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Velocity fields for Poiseuille flow through tubes having general cross section are 
calculated using a path integral method involving the first-passage times of random 
walks in the interior of the cross sectional domain B of the pipe. This method is 
applied to a number of examples where exact results are available and to more 
complicated geometries of practical interest. These examples include a tube with 
“fractal” cross section and open channel flows. The calculations demonstrate the 
feasibility of the probabilistic method for pipe flow and other applications having 
an equivalent mathematical description (e.g., torsional rigidity of rods, membrane 
deflection). The example of flow through a fractal pipe shows an extended region of 
diminished flow velocity near the rough boundary which is similar to the sup- 
pressed vibration observed near the boundaries of fractal drums. 

I. INTRODUCTION 

The problem of calculating fluid flow through and around complex-shaped boundaries has 
many applications. These applications include porous media problems’*2 where the boundaries are 
not simply connected, screens having complex-shaped holes and hole configurations,3 pipes and 
streams having undulating channel contour and irregularity in cross sectional shape.4T5 In the 
present article we focus on the idealized problem of Poiseuille flow through pipes having com- 
plicated (even “fractal”) cross sections to explore the influence of boundary shape on the flow 
velocity profile. The numerical calculations of the Poiseuille flow velocity field employ a proba- 
bilistic method involving averaging over random walk trajectories. Many boundary value prob- 
lems involving rough boundaries can be formulated from this point of view6 and in the present 
article we investigate the practical feasibility and accuracy of this type of Monte Carlo method. 

Stokes equation for laminar flow in a long tube of uniform cross section (“Poiseuille flow”) 
simplifies by symmetry to a potential theory boundary value problem. Specifically, if we denote 
the cross sectional domain defining the tube as 9 and the boundary of the the domain as ~73, then 
the velocity u(x) at a point x in the interior of Z satisfies the differential equation7,* 

qT2v = - APIL, (1) 

where AP is the (constant) pressure gradient, L is the tube length, and 77 is the solvent viscosity. 
Equation (1) assumes that the flow is slow enough that inertial terms in the Navier-Stokes 
equation can be neglected and that the tube is long enough to neglect end effects.’ The velocity of 
the fluid in the Poiseuille flow vanishes at the rigid pipe boundary so that we must supplement Eq. 
(1) by the usual “stick” boundary condition 
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The Poiseuille flow problem thus reduces to the classical Poisson equation with Dirichlet bound- 
ary conditions.7 Apart from the obvious applications of the Poisson equation to viscometrys7” and 
technological fluid flow problems where” tubes of complex boundary shape are involved, we note 
that there are numerous other applications involving the mathematical equivalent of Eqs. (1) and 
(2). For example, this equation also describes the torsion of an elastic rod of uniform and simply 
connected cross section where u(x) corresponds to the stress field and the torsional rigidity of the 
rod is related to the pipe flux in the “analog” flow problem. l2 A very extensive mathematical and 
technical literature has been devoted to investigating the relation between the torsional rigidity and 
the cross sectional shape of the rod12-16 and those results are directly transferable to our own 
problem. Equations (1) and (2) also describe the deflection of clamped membranes17 (the Prandtl 
“soap film analogy”) which provides a convenient experimental means of visualizing the velocity 
(or stress) fields in cases where the boundary shape is complicated. In plasticity theory this 
equation describes the optimal design of supporting plates having minimum weight” and deter- 
mines an important bound on the yield moments of thin uniformly loaded plates.” More recently 
chemical physics applications have been appreciated. For example, Eqs. (1) and (2) determine the 
electrostatic free energy of a conducting cavity containing electrolyte in the low salt limit2’ and the 
steady state concentration of a chemical species reacting with the boundary under diffusion limited 
conditions2’ Of course, the solution of the Poisson equation also arises in various electronics and 
other electrostatic field applications. 7(c) Finally we note applications involving heat transfer 
through pipes undergoing Poiseuille flow. 17722 The heat flux per unit length of a conducting fluid 
flowing by Poiseuille flow is proportional to AP and the volume flux [the integral of u(x) over !%‘j 
(Ref. 22) so that Eqs. (1) and (2) have importance in the design of heat exchangers. We conclude 
that there are many applications of Eqs. (1) and (2) where an easily implementable solution to this 
problem for shapes with complex boundaries would be valuable. 

In the next section we describe our probabilistic method for calculating Poiseuille flow ve- 
locity fields and in Sec. III we illustrate the algorithm with examples. We start with square duct 
flow since this model is analytically tractable and we compare our algorithm with finite element 
calculations for a notched duct where precise numerical solutions are available for comparison. In 
the final examples we consider more interesting geometries for the tube cross sections consisting 
of a fractal, a nonsimply connected flow space, and finally an open channel flow. Some prospects 
for generalizing the probabilistic algorithm are sketched in the discussion section. Some math- 
ematical aspects of the algorithm are discussed in the Appendices, while the main body of the 
article emphasizes the numerical implementation of the path integration calculation. 

II. PROBABILISTIC COMPUTATION OF THE POISEUILLE FLOW VELOCITY FIELD 

It has long been appreciated that potential theory problems can be recast probabilistically 
through an averaging over random walk paths. Courant er aZ.23 were the first to have recognized 
the theoretical possibilities of this approach, while Kak~tani~~ first discussed an explicit Brownian 
motion algorithm for the solution of the interior Dirichlet problem for Laplace’s equation. Donsker 
and Kac24 numerically estimated eigenvalues of Schrodinger’s equation from a path integral 
representation of the solution. In the 1940’s Wasow2’ proved that the mean first-passage time for 
generalized random walks is a solution of the generalized Poisson equation in the limit of small 
step sizes, where the random walk approaches a Brownian motion. In particular, this implies that 
the first-passage time of a symmetric random walk satisfies a discrete Poisson’s equation. Up to a 
constant of proportionality, the solution of Poisson’s equation at a point x in the interior of J?@, is 
u(x) = E,[T], the average first-passage time of a two dimensional Brownian motion path started at 
x EJ%. This follows from the fact that 

v2u= -2 (3) 
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on the interior of 9 and u =O on the boundary X9. The velocity field u(x) can therefore be written 
as 

v = APE,[ r]/2 vL. 

Following Wasow, our explicit algorithm is based on approximating Brownian motion by a ran- 
dom walk originating in the interior of L@, and using the fact that the average first-passage time 
satisfies the discretized form of Eq. (4). A short proof of this fact can be found in the Appendices. 

It should be mentioned that Torquato et al. have considered random walk calculations of E,[ r] 
in various model porous media as part of their modeling of the rate of diffusion limited reaction 
rates in these complex geometries and the conductivity of inhomogeneous materials.26 Torquato27 
has also derived a rigorous bound on the permeability K of a porous medium involving an average 
of E,[r] over the pore space, and the utility of these bounds has recently been considered by 
Schwartz et d2’ In contrast to these previous contributions we are interested in calculating ve- 
locity fields by random walk simulation as well as average fluxes and permeabilities. 

We consider a rectangle containing the domain 9 on which values of the flow velocity are 
defined. Two dimensional random walks are initiated at each interior position of 9 and are 
terminated when the path reaches the boundary. When the boundaries are relatively simple, de- 
tecting when the walk has exited is straightforward. It was desirable, however, to be able to handle 
the more complex-shaped boundaries encountered in hydrodynamic flow applications (for ex- 
ample, when the cross section is obtained from a micrograph of a porous medium) without doing 
a time consuming comparison with every point of the boundary each time a random step is taken. 
We therefore employed a constrained Delaunay triangulation of 5Yto establish a “roadmap” of the 
interior by triangulating the rectangle into triangles that were labeled as interior or exterior relative 
to the boundary of a2’ The position of the random walk was monitored by identifying the 
Delaunay triangle that contained it. If a random walk step was taken from an interior to an exterior 
triangle and was within a step size of a boundary point the step was defined to be an exit. To 
increase the accuracy a small step size was used. The results of the procedure are shown in the 
next section where the velocity fields are plotted as a function of the position x within the cross 
section. 

Ill. ILLUSTRATIVE PROBABILISTIC CALCULATIONS OF THE VELOCITY FIELD 

Although many computational techniques (finite element, variational, conformal mapping) 
exist for calculating the velocity field and flux of Poiseuille flow for complex-shaped 
boundaries,137’5*‘6 the probabilistic method based on Ref. 14 has the advantage of ease and flex- 
ibility of implementation to boundaries of essentially arbitrary shape. This is particularly impor- 
tant in cases where values of u need to be known only approximately. Very little is known in 
general, however, about the accuracy of these formal probabilistic calculations. Therefore we will 
consider some simple examples where exact analytic, numerical, and experimental results are 
known. An early theoretical result of Wasow25 proves that the error of the probabilistic calculation 
for shapes with smooth boundaries is on the order of the step size of the random walk. Our 
numerical calculations demonstrate the feasibility of the method. We then consider more compli- 
cated shapes where the flexibility of the probabilistic approach should be of practical advantage. 
The first nontrivial example is a pipe with a fractal boundary similar to one that has been of recent 
interest as a model porous medium. For example, Stokes equation for a fractal domain has been 
discussed in a number of articles by Adler and co-workers in both the two and three dimensional 
cases and they compute an average permeability29 for the corresponding flows. The related bound- 
ary value problem of vibration of fractal drums has also been treated recently.6(a)330 Finally, tech- 
nologically motivated flow geometries that arise in automotive applications are discussed. 
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PATH INTEGRAL ISOVELS FOR SQUARE CROSS SECTION 
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PATH INTEGRAL CALCULATION SQUARE CROSS SECTION 
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FIG. 1. Velocity fields for a duct having a square cross section calculated by probabilistic method. (a) Lines on the interior 
of square domain denote isovelocity contours. (b) Magnitude of velocity field for square duct in relief. The velocity field 
in (b) strongly resembles the experimentally determined velocity field obtained by laser doppler velocimetry (Ref. 31). The 
average absolute donation of the numerical results from analytical calculation was 2.4%. 

A. Square duct 

The rectangular duct is one of the simplest classical geometries for which analytical and 
experimental results are available.7S8 This geometry has also been examined recently to test the 
accuracy of laser doppler velocimetry as a method of measuring velocity fields.31 In Fig. 1 we 
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FIG. 2. Velocity field for “notched” duct. The notched duct arises in modeling flow through a duct having periodically 
placed cylindrical inclusions. The dark region in the left corner corresponds to the inclusion so there is no flow in this 
region. The dark surface represents the flow velocity field calculated probabilistically while the white circles represent 
finite element calculations (Ref. 32). The average absolute deviation of the probabilistic and finite element calculations is 
less than 2%. 

show the probabilistic calculation of the velocity field for the rectangular duct where the duct cross 
section is partitioned into a 40X40 grid. At each interior point 3000 random walks are launched 
and then stopped either when they reach the boundary of the rectangle or the maximum number of 
times steps TMAX= 1000 have been taken. Figure l(a) shows the isovelocity contours (or isovels) 
in the square cross section, while Fig. l(b) shows the velocity field surface with the maximum 
velocity normalized to equal 1. It is interesting to note that the calculated velocity field (including 
the mild statistical fluctuations) closely resembles the experimentally determined velocity field in 
Ref. 31. A comparison with the exact velocity field shows agreement to within an average of 2% 
at the interior points of the duct. 

8. Rectangular duct with round notch 

The rectangular duct with a circular notch geometry arises in an injection molding 
application.32 We will compare the results of our calculation with a numerical solution obtained by 
the finite element method. 828 1 points in the interior were used as initial positions on a rectangular 
grid with dimensions 0.5X0.6. In this calculation 2000 walks were performed for each position 
and the maximum number of steps was TMAX=40 000. The step size in this and the following 
example in Sec. IV C was h=0.005. On comparing with the finite element calculation at 441 
points in the interior we found an average absolute error of 1.4%. Figure 2 shows a smoothed 
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FIG. 3. Boundary of model fractal duct. The choice of boundary shape is motivated by related experimental and theoretical 
studies of the vibration of a fractal drum having the same shape (Ref. 30). 

velocity surface obtained from the Monte Carlo calculation along with the results of the finite 
element calculation depicted as white balls. 

C. Fractal boundary 

There has been significant recent interest in the influence of boundary shape on the vibration 
of membranes.30 It has been suggested that the existence of many fractal-like structures in nature 
may have their origin in the stabilizing effects of the fractal boundary in damping harmonic 
excitations.30 Similarly, it is interesting to inquire into the related Poiseuille flow problem to see 
the influence of the rough boundaries on duct flow. @ ) We now illustrate the results of a Monte 
Carlo calculation on a fractal “snowflake” shown in Fig. 3. The boundary of this shape consisted 
of 16 384 points (about 5 generations). 10201 points in the interior of a rectangle containing the 
shape were used as initial positions of the walk. Figure 4 shows the surface of first-passage times 
which on suitable normalization is the velocity at each point. The maximum number of steps 
TMAX was 40 000. 

We observe from Fig. 4 that the velocity field qualitatively resembles the fundamental mode 
in the corresponding drum vibration problem3’ and that the rough boundary tends to create a 
nonmontone variation of the velocity field from the center of the flow, giving rise to an extended 
region near the boundary where the flow is slow but nonvanishing. The effect is quite similar to 
the damping of the membrane motion observed near the boundary in the fractal membrane prob- 
lem. It seems reasonable to speculate that the reduced shear straining near the boundary could 
provide a mechanism for the stabilization (and thus formation) of such fractal boundaries in 
nature. There are classical arguments for the complex branching structures observed in the blood 
vessels of organisms which are based on the idea of minimizing the dissipation of energy in 
Poiseuille flow subject to the constraint of the energetic cost of forming the capillary structure.33C 
The fundamental mode in the fractal drum problem displays interesting mathematical behavior 
consistent with the physical considerations just described. Very pronounced gradients of the eigen- 
function occur near certain points of the boundary. Sapoval first observed this formally and 
experimentally and discussed their physical implications in similar terms.50(c) Calculation of the 
drum eigenfunctions for fractal boundaries is a nontrivial problem and these sharp features can be 
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PATH INTEGRAL CALCULATION FOR FRACTAL CROSS SECTION 
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FIG. 4. Probabilistic estimate of the velocity field of a fractal tube. The velocity field corresponds to the tube cross section 
shown in Fig. 3. 

easily missed in an approximate calculation. However, Lapidus and Pang recently proved the 
existence of points on the boundary of “snowflake” domains where the gradient approaches 
infinity as the boundary is approached. Their results are in fact valid for a larger class of domains 
that include the fractal shape we are considering. Lapidus in joint work with Neuberger, Renka, 
and Griffith computed the gradient of the eigenfunction numerically and found such high gradient 
points as can be seen in their plotted surface. 50(b) We suspect that an analogous phenomenon 
occurs in our case. One can see that there are spikes near certain points of the boundary. We 
conjecture that there exists points on the boundary of the fractal snowflake where the gradient of 
the solution of the Poisson problem approaches infinity. A way to investigate this conjecture is 
suggested in Appendix A. We also note the related phenomenon of injecting a low viscosity fluid 

‘into a viscous medium where the boundary is free to evolve to minimize dissipation. The flow 
structure often obtains a conspicuously fractal character if injection occurs at a sufficiently high 
rate. A random walk formulation of this type of flow instability has recently been given.33(c) 

There is another application of this type of probabilistic calculation involving a fractal bound- 
ary. Duplantie?’ has recently shown that the leading term in the electrostatic free energy of a 
conducting cavity containing electrolyte in the low salt limit is governed by the mean first-passage 
time averaged over all interior coordinates. These results, which are relevant to the properties of 
colloid solutions, can be immediately obtained from our algorithm. 

D. Special flows 

We next consider a special flow involving a nonsimply connected flow space which arises in 
applications and also a channel flow. Figure 5 shows the calculated isovels of an ideal fiber 
material in which the circular cylindrical fibers are parallel to the flow direction and are situated on 
a square lattice within a rectangular channel. No attempt was made to exploit the symmetry of the 
problem and the local variations in the flow velocity reflect fluctuations in the probabilistic cal- 
culations. This was a relatively short calculation (TMAX= 1000) with a large random step, 
h =O.Ol. There were a total of 8281 positions at which random walks were initialized with 800 
walks performed at each position. Permeability of 4X4 subsquares of this array were carried out 
and compared with finite element calculations and agreed to 10%. Observe the interesting topo- 
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FIG. 5. Flow through tube with cylindrical inclusions. This geometry, which arises in injection molding applications, 
illustrates a nonsimply connected flow space. The probabilistic calculations of the velocity field reveal interesting changes 
in topology with changes in the placement and size of the obstructions. These geometric aspects of “screening” deserve 
further study. 

logical structure of the isovels in Fig. 5 which reflect the strong hydrodynamic interaction between 
the fibers and between the fibers and the walls. Experiments show that small fluctuations in the 
placement of the fiber plugs can lead to large changes in the flux through the mesh.34 It would be 
interesting then to consider fluctuations in the fiber plug placement to investigate the resulting 
influence on the Poiseuile velocity field and the net flux. 

As a final example we consider a channel flow with a free surface exposed to air. We suppose 
that the idealized free surface is perfectly flat and the channel cross section is uniform as in the 
duct flow above. At the air surface, the normal derivative of the velocity vanishes (the Neumann 
boundary condition). This type of flow is important for modeling flow in extruders where the 
channel is imagined to be wrapped around a cylinder. The probabilistic method can still be applied 
in this case (see Appendix B for the mathematical argument) by using random walks that reflect 
back into the interior of the region Bat the air surface boundary.7 The results of the calculation for 
a triangular shaped channel can be seen in Figs. 6(a) and 6(b). Note the enhanced velocity near the 
air surface. 

IV. DISCUSSION 

There are many physically important boundary value problems of mathematical physics which 
can be formulated in terms of integration in the space of continuous functions. In other words, the 
solution of these problems can be obtained by evaluating some functional of Brownian motion. 
From the computational point of view this generally means averaging over random walks, the 
discretized analog Brownian motion. The functionals we are interested in calculating generally 
involve what are called “stopping times” in probability theory and “first-passage” times in the 
physical literature. These techniques have been known to researchers in probability theory for 
decades, and have been used increasingly by scientists in other fields in recent years. With the 
advent of powerful parallel computational facilities the exploration of these methods for solving 
problems involving complicated boundaries should be undertaken. Our primary motivation was to 
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PATH INTEGRAL CALCULATION TRIANGULAR CROSS SECTION 

ISOVELS AND VELOCITIES FOR TRIANGULAR CHANNEL AS IN 6A 
1, 

0.0, 
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04 

FIG. 6. Velocity field of a triangular duct with a “free” air surface. This type of open-channel flow arises in modeling 
extruder flow. The probabilistic calculations in (a) show the gradient in the velocity field from the top of the triangular duct. 
Figure (b) shows the projected “isovel” lines. Notice that the fluid moves much faster at the free. air surface. The flux is 
greatly diminished when the free surface touches a solid boundary. This means that the partially filled extruder will have 
a much greater flux at the same pressure drop. Many qualitative features of such complex flows can be understood 
intuitively from the probabilistic algorithm for calculating velocity fields. The increased intuition which comes with this 
new means of modeling flow should be as important as the capacity of the probabilistic method to treat complex bound- 
aries. 
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demonstrate the viability of the probabilistic path averaging method. Thus, we consider simple 
flow geometries (square and notched rectangle) to check the accuracy of the method and more 
complicated geometries that illustrate its versatility and ease of implementation. For high precision 
calculations of the velocity field at each point of a cross section with relatively smooth geometry 
other methods have an advantage, but in complex geometries high precision may be quite difficult 
to achieve both numerically and experimentally. Quantities of practical interest such as the per- 
meability or flux frequently require lower precision and errors of a few percent will be quite 
adequate. 

The probabilistic averaging technique for Poiseuille flow is shown to give accurate results in 
test cases. At present the technique sometimes requires long computational times relative to more 
conventional techniques for simple boundaries. However, we suspect this method is competitive 
when boundaries are complex and implementation of alternatives becomes time consuming or 
difficult. We are currently working on improving the computation time and are encouraged by the 
fact that dramatic reductions in computation time were achieved recently for a similar algorithm 
that calculates the capacity of objects having complex shape. 36 In connection with this work we 
note that Brownian motion rather than random walks can be used in our algorithm.36 

Our calculations of the velocity field of Poiseuille flow for complex-shaped boundaries lead to 
many interesting results which are independent of the mathematical motivation of the present 
work discussed above. There are numerous technological problems which can be related to Pois- 
son’s equation (1) with Dirichlet boundary conditions and our probabilistic method also provides 
an algorithm for solving these problems. The illustrative example of a fractal boundary shows the 
general effect of diminished flow near the rough boundary which complements observation of 
suppressed vibration near the boundaries of clamped fractal drums. These observations could have 
an important bearing on the formation of fractal channels in nature which arise under flow con- 
ditions where the boundaries are free to adjust to minimize dissipation in flow. The probabilistic 
calculations for flow through a channel with obstructions also show interesting long range screen- 
ing effects between the obstructions which are reflected in a changing topology of the isovel lines 
with position and density of the obstructions. These effects deserve further study and the proba- 
bilistic algorithm provides a convenient vehicle for such studies. 

Recently, there has been interest38’39 in modeling non-Newtonian pipe flow and a generaliza- 
tion of the probabilistic method to describe such flows (which often arise in practice) would be 
useful. A few speculative remarks on such generalizations are worth mentioning. At high flow 
rates the flow through a pipe becomes turbulent. Momentum diffusion from the pipe interior to the 
boundary can be expected to be facilitated by large scale coherent structures in the turbulent 
fluid.39 Hayota has generalized the lattice gas approach to tube flo~,~r which recovers the Poi- 
seuille flow when momentum diffusion occurs as a local nearest-neighbor process, to the more 
spatially erratic momentum diffusion expected in the more turbulent fluid, assumed to occur as a 
Levy random walk. This argument is evidently an approximate one, but can be expected to capture 
salient features of the velocity field of turbulent fluid flow and indeed the lattice gas calculations 
of Hayot have a qualitative resemblance to observed turbulent flow velocity fields.42 We can 
similarly generalize our algorithm to employ Levy flight random walks rather than nearest- 
neighbor random walks. In the case of a circular duct exact analytical results are known for the 
average first-passage time of the Levy random walk which illustrate the qualitative effect to be 
expected for this model of erratic momentum diffusion. For a Levy flight having index LY the 
average exit time E,[T] for a circle (cross section of a circular duct) equals43 

where x is the distance from the center of the duct in units of the duct radius R, and N( a,d) is a 
constant depending on cy and on the dimensionality d of the cross section. The usual parabolic 
profile is recovered in the nearest-neighbor random walk as an approximation to Brownian motion 
((u=2). For the case a<2 we obtain a flattening of the velocity profile associated with increasing 
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spatial intermittency of momentum diffusion. This qualitative effect is seen in experiments on 
turbulent pipe flows and in the model lattice gas calculations of Hayot.40 Quantitative calculation 
requires a self-consistent means of calculating the index cy. In the meantime we note that com- 
parison of Fq. (5) to the velocity field of high Reynolds number (Re= 106) flow through a circular 
cross section pipe42 [see Fig. l(D) of Ref. 421 shows agreement to within a few percent when 
a=0.28. The Levy flight approach seems very promising from an experimental standpoint. It 
would be interesting to see if the Levy flight first-passage time calculations reproduce the unusual 
velocity fields observed in turbulent flow through noncircular ducts.42 

It is also observed that certain complex fluids exhibit deviations from Poiseuille flow even at 
low flow rates.44*45 In polymeric fluids46 and suspensions of particles46 this effect is often ob- 
served. DeGennes45 has suggested that flow in polymeric fluids occurs with partial slip rather than 
the stick boundary condition (2). This view is consistent with the momentum diffusion to the 
boundary being inefficient due to “entanglement” effects in the polymer fluid. A similar effect 
might be expected in the particle suspension due to the granularity of the fluid.4’ Replacing the 
stick boundary condition in the random walk calculation with a boundary condition in which the 
random walk is killed with a certain probability,46 should lead to a flattening of the velocity field 
similar to that as observed experimentally. The character of this flattening should be distinctly 
different than the turbulent fluid case. It remains to be seen whether this approach would lead to 
a quantitative description of observed non-Newtonian pipe flows, but this model seems worth 
exploring. 

The Poiseuille flow calculations suggest many further generalizations even in cases where 
slow (“Stokes”) flow is an appropriate idealization. Three dimensional ducts with sufficiently 
smooth axial geometry can be approximated by sequentially piecing together sections with con- 
stant cross sections. Assuming the pressure gradient is slowly varying, a solution of Eqs. (1) and 
(2) for the approximate stack geometry can be computed by requiring that volume fluid flow be 
conserved across the interface. Geometries to which this can be applied arise in practice. McCau- 
ley in Ref. 47 demonstrated that North Sea sandstone rock formations are in good agreement with 
such an idealized stack model. This method could be used to study flow through porous media of 
this type. 

In conclusion, the probabilistic path averaging method promises to be a versatile tool in 
hydrodynamic and other technical applications and we have only begun to explore the potentiali- 
ties of this method. 
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APPENDIX A: DERIVATION OF ALGORITHM EQUATIONS 

The purpose of this section is to discuss the mathematical aspects of our work in a little more 
detail, first showing the mathematical foundation for the probabilistic algorithm. As we mentioned 
in the article, these facts are well known to probabilists but may be less well known to others 
particularly in the discrete time and state space setting of random walks. We will therefore present 
a brief discussion and derivation for random walks that in the continuous time and state space 
setting of Markov processes is known as Dynkin’s formula. The formula can be interpreted as a 
path integral representation of the solution of Poisson’s equation and our algorithm is essentially 
a Monte Carlo implementation of it. Our discussion in the article dealt with random walks on a 
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grid in R2 but the basic ideas are applicable to random walks on a grid of vectors in R’, where 
x’= (Xl ,X2 , . . . ,xJ, with xi= k&r, ki E Z and h >O is the distance between neighboring grid points. 
Any such x’ can be represented as 

i=x&+-Xle;, (AlI 

where pi is the vector in R’ whose ith component is 1 and all other components are zero. The set 
of all vectors satisfying Rq. (Al) will be called H’. Arrows over the vectors will be dropped in the 
succeeding discussion. We are interested in the symmetric nearest-neighbor random walk where 
the probability that a walker situated at x and taking a single step, arrives at y and satisfies 

p( 1 J,Y) = 
l/21, if y=x+hek for some k=l***Z 
0, otherwise. 

Let f be a real valued function defined on H’. Define the operator P on the set of such functions 
as 

W) 

where x(1) is the position of the walker after the first step. In view of Eq. (A2) we have 

k=I 
pf(x)= 1121 c f(x+hek), 643) 

k=-I 

wheree-,=-e,. Denoting the identity operator by I, we can form (P - Z)lh2, a discretization of 
A/2 where A is the Laplacian operator. In what follows we can assume without loss of generality 
that h = 1. We now seek a solution f of the discretized Poisson equation. 

(P-Z)f(x)= - 1 644) 

if .rEBCH’ and 

f(x)=0 6-1 

for x E dB, with f: H’ + R and where dB is the set of points not in B that have at least one 
neighbor in the set B. If BC H’ is finite, the existence and uniqueness off is proven in Ref. 48. 
The proof for 1G2 is different and more difficult than the case 123, a reflection of the fundamental 
difference in the behavior of the random walks in these spaces. 

For all dimensions the following properties of the powers of P will be useful. Let p( n ,x,y) be 
the probability that a walker situated at x winds up at y after taking n random walk steps. The 
so-called Markov property then implies 

zdn+l,x,y)= c p(l,x,z)p(n,z,y). 
zeH’ 

Thus if P”f(x) = CYEH~ p(n,x,y)f(y) then 

646) 
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It will also be useful to write P"f (x) = E&(x(n)). As discussed in the text our goal is to relate the 
first-passage time of a random walk starting in B to the boundary dB, denoted by the letter T, to 
the solution of Eqs. (A4) and (A5). We will assume that the set B U dB is finite so that the expected 
value of T is finite for all starting points in B. 

Let II be an arbitrary bounded function u: H’ + R. We define the functions c$,, for O<a< 1 
as 

(I-aP)u=qs,. L47) 

Now u can be written as 

dx)= c d,.,.,,,=,,( j. d,.,,.,,). 
n=O 

The probabilistic algorithm is based on the following: 
Theorem 1: 

Proof of theorem: 

c48) 

L49) 

Ex[ i. a%Jxm] =Ex[ z afv.(x(.,,i +E.[ fI awcxD] WO) 
but 

Ex[ + &f&b))] =Ex[ arjio ~kAhd~+W ]. 
Since the conditional probability that the path at time dk is at y when the path was at z at time 
~satisfies Prob(x(T+k)=y[x(T)=z}=P(k,z,y) 

We have 

E.z[ - ~n&W ] =Ex[ $io Q-)A(-W) =EJ-a74x(4)1. ] 
Now Eqs. (A9) and (A7) imply that 

r-l 

u(x)=E, c (I-aP)u(x(n)) +E,[(u~u(x(T))]. 
n=O 1 

We assume E,(T)<~ for all x E B, so that the limit of Eq. (All) as (Y -+ 1 is 

(All) 
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7-I 
O)=E, c (I-P)u(x(n)) +E,(dx(d)). (A13 n=O 

Noting that any random walk that has exited B must be located in dB at time r, we find on 
substituting the the solution f of Eqs. (A4) and (A5) for u in the above equation that 

(A13) 

The extension of Theorem 1 to continuous time processes like Brownian motion is accomplished 
by appealing to the the strong Markov property. 

APPENDIX B: REFLECTING BOUNDARY CONDITION 

Although example in Sec. III involves a reflecting rather than absorbing boundary condition 
on one side of the triangle, the probabilistic algorithm still produces a solution of Stokes equation 
with these boundary conditions. To see this note that when the reflecting boundary of the triangle 
is extended out to +a, we may now consider reflecting Brownian motion in a wedge of angle 7~. 
The work of Varadhan and Williams28 shows that this process has the strong Markov property and 
hence Dynkin’s formula is valid. We consider 7 to be the time the process encounters the two sides 
of the triangle with absorbing boundary conditions. With this choice, the solution can again be 
expressed in terms of an average value of time 7 as before. 

APPENDIX C: POISSON’S EQUATION ON FRACTAL SHAPES 

A significant advance in understanding some of the unique properties of the Laplacian opera- 
tor on irregular boundaries was achieved recently when Lapidus and Pang proved the existence of 
boundary points where the gradient of the principal eigenfunction tends to infinity, as the boundary 
point is approached.50 The class of domains they considered includes classical fractal shapes. In 
particular for the Koch snowflake there are an uncountable infinity of such points which can be 
characterized mathematically. Their result confirms the earlier observations of Sapoval and co- 
workers who did numerical and experimental investigations of the vibrational modes of fractal 
drums. It is not known at this point whether a similar property holds for solutions of the Poisson 
equation but the phenomenon may be investigated by studying the behavior of the variance near 
the boundary. The variance can be approximated directly from the simulations, so that an estimate 
of the L2 average of the gradient along the Brownian motion path is possible without calculating 
the gradient of the solution itself. Here Var(~)=E,[(rE,(T))~]. The variance is related to the 
velocity gradient because of the following: 

Theorem 2: Let B, be Brownian motion at time t and starting at x an interior point of D, at 
time t =O. Zf u is the solution of Eq. (1) and T is the time the path exits D, then 

va$~]=E, (Cl) 

The proof of the this theorem is a consequence of some basic results in the theory of stochastic 
integrals.52 One can then compute an average of the gradient as 

c-3) 

J. Math. Phys., Vol. 36, No. 5, May 1995 

Downloaded 10 Jul 2013 to 129.6.88.149. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



2400 Hunt, Douglas, and Bemal: Probabilistic computation of velocity fields 

We conjecture that boundary points that are near interior points for which Eq. (C2) is large are 
candidates for the divergent behavior seen in the eigenfunction case. The probabilistic algorithm 
can be used to detect such divergence and to check the results pf other numerical methods. 
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