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Spatially uniform static phases in an antiferromagnet (AFM) at 0 K accessible by varying an external magnetic field
along the anisotropy axis are investigated. Using the macrospin model, the energy contributions are comprised of the
external field, effective anisotropy, and spatially homogeneous AFM exchange. The critical energy configurations are
fully cataloged, and local energy concavity is used to identify stable states. Relative energy levels are taken into account
to classify phase transitions. Phase diagrams for energetic stability and phase transitions are provided in terms of the
strength of the applied field and the ratio between anisotropy and the AFM exchange. Two nonstandard critical energy
states are identified as energy saddle points, so are not stable but function as energy barriers between multiple stable
states. The results determine thermal switching rates and suggest interesting AFM textures and solitons.

Although antiferromagnets (AFMs) are known to be robust
against perturbation by external magnetic fields, a series of
magnetic phases will manifest in a bipartite AFM depending
on the field magnitude and the material properties. These
phases can be used to construct magnetic textures such as
domain walls1–4 and solitons.5–7 Understanding the full en-
ergy landscape is necessary to characterize thermally activated
switching events. New optical measurement capabilities of
AFMs8 open up the possibility of measuring novel magnetic
textures. There have been continuing efforts to uncover all
critical energy points as local energy minimum candidates
and to understand the phase transition mechanisms. How-
ever, previous work either failed to compute the complete pool
of critical energy points,9–13 restricted the possible degrees of
freedom,14 or missed the local stability analysis.15 Moreover,
unstable intermediate states have not been identified as the
only saddle point energy barriers in phase transitions. In this
letter, we present a theoretical investigation of all static, spa-
tially uniform, critical energy points in a two-sublattice AFM
with the external magnetic field applied along the anisotropy
axis. All local energy minima, maxima, and saddle points are
identified, the last marking energy barriers between energy
minima. Several examples mapping typical AFM materials
onto this framework are provided.

Using the macrospin model,16,17 the energy is composed
of the applied field, effective anisotropy, and the spatially ho-
mogeneous AFM exchange. Both easy-axis and easy-plane
anisotropy cases are considered. This model is simultane-
ously complex enough to include many phases yet remains
tractable enough for a rigorous mathematical treatment. In
the following discussions, a phase is considered to be energet-
ically stable if it is a local energy minimum.18,19 It is further
considered energetically preferred if it is also a global energy
minimum. A phase transition takes place when the energet-
ically preferred phase changes.17,18,20,21 We identify all pos-
sible phase transitions and discuss the implications on AFM
magnetic textures involving stable phases and saddle points.

Without loss of generality, we let the anisotropy axis be ẑ
and consider an external magnetic field of magnitude h0 ap-
plied along the z-axis. The nondimensional energy for the
spatially uniform two-sublattice macrospin model is given by

E =−h0(mA · ẑ+mB · ẑ)+hemA ·mB

− hk

2

[
(mA · ẑ)2 +(mB · ẑ)2

]
,

(1)

where

mi =
Mi

Ms

= (sinΘi cosΦi,sinΘi sinΦi,cosΘi), i = A or B,
(2)

is the magnetization vector normalized by the saturation mag-
netization Ms. The subscript A or B denotes the sublattice
while Θi ∈ [0,π] is the polar angle, Φi ∈ [0,2π] is the az-
imuthal angle, i = A or B, he > 0 is the spatially homogeneous
AFM exchange coefficient, and hk is the effective anisotropy
coefficient. When hk > 0, anisotropy has the easy-axis ẑ.
When hk < 0, anisotropy is easy-plane with hard axis ẑ.

To find all critical energy points,22 we set(
∂E

∂ΘA
, ∂E

∂ΘB
, ∂E

∂ΦA
, ∂E

∂ΦB

)
=
(
0,0,0,0

)
. (3)

Then, the necessary conditions for a critical energy point are

ΘA = 0 or π, and ΘB = 0 or π, (4)

or

|ΦA −ΦB|= π or 0. (5)

The former condition leads to two vacuum phases (so-called
because ΦA and ΦB are undefined) as critical points: the AFM
and FM phases listed in Table I. The schematics are shown in
Figs. 1(a) and 1(b).

TABLE I. Vacuum critical energy points in an AFM.

Phase name Phase configuration
AFM (ΘA,ΘB) = (0,π) or (π,0)
FM ΘA = ΘB = 0 or π
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FIG. 1. Schematics for critical energy points. The Néel vector n lies along the dotted blacked line. (a) AFM: ΘA = 0, ΘB = π . (b) Spin-up
FM: ΘA = ΘB = 0. (c) SFO (hk > 0) or canting (hk < 0): |ΦA −ΦB|= π , ΘA = ΘB; IPAFM is canting with φ = 0. (d) +Iπ : |ΦA −ΦB|= π ,
ΘA +ΘB ≤ π . (e) −Iπ : |ΦA −ΦB| = π , ΘA +ΘB > π . (f) DFM: ΦA −ΦB = 0, ΘA = ΘB. (g) +I0: ΦA −ΦB = 0, ΘA +ΘB ≤ π . (h) −I0:
ΦA −ΦB = 0, ΘA +ΘB > π .

The condition (5) indicates that the two sublattice magne-
tization vectors are on the same plane perpendicular to the
xy-plane. Without loss of generality, we let mA and mB lie in
the xz-plane. To compute all non-vacuum critical points, we
consider the Néel vector n = (mA −mB)/2 and introduce

• θ : the angle between the z-axis and n.

– For |ΦA −ΦB|= π , θ ∈ [0,π/2].

– For ΦA−ΦB = 0, θ ∈ [−π/2,π/2]. If ΘA+ΘB ≤
π , then θ ≥ 0, otherwise θ < 0.

• φ : the angle between mA and n.

– For |ΦA − ΦB| = π , φ ∈ [−π/2,π/2]. If ΘA +
ΘB ≤ π , then φ ≥ 0, otherwise φ < 0.

– For ΦA −ΦB = 0, φ ∈ [0,π/2].

The restrictions on θ and φ assume ΘA ≤ ΘB without loss
of generality for the purpose of obtaining the mathematical
definitions of the critical phases. The benefit of this coordi-
nate system is that it characterizes the symmetry of mA and
mB about the Néel vector n, thus making the computation of
critical points easier. To solve for critical energy points, we
require (

∂E
∂θ

, ∂E
∂φ

)
=
(
0,0
)
. (6)

For the |ΦA −ΦB|= π case, we have

θ =
π

2
+

ΘA −ΘB

2
, φ =

π

2
− ΘA +ΘB

2
. (7)

The non-vacuum critical energy points are the spin-flopped
(SFO) phase when hk > 0 or the canting phase when hk < 0
(Fig. 1(c)), and two intermediate (Iπ ) phases: +Iπ phase when
φ ≥ 0 (Fig. 1(d)) and −Iπ phase when φ < 0 (Fig. 1(e)). Ta-
ble II lists the mathematical definitions of all non-vacuum crit-
ical energy points by considering h0 ≥ 0 without loss of gen-
erality. The SFO and canting phases are well-studied in phase
transitions.16 The SFO phase is achieved when the applied
magnetic field fully compensates the easy-axis anisotropy,
whereas the canting phase exhibits a balance between Zeeman

and AFM exchange energies. The +Iπ phase has been theo-
retically studied for a biaxial AFM.9,10,23 The name “interme-
diate” is inherited from Yamashita9 and is extended to other
critical energy points whose spin configuration is between the
AFM and SFO phases. Collectively, the intermediate phases
are referred to as I∗ phases in the rest of the paper.

When

h0 > 2he −hk ≡ hcr1, (8)

the Zeeman energy dominates the AFM exchange energy and
therefore the SFO or canting phase saturates to the FM phase,
imposing a field restriction for the existence of such phases.
When θ = π/2 and φ = 0, the canting phase is referred to
as the in-plane AFM (IPAFM) phase. The ±Iπ phases are
only defined on restricted regimes indicated in Table III. The
critical fields bounding the existence of the ±Iπ phases are

hcr2 ≡ (2he −hk)

√
hk

2he +hk
,

hcr3 ≡
√

hk(2he +hk).

(9)

We will show that the ±Iπ phases are not energetically sta-
ble, but they determine energy barriers between multiple sta-
ble phases.

For the ΦA −ΦB = 0 case,

θ =
π

2
− ΘA +ΘB

2
, φ =

π

2
+

ΘA −ΘB

2
. (10)

The non-vacuum critical energy points are the deviated FM
(DFM) phase (Fig. 1(f)), first identified by Yamashita,9 and
two intermediate (±I0) phases: +I0 phase with θ ≥ 0
(Fig. 1(g)) and −I0 phase with θ < 0 (Fig. 1(h)). The mathe-
matical definitions of all non-vacuum critical points are listed
in Table II. When

h0 ≥ hk ≡ hcr4, (11)

the DFM phase saturates to the FM phase, imposing a field
restriction for the existence of the DFM phase. Although the
DFM phase was ruled out in phase transitions by Li15 based
on its high energy relative to other critical energy points, we
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TABLE II. Non-vacuum critical energy points in an AFM.

Phase name Phase configuration

SFO (hk > 0) or canting (hk < 0) θ = π/2, φ = arcsin
(

h0
2he−hk

)
DFM θ =−arcsin(h0/hk), φ = π/2

+Iπ (φ ≥ 0), +I0 (θ ≥ 0)

θ = arctan

(√[
2he +hk −h0

√
(2he +hk)/hk

]/[
−2he +hk +h0

√
(2he +hk)/hk

] )
,

φ = arctan

(√[
2he +hk −h0

√
(2he +hk)/hk

]/[
2he +hk +h0

√
(2he +hk)/hk

] )

−Iπ (φ < 0, upper sign),
−I0 (θ < 0, lower sign)

θ =±arctan

(√[
2he +hk +h0

√
(2he +hk)/hk

]/[
−2he +hk −h0

√
(2he +hk)/hk

] )
,

φ =∓arctan

(√[
2he +hk +h0

√
(2he +hk)/hk

]/[
2he +hk −h0

√
(2he +hk)/hk

] )

TABLE III. Existence conditions for I∗ phases.

Phase name
Parameter

regime Existence conditions

+Iπ and +I0
hk > 0

1. hk < 2he and hcr2 ≤ h0 ≤ hcr3

2. hk ≥ 2he and h0 ≤ hcr3

hk < 0
1. hk ≤−2he and h0 ≤ hcr3

−Iπ and −I0
hk > 0

1. hk ≥ 2he and h0 ≤−hcr2

hk < 0
1. hk ≤−2he and h0 ≤ hcr3

will show that it is never energetically stable. The existence
conditions for the ±I0 phases are the same as those for the
±Iπ phases, respectively, as indicated in Table III.

We study the stability of the identified critical energy points
using the Hessian test.22 To consider all vacuum and non-
vacuum phases at the same time, we return to polar coordi-
nates and compute the Hessian matrix for the energy (1) with
respect to ΘA, ΘB, and ΦA −ΦB, a total of three degrees of
freedom to fully characterize the local energy concavity. An
incomplete stability analysis using the Hessian approach was
adopted by Yamashita9 because the analysis was restricted to
variations in only ΘA and ΘB. Here we incorporate one addi-
tional degree of freedom by allowing for changes in ΦA −ΦB
because E is invariant to simultaneous rotations of mA and
mB about ẑ. The necessary condition for a local energy min-
imum is that all eigenvalues of the Hessian matrix must be

non-negative.24 When all the eigenvalues of the Hessian ma-
trix are non-positive, then the state is a local energy maximum.
When there exist both positive and negative eigenvalues, then
the state is a saddle point. Saddle points determine the low-
est energy required for the transition from one local minimum
to another local minimum, i.e., they determine an energy bar-
rier. The combination of the gradient and Hessian tests pro-
vides necessary and sufficient conditions to classify local ex-
trema. Considering all possible energetic degrees of freedom,
we are able to exhaustively identify all energy extrema. This
approach can be extended to other energy landscapes by sym-
metry breaking (canted applied field or biaxial anisotropy) ne-
cessitating four degrees of freedom (θ ,φ ,ΦA,ΦB).

TABLE IV. Stability regime for critical energy points.

Parameter regime Phase name Stable field interval

hk > 0
hk < 2he

AFM 0 ≤ h0 ≤ hcr3
SFO hcr2 ≤ h0 ≤ hcr1

FM, spin-up h0 ≥ hcr1

hk ≥ 2he

AFM 0 ≤ h0 ≤ hcr3
FM, spin-up h0 ≥ hcr1

FM, spin-down h0 ≤−hcr1

hk < 0
IPAFM h0 = 0
Canting 0 < h0 ≤ hcr1

FM, spin-up h0 ≥ hcr1

The stability regimes when h0 ≥ 0 are plotted in Fig. 2(a)
in terms of the scaled anisotropy coefficient and applied field

h̄k = hk/he,

h̄0 = h0/he.
(12)

The stability regimes are also listed in Table IV. When hk > 0,
the only local minima are the AFM, SFO, and FM phases. The
±Iπ and ±I0 phases are always saddles; the DFM phase is al-
ways a local maximum. When hk < 0, the candidate critical
points for phase transitions are the IPAFM phase, the canting
phase, and the FM phase. The ±Iπ , ±I0, and DFM phases
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FIG. 2. Phase diagram for (a) energetic stability (local energy
minimum) and (b) energetically preferred (global energy minimum)
phase regions. All parameters and fields are scaled by he, denoted
with a bar on top.

are always saddles. While two of the eigenvalues of the DFM
phase are both positive or have opposite signs, the third eigen-
value obtained from variations in ΦA−ΦB is always negative,
decisively ruling out the possibility of a stable DFM phase.
There exist overlapping regions where two or more critical en-
ergy phases are stable. In Fig. 2(a), bistability and tristability
regions are indicated.

The critical fields bounding the existence of the I∗ phases
coincide with those bounding the stability of some critical en-
ergy points. When 0 < hk < 2he, the lower hcr2 and upper
hcr3 bounds for the existence of +Iπ and +I0 phases are the
lower stability bound for the SFO phase and the upper stability
bound for the AFM phase, respectively. If further hk ≤ 2he/3,
the +Iπ and +I0 phases can exist and are always saddle points
precisely in the bistability region for AFM and SFO phases.
If 2he/3 ≤ hk ≤ 2he, the +Iπ and +I0 phases can exist as sad-
dle points in the bistability region of the AFM and SFO phases

TABLE V. Summary of lowest-energy critical phases.

Parameter regime Phase name Lowest energy field interval

hk > 0
hk < he

AFM 0 ≤ h0 ≤ hcr5
SFO hcr5 ≤ h0 ≤ hcr1

FM, spin-up h0 ≥ hcr1

hk > he
AFM 0 ≤ h0 ≤ hcr6

FM, spin-up h0 ≥ hcr6

hk < 0
IPAFM h0 = 0
Canting 0 < h0 ≤ hcr1

FM, spin-up h0 ≥ hcr1

and some part of the bistability region of the AFM and spin-up
FM phases. In addition, the existence regime of the −Iπ and
−I0 saddle points lies entirely in the tristability region of the
AFM, spin-up FM, and spin-down FM phases when hk > 0.

To identify phase transitions, we evaluate the energy of each
critical energy phase. The lowest critical energy points are
summarized in Table V where

hcr5 ≡
√

hk(2he −hk),

hcr6 ≡ he.
(13)

When hk > 0, the SFO phase transition is found to only be
possible when hk < he. When hk ≥ he, the spin-flip (SFI)
transition from the AFM to FM phase takes place. Thus, the
energetically stable region of the SFO phase is larger than the
energetically preferred region. This indicates that, even when
ESFO > EAFM, the SFO phase may be achieved in the bistabil-
ity region. The same argument applies to the AFM and FM
phases in their bistability and tristability regions when hk > 0.
Combining the stability analysis and the lowest energy calcu-
lation, we obtain the energetically preferred phases as global
energy minima shown in Fig. 2(b).

To apply Fig. 2 in a realistic setting, we list a few AFM
materials and discuss the accessible phase transitions. Tran-
sition metal oxides, such as NiO and MnO, are examples
of easy-plane AFMs. For NiO, the easy-plane anisotropy
field is HA = −505 kA/m and AFM exchange field is HE =
771 MA/m,17 giving h̄k = −6.56×10−4. Examples of easy-
axis AFMs with stronger AFM exchange than anisotropy are
fluorides such as MnF2 and FeF2. For MnF2, the easy-axis
anisotropy field is HA = 653 kA/m and the AFM exchange
field is HE = 41.9 MA/m,17 giving h̄k = 0.0156 < 1. Ac-
cording to Fig. 2(b), the SFO transition will take place when
the applied magnetic field along the easy axis exceeds hcr5 =√

hk(2he −hk), in agreement with the critical transition field
in Rezende et al.17 Moreover, because h̄k = 0.0156 < 2/3,
only AFM-SFO bistability will exist when hcr2 < h0 < hcr3.
For easy-axis AFMs with stronger anisotropy than AFM ex-
change, a well-studied material is FeCl2,25,26 which has easy-
axis anisotropy field HA = 13.5 MA/m and AFM exchange
field is HE = 867 kA/m, yielding h̄k = 15.6 > 1. Both the
material parameter coefficient, h̄k ≥ 1, and the critical field for
the SFI transition, h̄cr6 = 1, agree with the results presented in
Jacobs and Lawrence25 at 0 K. According to Fig. 2(a), since
h̄k = 15.6 > 2, bistability and tristability regimes are accessi-
ble.
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FIG. 3. Energetics of critical energy points when |ΦA −ΦB|= π . Energy magnitudes of critical energy points are plotted when (a) h̄k = 1/3,
(c) h̄k = 1, and (e) h̄k = 3. The vertical axis is the scaled energy Ē = E/he, the horizontal axis is the scaled applied field h̄0. Energy contours
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indicates Ē. The black dotted curves in the energy contour plots are the lowest energy path connecting global energy minima through the +Iπ

saddle point.

While the I∗ phases are never energetically stable, they do
play a role in phase transitions. We focus on the |ΦA −ΦB|=
π case and thus only +Iπ and −Iπ are relevant. Fig. 3 plots the
energy magnitudes and energy contours with |ΦA −ΦB| = π

for several values of h̄k: h̄k = 1/3, 1, and 3 in the top, middle,
and bottom rows, respectively. In Fig. 3(a) when h̄k = 1/3, the
energetics are investigated in the AFM-SFO bistability region.
In the contour plots for different h̄0 in Fig. 3(b), the AFM and
SFO phases are local energy minima while the +Iπ phase is
the saddle point in between, serving as the energy barrier be-
tween the AFM and SFO phases. Similarly, in Figs. 3(c) and
3(d) when h̄k = 1, the +Iπ phase is a saddle point that serves
as the energy barrier between the AFM and SFO phases. The
subtlety here is that when the AFM and SFO phases have the
same energy (at h̄0 = 1), the SFO phase saturates to the spin-
up FM phase (lower left corner in Fig. 3(d)). Thus, when
h̄k ≥ 1, the phase transition that takes place is the SFI tran-
sition. In Figs. 3(e) and 3(f) when h̄k = 3, the +Iπ phase
serves as the energy barrier between the AFM and spin-up FM
phases. When h̄0 = 0.4, the spin-down FM phase is a local en-
ergy minimum (upper right corner in Fig. 3(f)), although very
shallow, and the −Iπ phase is a saddle point. Thus, the −Iπ

phase functions as the energy barrier between the AFM and

spin-down FM phases in the tristability region of the AFM,
spin-up FM, and spin-down FM phases. Hence, the +Iπ phase
is the energy barrier between the AFM and SFO phases and
between the AFM and FM phases in the bistability and trista-
bility regions. The −Iπ phase is the energy barrier between
the AFM and FM phases in the tristability region. The energy
barrier heights when hk > 0 are evaluated to be

E+Iπ =
h2

0 −h2
k −2h0

√
hk(2he +hk)

2hk
,

E−Iπ =
2h0

√
h2

0 +2hehk +h2
k +2h0

√
hk(2he +hk)−h2

0 −h2
k

2hk
.

(14)
The coexistence of multiple energetically stable phases sug-

gests (1) possible spatial transitions between energy minima if
weak spatially inhomogeneous exchange interactions are in-
cluded, and (2) thermally activated switching between stable
states if thermal fluctuations are present. The energy barrier
in both cases is determined by the saddle points. Taking the
+Iπ saddle point as an example, we adiabatically trace the
steepest energy descent paths between (1) the AFM and SFO
phases in the AFM-SFO bistability region, and (2) the AFM
and FM phases in the AFM-FM bistability region. These low-
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FIG. 4. Illustrations of AFM domain walls constructed from pairs
of energetically stable phases that are connected by following the
steepest energy descent paths from an energy saddle point. (a) h̄k =
1/3 and h̄0 =

√
5/3; (b) h̄k = 1 and h̄0 = 1; (c) h̄k = 3 and h̄0 = 1.

est energy paths are plotted in Figs. 3(b), 3(d), and 3(f) when
the local energy minima have the same energy. Illustrations
of AFM domain walls constructed in this manner are pro-
vided in Fig. 4. Figure 4(a) plots the spatial transition from
the AFM phase to the SFO phase. If the end SFO phase fur-
ther transitions back to the beginning AFM phase through the
+Iπ phase, then we obtain a soliton. Similarly, spatial transi-
tions between the AFM and FM phases can be constructed
with illustrations provided in Figs. 4(b) and 4(c). If ther-
mal fluctuations are present, the steepest descent paths we
trace in Fig. 3 are the dynamic trajectories with the highest
probability27 for a thermally induced switching event due to
weak thermal noise. According to Kramers’ theory,28 the ther-
mally activated transition rate is

τ
−1 ∼ exp(−U/kBT ), when kBT ≪U, (15)

where U is the energy barrier determined by the saddle points,
kB is the Boltzman constant, and T is the temperature.

In conclusion, we provide phase diagrams in terms of the
applied magnetic field and identify the material parameter
regimes for energetically stable and energetically preferred
phases in a static, spatially homogeneous AFM at 0 K. All
possible phase transitions are exhaustively identified by lever-
aging both local energy concavity and relative energy magni-

tudes. Using the macrospin model, a complete classification
of the existence and energetic stability of all critical energy
points is achieved. For the nonstandard I∗ and DFM phases,
our analysis demonstrates that they are never energetically sta-
ble. Moreover, the +Iπ phase is explicitly identified to be
the energy barrier during SFO and SFI transitions. The −Iπ

phase is the energy barrier between the AFM and FM phases
in the tristability region. Our thorough study of the energy
landscape provides theoretical guidance for constructing spa-
tial magnetic textures, thermally activated switching, and the
appropriate material parameter regime for them.

ACKNOWLEDGMENTS

M. Hu would like to acknowledge support from the Na-
tional Institute of Standards and Technology Professional Re-
search Experience Program.

1A. C. Swaving and R. A. Duine, “Current-induced torques in continuous
antiferromagnetic textures,” Phys. Rev. B 83, 054428 (2011).

2E. G. Tveten, A. Qaiumzadeh, O. A. Tretiakov, and A. Brataas, “Staggered
dynamics in antiferromagnets by collective coordinates,” Phys. Rev. Lett.
110, 127208 (2013).

3O. Gomonay, T. Jungwirth, and J. Sinova, “High antiferromagnetic domain
wall velocity induced by Néel spin-orbit torques,” Phys. Rev. Lett. 117,
017202 (2016).

4D. R. Rodrigues, K. Everschor-Sitte, O. A. Tretiakov, J. Sinova, and
A. Abanov, “Spin texture motion in antiferromagnetic and ferromagnetic
nanowires,” Phys. Rev. B 95, 174408 (2017).

5H. J. Mikeska, “Non-linear dynamics of classical one-dimensional anti-
ferromagnets,” Journal of Physics C: Solid State Physics 13, 2913–2923
(1980).

6A. M. Kosevich, B. Ivanov, and A. Kovalev, “Magnetic solitons,” Physics
Reports 194, 117–238 (1990).

7E. Galkina and B. Ivanov, “Dynamic solitons in antiferromagnets,” Low
Temperature Physics 44, 618–633 (2018).
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