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Abstract

The constrained orthogonal Procrustes problem is the least-squares

problem that calls for a rotation matrix that optimally aligns two ma-

trices of the same order. Over past decades, the algorithm of choice

for solving this problem has been the Kabsch-Umeyama algorithm

which is essentially no more than the computation of the singular

value decomposition of a particular matrix. Its justification as pre-

sented separately by Kabsch and Umeyama is not totally algebraic as

it is based on solving the minimization problem via Lagrange multi-

pliers. In order to provide a more transparent alternative, it is the

main purpose of this paper to present a purely algebraic justification

of the algorithm through the exclusive use of simple concepts from

linear algebra. For the sake of completeness, a proof is also included

of the well-known and widely-used fact that the orientation-preserving

rigid motion problem, i.e., the least-squares problem that calls for an

orientation-preserving rigid motion that optimally aligns two corre-

sponding sets of points in d-dimensional Euclidean space, reduces to

the constrained orthogonal Procrustes problem.
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1 Introduction

In the orthogonal Procrustes problem [2, 8], given real matrices P and Q of
size d× n, the problem is that of finding a d × d orthogonal matrix U that
minimizes ‖UQ − P‖F , where ‖ · ‖F denotes the Frobenius norm of a ma-
trix. On the other hand, in the constrained orthogonal Procrustes problem

[5, 6, 10], the same function is minimized but U is constrained to be a ro-
tation matrix, i.e., an orthogonal matrix of determinant 1. By letting pi, qi,
i = 1 . . . , n, be the vectors in R

d that are the columns from left to right of P
and Q, respectively, since clearly ‖UQ−P‖2F =

∑n

i=1
‖Uqi−pi‖

2, where ‖ · ‖
denotes the d−dimensional Euclidean norm, then an alternative formulation
of the two problems above is that of finding an orthogonal matrix U (of de-
terminant 1 for the constrained problem) that minimizes

∑n

i=1
‖Uqi − pi‖

2.
We note that minimizing matrices do exist for the two problems as the func-
tion being minimized is continuous and both the set of orthogonal matrices
and the set of rotation matrices are compact (in some topology). Finally,
in the same vein, another problem of interest is the orientation-preserving

rigid motion problem which is that of finding an orientation-preserving rigid
motion φ of Rd that minimizes

∑n

i=1
‖φ(qi)− pi‖

2. An affine linear function
φ, φ : Rd → R

d, is a rigid motion of Rd if it is of the form φ(q) = Uq + t for
q ∈ R

d, where U is a d × d orthogonal matrix, and t is a vector in R
d. The

rigid motion φ is orientation preserving if det(U) = 1, i.e., the determinant
of U equals 1. With p̄, q̄ denoting the centroids of {pi}, {qi}, respectively,
as will be shown in Section 3 of this paper, this problem can be reduced
to the constrained orthogonal Procrustes problem by translating {pi}, {qi}
to become {pi − p̄}, {qi − q̄}, respectively, so that the centroid of each set
becomes 0 ∈ R

d.
With P , Q, pi, qi, i = 1, . . . , n, as above, in this paper we focus our atten-

tion mostly on the constrained orthogonal Procrustes problem, and therefore
wish to find a d× d rotation matrix U that minimizes

∑n

i=1
‖Uqi − pi‖

2.
With this purpose in mind, we rewrite

∑n

i=1
‖Uqi−pi‖

2 as follows, where
given a square matrix R, tr(R) stands for the trace of R.

n
∑

i=1

||Uqi − pi||
2 =

n
∑

i=1

(Uqi − pi)
T (Uqi − pi) = tr

(

(UQ− P )T (UQ− P )
)

= tr
(

(QTUT − P T )(UQ− P )
)

= tr(QTQ+ P TP −QTUTP − P TUQ)

= tr(QTQ) + tr(P TP )− 2tr(P TUQ).
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Since only the third term depends on U , it suffices to find a d × d rotation
matrix U that maximizes tr(P TUQ). Since tr(P TUQ) = tr(UQP T ) (note
in general tr(AB) = tr(BA), A an n × d matrix, B a d × n matrix), de-
noting the d × d matrix QP T by M , this problem is equivalent to finding
a d × d rotation matrix U that maximizes tr(UM), and it is well known
that one such U can be computed from the singular value decomposition
of M [5, 6, 10]. This is done with the Kabsch-Umeyama algorithm [5, 6, 10]
(see Algorithm Kabsch-Umeyama below, where diag{s1, . . . , sd} is the d× d

diagonal matrix with numbers s1, . . . , sd as the elements of the diagonal, in
that order running from the upper left to the lower right of the matrix).
A singular value decomposition (SVD) [4] of M is a representation of the
form M = V SW T , where V and W are d × d orthogonal matrices and S

is a d × d diagonal matrix with the singular values of M , which are non-
negative real numbers, appearing in the diagonal of S in descending order,
from the upper left to the lower right of S. Finally, note that any matrix,
not necessarily square, has a singular value decomposition, not necessarily
unique [4].

Algorithm Kabsch-Umeyama

Compute d× d matrix M = QP T .
Compute SVD of M , i.e., identify d× d matrices V , S, W ,
so that M = V SW T in the SVD sense.
Set s1 = . . . = sd−1 = 1.
If det(VW ) > 0, then set sd = 1, else set sd = −1.
Set S̃ = diag{s1, . . . , sd}.
Return d× d rotation matrix U = WS̃V T .

Algorithm Kabsch-Umeyama has existed for several decades [5, 6, 10],
however the known justifications of the algorithm [5, 6, 10] are not totally
algebraic as they are based on exploiting the optimization technique of La-
grange multipliers. It is the main purpose of this paper to justify the al-
gorithm in a purely algebraic manner through the exclusive use of simple
concepts from linear algebra. This is done in Section 2 of the paper. Finally,
we note that applications of the algorithm can be found, in particular, in the
field of functional and shape data analysis [1, 9].
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2 Algebraic justification of the Kabsch-Umeyama

algorithm

We justify Algorithm Kabsch-Umeyama using exclusively simple concepts
from linear algebra, mostly in the proof of the following useful proposition.
We note that most of the proof of the proposition is concerned with proving
3. of the proposition. Thus, it seems reasonable to say that any justification
of the algorithm that requires the conclusion in 3. but lacks a proof for it, is
not exactly complete. See page 47 of the otherwise excellent thesis in [7] for
an example of this situation. See [3] for an outline of this dissertation.

Proposition 1: If D = diag{σ1, . . . , σd}, σj ≥ 0, j = 1, . . . , d, and W is a
d× d orthogonal matrix, then
1. tr(WD) ≤

∑d

j=1
σj .

2. If B is a d× d orthogonal matrix, S = BTDB, then tr(WS) ≤ tr(S).
3. If det(W ) = −1, σd ≤ σj , j = 1, . . . , d− 1, then tr(WD) ≤

∑d−1

j=1
σj − σd.

Proof: Since W is orthogonal and if Wkj, k, j = 1, . . . , d, are the entries of
W , then, in particular, Wjj ≤ 1, j = 1, . . . , d, so that

tr(WD) =
∑d

j=1
Wjjσj ≤

∑d

j=1
σj , and therefore 1. holds.

Accordingly, assumming B is a d×d orthogonal matrix, since BWBT is also
orthogonal, it follows from 1. that
tr(WS) = tr(WBTDB) = tr(BWBTD) ≤

∑d

j=1
σj = tr(D) = tr(S), and

therefore 2. holds.
If det(W ) = −1, we show next that a d × d orthogonal matrix B can be

identified so that with W̄ = BTWB, then W̄ =
(

W0 O

OT
−1

)

, W0 interpreted as

the upper leftmost d− 1× d− 1 entries of W̄ and as a d− 1× d− 1 matrix
as well; O interpreted as a vertical column or vector of d− 1 zeroes.
With I as the d×d identity matrix, then det(W ) = −1 implies det(W +I) =
−det(W )det(W+I) = −det(W T )det(W+I) = −det(I+W T ) = −det(I+W )
which implies det(W + I) = 0 so that x 6= 0 exists in R

d with Wx = −x.
It also follows then that W TWx = W T (−x) which gives x = −W Tx so that
W Tx = −x as well.
Letting bd = x, vectors b1, . . . , bd−1 can be obtained so that b1, . . . , bd form
a basis of Rd, and by the Gram-Schmidt process starting with bd, we may
assume b1, . . . , bd form an orthonormal basis of Rd with Wbd = W T bd = −bd.
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Letting B = (b1, . . . , bd), interpreted as a d×d matrix with columns b1, . . . , bd,
in that order, it then follows that B is orthogonal, and with W̄ = BTWB

and W0, O as previously described, noting BTWbd = BT (−bd) = ( O
−1 ) and

bTdWB = (W T bd)
TB = (−bd)

TB = (OT − 1), then W̄ =
(

W0 O

OT
−1

)

. Note W̄

is orthogonal and therefore so is the d− 1× d− 1 matrix W0.

Let S = BTDB and write S =
(

S0 a

bT γ

)

, S0 interpreted as the upper leftmost

d − 1 × d − 1 entries of S and as a d − 1 × d − 1 matrix as well; a and b

interpreted as vertical columns or vectors of d− 1 entries, and γ as a scalar.
Note tr(WD) = tr(BTWDB) = tr(BTWBBTDB) = tr(W̄S), so that

W̄S =
(

W0 O

OT
−1

) (

S0 a

bT γ

)

=
(

W0S0 W0a

−bT −γ

)

gives tr(WD) = tr(W0S0)− γ.

We show tr(W0S0) ≤ tr(S0). For this purpose let Ŵ =
(

W0 O

OT
1

)

, W0 and O as

above. Since W0 is orthogonal, then clearly Ŵ is a d× d orthogonal matrix,

and by 2. tr(ŴS) ≤ tr(S) so that ŴS =
(

W0 O

OT
1

)

(

S0 a

bT γ

)

=
(

W0S0 W0a

bT γ

)

gives

tr(W0S0) + γ = tr(ŴS) ≤ tr(S) = tr(S0) + γ. Thus, tr(W0S0) ≤ tr(S0).
Note tr(S0) + γ = tr(S) = tr(D), and if Bkj, k, j = 1, . . . , d are the entries

of B, then γ =
∑d

k=1
B2

kdσk, a convex combination of the σk’s, so that γ ≥ σd.
It then follows that
tr(WD) = tr(W0S0)− γ ≤ tr(S0)− γ = tr(D)− γ − γ ≤

∑d−1

j=1
σj − σd, and

therefore 3. holds. �

Finally, the following theorem, a consequence of Proposition 1, justifies
the Kabsch-Umeyama algorithm.

Theorem: Given a d×d matrix M , let V , S, W be d×d matrices such that
the singular value decomposition of M gives M = V SW T . If det(VW ) > 0,
then U = WV T maximizes tr(UM) over all d× d rotation matrices U . Oth-
erwise, with S̃ = diag{s1, . . . , sd}, s1 = . . . = sd−1 = 1, sd = −1, then
U = WS̃V T maximizes tr(UM) over all d× d rotation matrices U .

Proof: Let σj , j = 1, . . . , d, σ1 ≥ σ2 ≥ . . . ≥ σd ≥ 0, be the singular values
of M , so that S = diag{σ1, . . . , σd}.
Assume det(VW ) > 0. If U is any rotation matrix, then U is orthogonal.
From 1. of Proposition 1 since W TUV is orthogonal, then
tr(UM) = tr(UV SW T ) = tr(W TUV S) ≤

∑d

j=1
σj .

On the other hand, if U = WV T , then U is clearly orthogonal, det(U) = 1,
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and tr(UM) = tr(WV TV SW T ) = tr(WSW T ) = tr(S) =
∑d

j=1
σj .

Thus, U = WV T maximizes tr(UM) over all d× d rotation matrices U .
Finally, assume det(VW ) < 0. If U is any rotation matrix, then U is orthog-
onal and det(U) = 1. From 3. of Proposition 1 since W TUV is orthogonal
and det(W TUV ) = −1, then
tr(UM) = tr(UV SW T ) = tr(W TUV S) ≤

∑d−1

j=1
σj − σd.

On the other hand, if U = WS̃V T , then U is clearly orthogonal, det(U) = 1,
and tr(UM) = tr(WS̃V TV SW T ) = tr(WS̃SW T ) = tr(S̃S) =

∑d−1

j=1
σj − σd.

Thus, U = WS̃V T maximizes tr(UM) over all d× d rotation matrices U . �

3 Reduction of the orientation-preserving rigid

motion problem to the constrained orthogonal

Procrustes problem

Although not exactly related to the main goal of this paper, for the sake
of completeness, we show the orientation-preserving rigid motion problem
reduces to the constrained orthogonal Procrustes problem. For this pur-
pose, let q̄ and p̄ denote the centroids of the sets {qi}

n
i=1

and {pi}
n
i=1

in R
d,

respectively:

q̄ =
1

n

n
∑

i=1

qi and p̄ =
1

n

n
∑

i=1

pi .

First, we prove a proposition that shows, in particular, φ(q̄) = p̄ if φ mini-
mizes

∆(φ) =
n

∑

i=1

‖φ(qi)− pi‖
2

over either the set of all rigid motions φ of Rd or the smaller set of rigid
motions φ of Rd that are orientation preserving.

Proposition 2: Let φ be a rigid motion of Rd with φ(q̄) 6= p̄ and define an
affine linear function τ , τ : Rd → R

d, τ(q) = φ(q)−φ(q̄)+ p̄ for q ∈ R
d. Then

τ is a rigid motion of Rd, τ(q̄) = p̄, ∆(τ) < ∆(φ), and if φ is orientation
preserving, then so is τ .

Proof: Clearly τ(q̄) = p̄. Let U be a d × d orthogonal matrix and t ∈ Rd

such that φ(q) = Uq + t for q ∈ R
d. Then τ(q) = Uq − Uq̄ + p̄ so that τ is
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a rigid motion of Rd, τ is orientation preserving if φ is, and for 1 ≤ i ≤ n

we have
||φ(qi)− pi||

2 − ||τ(qi)− pi||
2 =

(Uqi + t− pi)
T (Uqi + t− pi)− (Uqi − Uq̄ + p̄− pi)

T (Uqi − Uq̄ + p̄− pi) =
(

(Uqi − pi)
T (Uqi − pi) + 2(Uqi − pi)

T t+ tT t
)

−
(

(Uqi − pi)
T (Uqi − pi)− 2(Uqi − pi)

T (Uq̄ − p̄) + (Uq̄ − p̄)T (Uq̄ − p̄)
)

= 2(Uqi − pi + t)T (Uq̄ − p̄+ t)− (Uq̄ − p̄+ t)T (Uq̄ − p̄+ t).

It follows that

∆(φ)−∆(τ) =
n

∑

i=1

(

2(Uqi− pi+ t)T (Uq̄− p̄+ t)− (Uq̄− p̄+ t)T (Uq̄− p̄+ t)
)

= n||Uq̄ − p̄+ t||2 = n||φ(q̄)− p̄||2 > 0 as φ(q̄)− p̄ is nonzero. �

Finally, the following corollary, a consequence of Proposition 2, shows
that the problem of finding an orientation-preserving rigid motion φ of Rd

that minimizes
∑n

i=1
‖φ(qi)−pi‖

2 can be reduced to a constrained orthogonal
Procrustes problem which, of course, then can be solved with the Kabsch-
Umeyama algorithm. Here ri = pi − p̄, si = qi − q̄, for i = 1, . . . , n, and if
r̄ = 1

n

∑n

i=1
ri, s̄ =

1

n

∑n

i=1
si, then clearly r̄ = s̄ = 0.

Corollary: Let Û be such that U = Û minimizes
∑n

i=1
‖Usi − ri‖

2 over all

d×d rotation matrices U . Let t̂ = p̄−Û q̄, and let φ̂ be given by φ̂(q) = Ûq+ t̂

for q ∈ R
d. Then φ = φ̂ minimizes

∑n

i=1
‖φ(qi) − pi‖

2 over all orientation-
preserving rigid motions φ of Rd.

Proof: One such Û can be computed with the Kabsch-Umeyama algorithm.
By Proposition 2, in order to minimize

∑n

i=1
‖φ(qi)−pi‖

2 over all orientation-
preserving rigid motions φ ofRd, it suffices to do it over those for which φ(q̄) =
p̄. Therefore, it suffices to minimize

∑n

i=1
‖Uqi + t − pi‖

2 with t = p̄ − Uq̄

over all d× d rotation matrices U , i.e., it suffices to minimize

n
∑

i=1

‖Uqi + p̄− Uq̄ − pi‖
2 =

n
∑

i=1

‖(U(qi − q̄)− (pi − p̄)‖2

over all d × d rotation matrices U . But minimizing the last expression is
equivalent to minimizing

∑n

i=1
‖Usi−ri‖

2 over all d×d rotation matrices U .
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Since U = Û is a solution to this last problem, it then follows that U = Û

minimizes
∑n

i=1
‖Uqi + p̄−Uq̄− pi‖

2 =
∑n

i=1
‖Uqi+ t− pi‖

2 with t = p̄−Uq̄

over all d×d rotation matrices U . Consequently, if t̂ = p̄− Û q̄, and φ̂ is given
by φ̂(q) = Ûq+ t̂ for q ∈ R

d, then φ = φ̂ clearly minimizes
∑n

i=1
‖φ(qi)−pi‖

2

over all orientation-preserving rigid motions φ of Rd. �
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