
L : d : t in the ratio 5 : 1 : 0.1. Only exchange and magneto-
static energy terms are considered. The coercive field along
the (1, 1, 1) direction is to be calculated as a function of the
ratio of particle size to exchange lengthlex = (2A/µ0M

2
s )1/2.

Here A is the exchange stiffness coefficient in J/m andMs

is the saturation magnetization in A/m. Published solutions
[2], [3], [4] show much better agreement than the results
from the first problem. It was expected that for a small
enough particle size, exchange energy would dominate, and
the coercive field predicted by all calculations would converge
to the coercive field of a uniformly magnetized particle. As
seen in Fig. 1 however, significant differences were observed
for small simulated particles. In this paper we provide analytic
values of the coercive and switching fields in the small particle
limit. Our previous calculations [3] (labeled “OOMMF 1.0”
in Fig. 1) are examined in detail to determine and correct
the sources of error when simulating small particles. New
solutions are computed by a corrected solver. [5]

II. SMALL PARTICLE THEORY

In this section we analyze the equations of our micromag-
netic model in the small particle limit. The intent is to examine
whether the numerical methods used in our micromagnetic
simulations behave properly in this limit, not to predict the
physical behavior of small magnetic particles. Many important
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Fig. 1. Coercive (Hc) and switching (Hs) fields of standard problem 2 as a
function of particle size as computed by several micromagneticsimulations.
New results are labeled OOMMF 1.1.

influences on the physical behavior of small magnetic particles
are neglected by our model.

In our model, as the particle size decreases, the exchange
energy becomes dominant to the point that magnetization is
uniform throughout the particle. In this limit, exchange may be
treated as a constraint that the magnetization is uniform, and
analysis of magnetic reversal need consider only energy terms
due to demagnetizing and external fields. Analysis is simplified
by normalizing all field and magnetization quantities to the
saturation magnetization of the particleMs, and all energy
densities to the quantityµ0M

2
s .

A uniformly magnetized ellipsoid has a uniform demag-
netizing field, hd = −Dm, where m is a column vector
of the components of normalized magnetization along the
principal axes of the ellipsoid, andD is a diagonal matrix
of demagnetizing factors.

The demagnetizing energy density of the ellipsoid is

ed =
1

2
m

T
Dm. (1)

For rectangular particles, uniform magnetization does not
result in a uniform demagnetizing field. However, the demag-
netizing energy density has the same form as (1). For the
standard problem, the demagnetizing factors areD(1,0,0) =
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0.021829576, D(0,1,0) = 0.11522396, and D(0,0,1) =
0.86294646. [6] The quantity Dm is the average demag-
netizing field over the volume of the particle. Because the
magnetization is uniform, the average field value is sufficient
to compute the total demagnetization energy.

Analysis of magnetization reversal considers the total en-
ergy density under the influence of an applied fieldha,

e =
1

2
m

T
Dm − h

T
a m. (2)

The coercive field,Hc, is defined relative to a unit vector
in the direction of the applied field,̂u. After saturation by a
large field in the direction of̂u, Hc is the largest value of
H for which an applied field of−Hû yields a magnetization
with û

T
m > 0. The switching field,Hs, is the magnitude of

applied field at which a local minimum of (2) disappears. In
many circumstances,Hc andHs are equal, becausêuT

m = 0
only during a switching event. When solving standard problem
2 for uniformly magnetized particles, however,Hc andHs are
not equal. The magnetization of the particle rotates past the
plane perpendicular to the applied field direction before the
switching event. Lagrange multiplier analysis yields expres-
sions form and ha in terms of Lagrange multiplierλ. The
stationary points of (2) correspond to the roots of a rational
function which is sixth order inλ. At coercivity, the constraint
that hT

a m = 0 corresponds to a rational function that is third
order inλ. Solving the system of equations yields a value for
Hc. At the switching fieldHs, one of the stationary points
of (2) disappears. Solving for the applied field magnitude at
which one of the roots of the sixth order rational function
disappears yields a value forHs. The values ofHc and Hs

in the small particle limit areHc/Ms = 0.057069478 and
Hs/Ms = 0.057142806.

III. SIMULATION ANALYSIS

Our previous solutions [3] were computed using a dis-
cretization of the particle into a two-dimensional grid of
square cells. The magnetization was assumed to be uniform
within each cell, represented by a single spin. A sequence
of external fields was applied to the spin assembly. For each
applied field value, the evolution of the system of spins was
computed by the Landau-Lifshitz equation until the maximum
torque on all spins fell below a threshold value, indicating
an equilibrium magnetization for the applied field had been
reached. In the following sections, we examine several details
of these computations for small particles, seeking the reasons
they do not approach the values predicted by Section II.

A. Demagnetization Energy

In reference [3] (open circles in Fig. 1), the normalized
demagnetization energy density of the simulated particle is
computed as

ed =
1

2N

∑

i

m
T
i hd,i, (3)

where the sum is over theN cells in the grid, and the values
hd,i are the demagnetizing field sampled at the center point
of each cell.
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Fig. 2. Computed demagnetization energy as a function of cell size for
a uniformly magnetized 5 : 1 : 0.1 rectangular particle. Cell size is expressed
relative to particle thicknesst. The energy is calculated using either sampled
demagnetizing fields (open symbols) or averaged demagnetizingfields (solid
diamonds).

Fig. 2 displays the computed demagnetization energy as
a function of cell size for several directions of uniform
magnetization. For each direction, the demagnetization energy
is plotted normalized to the analytical value computed from
(1). It is clear that the formulation in (3) suffers from errors
that are not eliminated by refinement of the two-dimensional
grid.

When the magnetization is in the plane of the film (the
nearly overlappingm = (1, 0, 0) and m = (0, 1, 0) curves),
the field at distancea from a charged edge drops off roughly
proportional totan−1 (t/(2a)). Because this is concave up, a
field sample taken at the center of a cell will underestimate
the average in-plane field strength, resulting in the low values
for the energy at coarse discretization seen in Fig. 2. This
error can be reduced by refining the discretization. However,
because the sample grid is two dimensional, the field samples
always come from the center of the film, where the field is
stronger than near the top or bottom surfaces. Therefore, for
very small cell size∆, the energy is overestimated. Analogous
considerations explain the discrepancies in them = (0, 0, 1)
plot.

Fortunately, these errors can be removed without requiring
three-dimensional discretization. Each sampled value of the
demagnetizing field in (3) may be replaced with the average
value of the demagnetizing field over the entire cell. The
expressions necessary for calculation of the demagnetizing
fields averaged over each cell are known. [6] They are consid-
erably more complex than the expressions for the sampled field
values, but they may still be expressed as convolution integrals,
so fast Fourier methods are available, and the additional
complexity only contributes to the initialization phase ofa
simulation. (Due to the large number of terms, rounding error
can be significant, so the demagnetization tensor should be
computed using a technique such as doubly compensated
summation. [7]) As seen in Fig. 2, the demagnetization energy
computed using cell-averaged demagnetizing fields does not
depend on discretization and agrees with the analytic result.
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B. Rounding Errors in Exchange Energy Calculation

In reference [3], the normalized exchange energy density is
computed using an eight-neighbor cosine scheme: [8]

eex,i =
A

3µ0M2
s ∆2

∑

k∈nni

(1 − m
T
i mk), (4)

whereA is the exchange stiffness constant,∆ is the cell size,
andk sums over the nearest and next-nearest neighbors on the
square 2D grid. When the angleθ between neighboring spins
is small,1 − m

T
i mk ≈ 1 − (1 − θ2/2) and theθ2/2 term is

lost in rounding, i.e., in floating point arithmetic1−θ2/2 = 1.
In this case the outer subtraction from 1 does not contribute
to the error, but only exposes what has already been lost.

If one could regroup the expression1− (1− θ2/2) as(1−
1)+θ2/2, then rounding errors would be significantly reduced.
This is accomplished by the alternative expression

eex,i =
A

3µ0M2
s ∆2

m
T
i

∑

k∈nni

(mi − mk). (5)

Here the subtraction is done before other floating point opera-
tions, and the dot product is computed between vectors which
are nearly perpendicular, which is numerically better behaved.

If the exchange couplingA/∆2 is large, due to either
large A or small ∆, then the spins will be nearly aligned
and roundoff errors can become a significant fraction of the
total energy. This can cause a misalignment between the
calculated effective field direction and the gradient of the
energy surface; if we require each simulation step to lower
the total energy, then such misalignment forces the simulation
step size to be reduced. This unnecessary stiffening of the
problem is evidenced by some simulations performed for this
paper, where using (5) in place of (4) reduced the computation
time by several orders of magnitude.

C. Uncertainty in Critical Fields

Our simulations compute the sequence of equilibrium states
corresponding to a sequence of applied fields. Although ex-
trapolation methods have been proposed to determine critical
switching fields from such data [9], we simply report the mid-
point of the field step at which we observe a discontinuity as
Hs. Thus, we do not determineHs to finer resolution than the
size of the field step which leads to the discontinuity. In this
paper, the (reduced) field step size|∆ha| near the switching
field was0.0000276.

There are additional uncertainties, however. When the ap-
plied field is stepped, the location of the local energy min-
imum shifts, and it can happen that when the simulation is
subsequently allowed to relax, it falls to a minimum different
from the one being tracked, giving the mistaken impression
that the first minimum has disappeared. This is an important
effect in dynamic studies, [10] but is an error in the quasi-static
situation being studied here and results in an underreporting
of the switching field. For this to occur, the starting point for
the relaxation procedure (i.e., the equilibrium position from the
previous field step) must have an energy higher than the energy
barrier surrounding the minimum of interest. The total energy
of the system increases as the switching field is approached,so

the difference in energy between the relaxation starting point
and the desired equilibrium point is not more than∆hT

a m <
|∆ha|. This means that if an energy minimum is prematurely
lost, it must be shallower than|∆ha| = 0.0000276. If we
compare to a particle of equal volume at finite temperature,
obeyingt = t0 exp(∆E/kT ) with attempt periodt0 = 10−9 s,
observation timet = 60 s, and NiFe material parameters, then
an energy well of this depth would be unstable at temperature
T > 0.006(d/lex)

3 K. For the largest particle considered here,
d/lex = 30, corresponding toT = 160 K.

On the other hand, the simulation will report an equilibrium
exists when the torque|m × h| at all spins is less than
a specified threshold value. This test is insufficient if the
energy surface is very flat, resulting in an overestimate of the
switching field. This problem can be controlled by making the
threshold small, which in the present study was set to10−6

(normalized units). If we assume|dm/dt| ≈ γ|m × h|Ms,
with gyromagnetic ratioγ = 2.21 × 105 m/As and (say)
Ms = 8× 105 A/m, then at|m × h| = 10−6, a 1% change in
m requires about 56 ns.

IV. RESULTS

After making the corrections to our micromagnetic solver
indicated above, new solutions forµMAG standard problem 2
were computed. Both the coercive and switching fields were
determined for particles with width from 0.125 to 30 times the
exchange length. The results are plotted in Fig. 1 along with
the previously published results [2], [3], [4]. For a particle
with width 0.25 times the exchange length, we compute
Hc/Ms = 0.05707 andHs/Ms = 0.05713 using a field step
of |∆ha| = 0.0000276. We compute the same results for a
particle of width 0.125 times the exchange length, indicating
these values are a good estimate for the limit as∆ → 0.
The theoretical values for both coercive and switching field
for a uniformly magnetized particle from Section II are also
marked on the graph. (The two values are indistinguishable
at the scale of the graph.) The new simulation results agree
with the theoretical solution in the small particle limit while
the previously published solutions did not.

In the improved micromagnetic solver, the demagnetizing
energy is completely accurate up to the assumption that the
magnetization is uniform in each cell. It is still important
that discretization of the problem be fine enough to resolve
spatial variations of magnetization, but there is no need for
finer discretization beyond that to resolve spatial variations in
the demagnetizing field. The averaging of demagnetizing fields
over uniformly magnetized cells accounts for those variations.
This means that as the magnetization of the particle becomes
more uniform, coarse discretizations can compute accurate
results.

REFERENCES

[1] R. D. McMichael and M. J. Donahue,<URL: http://
www.ctcms.nist.gov/%7Erdm/std1/prob1report.html>
(unpublished).

[2] L. Lopez-Diaz, O. Alejos, L. Torres, and J. I. Iniguez, J.Appl. Phys.
85, 5813 (1999).

[3] R. D. McMichael, M. J. Donahue, D. G. Porter, and J. Eicke,J. Appl.
Phys.85, 5816 (1999).



SUBMITTED TO JOURNAL OF APPLIED PHYSICS 4

[4] B. Streibl, T. Schrefl, and J. Fidler, J. Appl. Phys.85, 5819 (1999).
[5] M. J. Donahue and D. G. Porter,<URL: http://math.nist.gov

/oommf/> (unpublished).
[6] A. J. Newell, W. Williams, and D. J. Dunlop, Journal of Geophysical

Research98, 9551 (1993).
[7] N. J. Higham, in Accuracy and Stability of Numerical Algorithms

(SIAM, Philadelphia, 1996), pp. 96–97.
[8] M. J. Donahue and R. D. McMichael, Physica B233, 272 (1997).
[9] A. Hubert and W. Rave, Phys. Stat. Sol. (B)211, 815 (1999).

[10] D. G. Porter, IEEE Trans. Magn.34, 1663 (1998).


