
DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT 1

FFT-based Alignment of 2d Closed Curves
with Application to Elastic Shape Analysis

Günay Doğan1,2

gunay.dogan@nist.gov

Javier Bernal2

javier.bernal@nist.gov

Charles R. Hagwood2

charles.hagwood@nist.gov

1 Theiss Research
La Jolla, CA, USA

2 National Institute of Standards and
Technology, Gaithersburg, MD, USA

Abstract

For many shape analysis problems in computer vision and scientific imaging (e.g.,
computational anatomy, morphological cytometry), the ability to align two closed curves
in the plane is crucial. In this paper, we concentrate on rigidly aligning pairs of closed
curves in the plane. If the curves have the same length and are centered at the origin, the
critical steps to an optimal rigid alignment are finding the best rotation for one curve to
match the other and redefining the starting point of the rotated curve so that the starting
points of the two curves match. Unlike open curves, closed curves do not have fixed start-
ing points, and this introduces an additional degree of freedom in the alignment. Hence
the common naive method to find the best rotation and starting point for optimal rigid
alignment has O(N2) time complexity, N the number of nodes per curve. This can be
slow for curves with large numbers of nodes. In this paper, we propose a new O(N logN)
algorithm for this problem based on the Fast Fourier Transform. Together with uniform
resampling of the curves with respect to arc length, the new algorithm results in an order
of magnitude speed-up in our experiments. Additionally, we describe how we can use
our new algorithm as part of elastic shape distance computations between closed curves
to obtain accurate shape distance values at a fraction of the cost of previous approaches.

1 INTRODUCTION
For many problems in computer vision and scientific imaging, one needs to quantitatively
compare boundaries of objects, e.g., organs in computational anatomy, cells in morphologi-
cal cytometry. Often, the comparison of the boundaries of two objects requires that they be
aligned first. Thus, methods for aligning boundaries of 2d objects have been discussed in
[2, 3, 8, 9, 11, 12, 14]. Mathematically, the problem is that of aligning pairs of 2d closed
curves. In this article, we concentrate on rigidly aligning pairs of 2d closed curves, assumed
to be square-integrable. The curves have been processed to match in scale (say, by normal-
ization to unit length) and are centered at the origin of a reference coordinate system. In
practice, curves are given as lists of points, each list usually in a counterclockwise order
around its curve, with the choice of the first point in a list usually arbitrary. With curves in
this form, optimal rigid alignment is achieved by

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Ayache and Faugeras} 1986

Citation
Citation
{Cohen, Ayache, and Sulger} 1993

Citation
Citation
{Larsen} 2008

Citation
Citation
{Li, Shen, and Huang} 2011

Citation
Citation
{Schwartz and Sharir} 1987

Citation
Citation
{Sebastian, Klein, and Kimia} 2003

Citation
Citation
{Umeyama} 1993

2 DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT

1) Rotating one curve, i.e., points that define curve, to match as much as possible the points
that define the other curve.
2) Among points that define the rotated curve, choosing the best starting point to match the
starting point of the other curve.

In this paper, we focus on these two factors and propose a new algorithm to find the
optimal pair of rotation and starting point. If we do not account for these two factors, we
may fail to align even two different versions of the same curve. However an additional
difficulty could prevent our method from working properly: the discrete sampling of one
curve and the placing of the representative nodes often will be incompatible with those of
the other, especially if they come from different measured data. As will be described below,
this difficulty can usually be alleviated by uniform resampling of the two curves with respect
to arc length.

If the starting point is known, the optimal rotation can be found using the Kabsch al-
gorithm [6, 7] in O(N) time, N the number of nodes per curve (see Section 2). Otherwise,
a common approach is to loop over all starting point candidates while computing optimal
rotation for each, and then choosing the pair of starting point and rotation with optimal
alignment. This approach is O(N2) and can be slow for curves with large numbers of nodes.
In this paper, we propose a new fast O(N logN) method for this problem based on the Fast
Fourier Transform (FFT), used together with uniform resampling of the curves with respect
to arc length. We then use this method as part of elastic shape distance computations be-
tween closed curves and find that we compute accurate shape distances in significantly less
time than previous approaches [5, 13].

2 OPTIMAL STARTING POINT AND ROTATION
In this section, we describe our new algorithm to compute optimal starting point and rotation
for rigid alignment of closed curves. Initially we have two curves (not necessarily closed)
of unit length, centered at the origin, defined by functions βi : [0,1]→ R2, i = 1,2, assumed
to be square-integrable, i.e., ‖βi‖2

L2 =
∫ 1

0 ‖βi(t)‖2dt < ∞, i = 1,2. First we review how

the optimal rotation R = R(θ) =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
is found through angle θ that minimizes

mismatch energy

E0(R) =
∫ 1

0
‖β1(t)−Rβ2(t)‖2dt. (1)

For this purpose we first rewrite energy (1) as follows

E0(R) = ‖β1‖2
L2 +‖β2‖2

L2 −2
∫ 1

0
β

T
1 (t)Rβ2(t)dt,

where ‖βi‖2
L2 , i = 1,2, have constant value (note ‖Rβ2(t)‖ = ‖β2(t)‖, since R is a rotation

matrix). Then minimizing energy (1) is equivalent to maximizing∫ 1

0
β

T
1 (t)Rβ2(t)dt = tr(RAT),

where tr(RAT) is the trace of RAT and A is the 2×2 matrix defined by Ak j =
∫ 1

0 β1k(t)β2 j(t)dt,
k, j = 1,2. By the Singular Value Decomposition (SVD) theorem A = USV T , where U , V
are 2× 2 orthogonal matrices, S =

(
σ1 0
0 σ2

)
, σ1 ≥ σ2 ≥ 0. Then tr(RAT) = tr(RV SUT) =

Citation
Citation
{Kabsch} 1976

Citation
Citation
{Kabsch} 1978

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Srivastava, Klassen, Joshi, and Jermyn} 2011

DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT 3

tr(SUT RV) = tr(ST), where T = UT RV . With T =
(t11 t12

t21 t22

)
, then tr(ST) = σ1t11 + σ2t22.

Since U , R, V are orthogonal so is T . Thus −1 ≤ tk j ≤ 1, k, j = 1,2. If det(U)det(V) > 0
then det(T) = 1 so that the maximum value of tr(ST) occurs when t11 = t22 = 1 which im-
plies T = I, the identity matrix. Thus UT RV = T = I and R = UV T is an optimal rotation.
If det(U)det(V) < 0 then det(T) =−1 which implies t11t22− t21t12 =−1 so that t11t22 ≤ 0.
Since |t11| = |t22| then the maximum value of tr(ST) occurs when t11 = 1, t22 = −1 which
implies T = S̃ =

(
1 0
0 −1

)
. Thus UT RV = T = S̃ and R = US̃V T is an optimal rotation.

In the case of closed curves, we have two such curves of unit length, centered at the
origin, defined by periodic functions βi : R→R2, βi(t +1) = βi(t) for all values of t, i = 1,2,
assumed to be square-integrable over any finite interval of R. In practice β1 and β2 are
given as finite lists of points, say N points per curve for some integer N > 0, each list in
a counterclockwise order around its curve with first and last points the same. At first we
parametrize these curves with the discrete uniform parametrization of interval [0,1] obtained
from partitioning [0,1] into subintervals with endpoints tl = (l− 1)h, h = 1/(N − 1), l =
1, . . . ,N, by defining β l

i = (β l
i1,β

l
i2)

T by β l
i = βi(tl), i = 1,2, l = 1, . . . ,N, where βi(tl) is the

lth point in the list for βi. We then take advantage of the curves being uniformly parametrized
this way to discretize integral (1) using the uniform trapezoidal rule for closed curves:

Eh
0 (R) = h

N−1

∑
l=1
‖β l

1−Rβ
l
2‖2. (2)

As we did with (1), we can rewrite (2) as follows

Eh
0 (R) = h(

N−1

∑
l=1

(‖β l
1‖2 +‖β l

2‖2)−2(
N−1

∑
l=1

(β l
1)

T Rβ
l
2)),

so that minimizing (2) is equivalent to maximizing

N−1

∑
l=1

(β l
1)

T Rβ
l
2 = tr(RAT),

where A is the 2×2 matrix defined by Ak j = ∑
N−1
l=1 β l

1kβ l
2 j, k, j = 1,2. Then as we did for (1),

optimal rotation R for (2) can be computed with the SVD of A or, more precisely, with the
Kabsch algorithm (see Algorithm 1) [6, 7].

Algorithm 1 Computing optimal R for starting point t0 = 0

Compute Ak j = ∑
N−1
l=1 β l

1kβ l
2 j, k, j = 1,2.

Compute SVD of A s.t. A = USV T .
If det(U)det(V) > 0 then S̃ =

(
1 0
0 1

)
else S̃ =

(
1 0
0 −1

)
.

Return R = US̃V T .

Now we find starting point t0 and rotation R that give optimal rigid alignment of β1 and
β2 by minimizing mismatch energy

E(t0,R) =
∫ 1

0
‖β1(t)−Rβ2(t + t0)‖2dt, t0 ∈ [0,1]. (3)

Again with β1 and β2 uniformly parametrized as above, for each m, 1 ≤ m ≤ N−1, we
define β

l⊕m
2 = (β l⊕m

21 ,β l⊕m
22)T , by

β
l⊕m
2 = β2(tl + tm), l = 1, . . . ,N.

Citation
Citation
{Kabsch} 1976

Citation
Citation
{Kabsch} 1978

4 DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT

With t0 = tm, we then discretize integral (3) using again the uniform trapezoidal rule for
closed curves:

Eh(t0,R) = h
N−1

∑
l=1
‖β l

1−Rβ
l⊕m
2 ‖2. (4)

In addition, for each m, we define 2×2 matrix A(tm) by

Ak j(tm) =
N−1

∑
l=1

β
l
1kβ

l⊕m
2 j ,k, j = 1,2. (5)

For t0 = t1, . . . , tN−1, we could use Algorithm 1 to compute A = A(t0) and the best rotation
R(t0) = R, and then return the pair (t0,R(t0)) that gives the highest value for tr(RAT), i.e.,
the lowest value for (4). This commonly used approach is O(N2) as the computation of A(t0)
for a single t0 is O(N).

With Ak j(tm) as in (5), we propose to compute vectors Ak j = (Ak j(t1), . . . ,Ak j(tN−1)),
k, j = 1,2, in O(N logN) time using FFT to accomplish the Discrete Fourier Transform
(DFT). For this purpose we define β̃ l

1 = (β̃ l
11, β̃

l
12)

T by β̃ l
1 = β

N−l+1
1 , l = 1, . . . ,N, and vec-

tors β̃1k and β2 j by β̃1k = (β̃ 1
1k, . . . , β̃

N−1
1k), β2 j = (β 1

2 j, . . . ,β
N−1
2 j), k, j = 1,2. Given arbitrary

vectors x, y of length N − 1, we let DFT(x) and DFT−1(y) denote the DFT of x and the
inverse DFT of y, respectively. With the symbol · indicating component by component mul-
tiplication of two vectors, then by the convolution theorem for the DFT we have

Ak j = (
N−1

∑
l=1

β
l
1kβ

l⊕1
2 j , . . . ,

N−1

∑
l=1

β
l
1kβ

l⊕(N−1)
2 j) = DFT−1[DFT(β̃1k) ·DFT(β2 j)], k, j = 1,2,

which enables us to reduce the computation of the matrix element Ak j(t0) for all t0 to three
O(N logN) FFT operations (thus a total of twelve for all of A(t0)). Once we have computed
A(t0) for all t0 this way, we can loop over t0 candidates, compute for each t0 the corresponding
optimal rotation R(t0) and then tr(R(t0)A(t0)T) (instead of the energy Eh(t0,R(t0))), and
return the pair (t0,R(t0)) that gives the highest tr(R(t0)A(t0)T) value, i.e., the lowest value
for Eh(t0,R(t0)) in (4). This is summarized in Algorithm 2. There for arbitrary vectors x, y
of length N−1, FFT(x), IFFT(y) denote DFT(x), DFT−1(y), respectively, computed with
FFT. Note that the computation of the SVD of A(t0) has O(1) complexity. In addition, the
computation of tr(R(t0)A(t0)T) has O(1) complexity as opposed to that of Eh(t0,R(t0)) in (4)
that would have O(N) complexity.

Algorithm 2 Fast algorithm for optimal (t0,R(t0))

Compute Ak j = (Ak j(t1), . . . ,Ak j(tN−1)) = IFFT[FFT (β̃1k) · FFT(β2 j)], k, j = 1,2.
for t0 = t1, . . . , tN−1 do

Compute SVD of A = A(t0) s.t. A = USV T .
If det(U)det(V) > 0 then S̃ =

(
1 0
0 1

)
else S̃ =

(
1 0
0 −1

)
.

Set R = R(t0) = US̃V T .
Compute tr(RAT).

end for
Return (t0,R(t0)) that gives the highest tr(RAT).

Above we described the obvious way of parametrizing the curves from their lists of points
with the same uniform parametrization of [0,1]. It should be pointed out that for the devel-
opment of the two algorithms above, any other way of parametrizing the curves uniformly

DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT 5

would have produced the same results. As noted in the introduction, the discrete sampling of
one curve and the placing of the representative nodes may not be compatible with those of the
other. Accordingly, when rigidly aligning curves with the algorithms above, the obvious way
of parametrizing the curves uniformly may not be the most appropriate. Thus, for this pur-
pose, it seems more natural to parametrize each curve by its arc length with the same uniform
parametrization of [0,1]. In particular, in the case of similar curves, optimal (t0,R) values
are then produced, as the parametrized curves then match in a way enabling correspondence
between the curves at endpoints of subintervals in the parametrization domain [0,1]. We do
this in two steps. In the first step, for i = 1,2, we define discrete parameter sl

i by

sl
i = Ll

i/LN
i , l = 1, . . . ,N, Ll

i =
l

∑
m=2
‖β m

i −β
m−1
i ‖, l = 2, . . . ,N, L1

i = 0. (6)

In the second step, we strive to approximately parametrize β1 and β2 by their arc lengths with
the same uniform parametrization of [0,1] using sl

1 and sl
2 in (6). As we already have param-

eter and curve node pairs {(sl
1,β

l
1)}N

l=1 for β1, {(sl
2,β

l
2)}N

l=1 for β2, we can interpolate the
curves with cubic splines using these parameter and curve node pairs, and obtain new curve
nodes β l

i , i = 1,2, l = 1, . . . ,N, by evaluating the cubic spline interpolants at tl = (l− 1)h,
h = 1/(N− 1), l = 1, . . . ,N, thus approximately parametrizing each curve by its arc length
with the same uniform parametrization of [0,1]. This resampling procedure may introduce
some loss in the accuracy of the curve representation (effectively a geometric approximation
error), which will have a minor impact on the optimal (t0,R) computed. We find that the
error introduced by resampling is not important for our main application, the computation of
elastic shape distances. The algorithm we use for shape distance computation is the iterative
algorithm in [5] which improves on an imperfect estimate of (t0,R). We could of course use
nonuniform parametrizations of [0,1] to parametrize the curves by their arc lengths, such as
those based on curvature [4]. However in that case, a nonuniform FFT would be required.

In Figure 1, using a hippopede curve, we illustrate the impact of sampling and node
placement on the computation of optimal (t0,R). Top row of Figure 1 includes two different
samplings of the curve, one relatively uniform (left-most column) and another one (middle
column), which has nodes concentrated in one part of the curve. We are not able to align the
two curves well (right-most column) by simply parametrizing them in the obvious way that
does not take arc length into consideration. The figure includes resampled versions of the
two curves (in the bottom row, same order). As the resampled curves have the same uniform
arc length parametrization that ensures good correspondence between the curve nodes, we
are able to align the two curves very well. In the figure the first points in the lists of points
(initial starting points) are circled in black. The angle of rotation is π

3 .
We did an experimental validation of our algorithm by using different closed curves as

test cases. We used five synthetic curves (super-ellipse, hippopede, bumps, limaçon, clover),
five (biological) cell boundaries of type A, and five (biological) cell boundaries of type B (see
Figure 2). For each of these reference curves, we tried to align a template curve to it. We
obtained the template curve by changing the starting point of the reference curve from 0 to
0.25 and rotating the curve by π

3 . We tested with the same uniform arc length parametrization
assigned to both curves. We examined the running times and the alignment errors (quantified
by Equation (4)) for increasing number of nodes N on the curves. We observed consistent
behaviour across different cell examples. Our new O(N logN) algorithm was much faster
than the old O(N2) algorithm and had exactly the same alignment error values that the old
one had. These results are given for the first cell of type B in Figure 3 and Table 1.

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Cui, Femiani, Hu, Wonka, and Razdan} 2009

6 DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT

Figure 1: Impact of sampling and node placement in aligning the curves in the 1st and 2nd
columns. When the sampling of nodes in the curve is non-uniform (2nd in top row), the
alignment fails (3rd in top row). When the sampling is relatively uniform (bottom row), the
points in one curve can be easily matched with corresponding nodes in the other curve to
ensure successful alignment.

Figure 2: Curve examples used in the experiments: synthetic curves (top row), biological
cell boundaries of type A and B (middle and bottom rows).

Figure 3: Comparison of timings on an example curve, between the slow O(N2) alignment
algorithm (blue) and the fast O(N logN) alignment algorithm proposed (red).

DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT 7

N=64 128 256 512 1024 2048 4096
Slow .027 .06 .14 .31 .79 2.2 7.1
Fast .005 .01 .02 .04 .07 .15 .30
Factor 5.4x 6.9x 7.4x 7.5x 11x 15x 24x
Error 2e-2 1e-2 6e-3 3e-3 1.5e-3 7e-4 4e-4

Table 1: Timings (seconds) and errors for alignment algorithms. The two algorithms produce
same alignment errors.

3 ALGORITHM FOR ELASTIC SHAPE DISTANCES
In [13], Srivastava et al. proposed an elastic shape distance between closed curves of unit
length. In order to represent the shape of one such curve β , β : [0,1]→ R2, they defined
a function called the square root velocity (SRV) function of β by q(t) = β̇ (t)/‖β̇ (t)‖1/2,
t ∈ [0,1], and an orbit [q] = {

√
γ̇Rq(γ) | γ ∈ Γ,R ∈ SO(2)} representing the shape of β (en-

coding invariance with respect to rotation and reparameterization by R and γ , respectively;
translation invariance is taken care of automatically as d

dt (β (t)+ c) = β̇ (t) for any constant
planar point c). Here SO(2) is the set of all rotations in R2 and Γ is the set of all dif-
feomorphisms of [0,1] into [0,1], with γ(0) = 0, γ(1) = 1, for γ in Γ. We note that β of
unit length implies ‖q‖L2 = 1 which in turn implies q is square-integrable. In this setting,
the shape distance between closed curves β1 and β2 of unit length is the distance between
the corresponding square-integrable optimally-matching SRV functions q∗1(t) := q1(t) and
q∗2(t) =

√
γ̇(t)Rq2(t0 + γ(t)), assumed to be centered at the origin, where the triple (t0,R,γ)

is the global minimizer of mismatch energy

E(t0,R,γ) =
∫ 1

0
‖q1(t)−

√
γ̇(t)Rq2(t0 + γ(t))‖2dt. (7)

Srivastava et al. minimize (7) by looping over all t0 candidates, computing optimal R with
Kabsch algorithm for each t0, and then using dynamic programming to get best γ for each
(t0,R) pair [1, 10, 13]. This algorithm, which we call Approach 1, is computationally expen-
sive as it is O(N3), N the number of nodes per curve. Recently, an O(N2) iterative algorithm
was proposed in [5] of observed subquadratic almost linear time complexity, to optimize
(7), which we call Approach 2. It starts from an initial triple of (t0,R,γ) ((0, Id,γ(t) = t) in
[5]), and then updates (t0,R,γ) as it alternates between optimizations with respect to (t0,R)
and γ , until (7) is minimized. Here, assuming without loss of generality that β1 and β2 are
square-integrable and centered at the origin, we propose to use the FFT-based optimal rigid
alignment algorithm of the previous section applied on β1(t) and Rβ2(t + t0), together with
uniform resampling of β1 and β2 with respect to arc length, to compute optimal (t∗0 ,R∗) of (3)
and then start the algorithm in [5] with (t∗0 ,R∗,γ(t) = t). Additionally, we propose to modify
the algorithm in [5], i.e., Approach 2, as follows. The energy in (7) is reformulated as

E(t0,R,γ) =
∫ 1

0
‖Rq1(t + t0)−

√
γ̇(t)q2(γ(t))‖2dt (8)

and each optimization of (8) with respect to (t0,R) is then carried out using in the same way
as above the FFT-based optimal rigid alignment algorithm of the previous section (obvi-
ously without arc-length uniform resampling of any of the functions involved) applied now
on square-integrable functions q∗1(t) := Rq1(t + t0) and q∗2(t) =

√
γ̇(t)q2(γ(t)), instead of

Citation
Citation
{Srivastava, Klassen, Joshi, and Jermyn} 2011

Citation
Citation
{web}

Citation
Citation
{Mio, Srivastava, and Joshi} 2007

Citation
Citation
{Srivastava, Klassen, Joshi, and Jermyn} 2011

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

8 DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT

distance N=64 128 256 512 1024
Approach 1 γ1 .0184 .0409 .0362 .0361 N/A

γ2 .3344 .3373 .3445 .3441 N/A
Approach 2 γ1,2 .0037 0 0 0 0
timing N=64 128 256 512 1024
Approach 1 γ1,2 1.45 11.5 94 756 N/A
Approach 2 γ1 0.20 0.20 0.33 0.63 1.75
(no FFT) γ2 0.34 0.29 0.37 0.70 1.68

Approach 2 γ1 0.15 0.14 0.19 0.35 0.85
(FFT) γ2 0.16 0.19 0.26 0.42 0.96

Table 2: Average shape distances and timings (in seconds) for the synthetic curves shown in
Figure 2, using Approach 1, Approach 2 without FFT speed-up, Approach 2 with it.

β1(t) and Rβ2(t + t0), with q∗1 and q∗2 assumed to be centered at the origin. Accordingly,
as mentioned above, Approach 2 is initialized by pre-alignment, i.e., starts from the initial
triple (t∗0 ,R∗,γ(t) = t), and then updates (t0,R,γ) as it alternates between optimizations with
respect to (t0,R) (using the FFT) and γ (using fast dynamic programming and nonlinear con-
strained optimization as decribed in [5]), until (8) is minimized. We found that modifying
the algorithm in [5] with the FFT this way results in superb performance in terms of com-
putation times and computed minimizers (t0,R,γ). To evaluate our algorithm, we performed
two sets of experiments, first with synthetic curves, then with (biological) cell boundaries.

In the first set of experiments, we aimed to evaluate both accuracy and scalability with
respect to increasing N. For this, we took a synthetic curve β1, changed starting point
from 0 to 0.25, rotated by π

3 , and reparameterized β2 by γ1(t) = t + 0.025sin(4πt) and
then γ2(t) = t + 1.6t2(t − 1)2 (which induce mildly and strongly nonuniform distributions
of nodes, respectively). The theoretical shape distance between β1 and β2 is zero. We com-
puted the shape distance using Approach 1, Approach 2 initialized by pre-alignment, but no
FFT in the actual optimization, then again Approach 2 now with the FFT used in the SRV
function optimization as well, for all of the five synthetic curves in Figure 2 with increas-
ing N. The average shape distances and computation times are given in Table 2. Approach 2
computed zero for almost all distances, whereas Approach 1 computed significant nonzero
values. Moreover, the computation times of Approach 1 increased dramatically as we in-
creased N, whereas the computation time of Approach 2 grew very slowly, and was less than
1 s even for curves with N = 1024 nodes.

In the second set of experiments, we computed matrix of pairwise distances for the 10
cell boundaries, each uniformly sampled at N = 256. Computing the 10×10 distance matrix
took 9218 s with Approach 1, 125 s with Approach 2 and FFT-based optimization (74X
faster). The role of estimating t0 and R was not as apparent for this curve set. Still Approach
2 computed smaller distances than Approach 1 for 61 of the 100 pairs, indicating better
minimization of energy (7). In fact, in only 6 of the remaining 39, Approach 1 computed
a significantly smaller distance than Approach 2 (difference ≥ 0.05). If we look at a more
relevant subset of the cells, say type B curves, for which optimizing rotation plays a role, we
see that Approach 1 computed smaller distances in only 6 of the 25 pairs (see Table 3).

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT 9

0.0/0.0 .406/.373 .363/.343 .316/.303 .351/.378
.386/.409 0.0/0.0 .430/.414 .358/.337 .376/.365
.343/.372 .434/.421 0.0/0.0 .375/.344 .317/.295
.314/.333 .367/.363 .384/.395 0.0/0.0 .327/.316
.349/.345 .376/.372 .306/.309 .328/.305 0.0/0.0

Table 3: Matrix of pairwise shape distances of type B cells. The first and second values
of a pair computed by Approach 1 and Approach 2 with FFT speed-up, respectively. The
instances when Approach 1 computed smaller distances than Approach 2 shown in bold.

4 CONCLUSIONS
In this paper, we propose a fast curve rigid alignment algorithm of O(N logN) time complex-
ity based on the FFT, N the number of nodes per curve. Given two closed curves, together
with uniform resampling of the curves with respect to arc length, our algorithm computes the
optimal starting point t0 and rotation R that must be applied on one curve in order to rigidly
align it with the other curve. This is the main contribution of this paper. Additionally, we de-
scribe how this fast rigid alignment algorithm can be used to initialize the iterative algorithm
in [5] for computing elastic shape distances, and how it can be used for the (t0,R) optimiza-
tion step of the same algorithm. The resulting new algorithm computes then accurate shape
distances at a fraction of the cost of the original one, and scales very well to curves with
large numbers of nodes.

References
[1] Code from Statistical Shape Analysis and Modeling Group, Florida State University.

http://ssamg.stat.fsu.edu/downloads/ClosedCurves2D3D.zip. Accessed: 2014-06-20.

[2] N. J. Ayache and O. D. Faugeras. Hyper: A new approach for the recognition and
positioning of two-dimensional objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(1):44–54, 1986.

[3] I. Cohen, N. J. Ayache, and P. Sulger. Tracking points on deformable objects using cur-
vature information. In Proceedings European Conference on Computer Vision, pages
136–144, 1993.

[4] M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan. Curve matching for open 2d
curves. Pattern Recognition Letters, 30(1):1–10, 2009.

[5] G. Doğan, J. Bernal, and C.R. Hagwood. A fast algorithm for elastic shape distances
between closed planar curves. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2015.

[6] W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta Crystal-
lographica Section A: Crystal Physics, 32(5):922–923, 1976.

[7] W. Kabsch. A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A: Crystal Physics, 34(5):827–828, 1978.

Citation
Citation
{Do§an, Bernal, and Hagwood} 2015

10 DOĞAN, BERNAL, HAGWOOD: FFT-BASED CURVE ALIGNMENT

[8] R. Larsen. L1 generalized procrustes 2d shape alignment. Journal of Mathematical
Imaging and Vision, 31(2-3):189–194, 2008.

[9] H. Li, T. Shen, and X. Huang. Approximately global optimization for robust alignment
of generalized shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(6):1116–1131, June 2011.

[10] W. Mio, A. Srivastava, and S. Joshi. On shape of plane elastic curves. International
Journal of Computer Vision, 73(3):307–324, 2007.

[11] J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two and
three dimensions by matching noisy characteristic curves. Int’l J. Robotics Research,
6(2):29–44, 1987.

[12] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning curves. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(1):116–125, 2003.

[13] A. Srivastava, E. Klassen, S.H. Joshi, and I.H. Jermyn. Shape analysis of elastic curves
in Euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(7):1415–1428, 2011.

[14] S. Umeyama. Parameterized point pattern matching and its application to recognition
of object families. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(2):136–144, 1993.

