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Evaluation of Segmentation Algorithms on
Cell Populations Using CDF Curves

Charles Hagwood*, Javier Bernal, Michael Halter, and John Elliott

Abstract—Cell segmentation is a critical step in the analysis
pipeline for most imaging cytometry experiments and evaluating
the performance of segmentation algorithms is important for
aiding the selection of segmentation algorithms. Four popular
algorithms are evaluated based on their cell segmentation perfor-
mance. Because segmentation involves the classification of pixels
belonging to regions within the cell or belonging to background,
these algorithms are evaluated based on their total misclassifica-
tion error. Misclassification error is particularly relevant in the
analysis of quantitative descriptors of cell morphology involving
pixel counts, such as projected area, aspect ratio and diameter.
Since the cumulative distribution function captures completely the
stochastic properties of a population of misclassification errors it
is used to compare segmentation performance.

Index Terms—Cell morphology, cumulative distribution func-
tion (CDF), flow cytometry, image cytometry, misclassification er-
rors, segmentation.

1. INTRODUCTION

MAGE cytometry is a valuable tool for understanding
I cellular responses to pharmaceuticals and environmental
toxins, as well as discovering correlations between signaling
pathways and cell phenotype [1], [2]. A typical analysis often
involves imaging cells stained with multiple probe molecules,
including a whole cell body stain such as phalloidin or Texas
Red c2-maleimide. The whole cell body stain can be used to
provide constrast in the image pixels and reveal morphological
features such as projected spread area and shape [3], [4].
The cell pixels can also be used to define a mask to integrate
a reporter signal (i.e., fluorescent antibody or GFP protein)
and may be used to indicate the level of intracellular protein
concentration.

In an imaging cytometry experiment, the first step following
image acquisition is typically segmentation, where cell and
noncell (i.e., foreground and background) pixels are identified
and grouped into cell objects. Choosing a reliable segmentation
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scheme for cell images from a large number of readily available
segmentation schemes can be challenging and is crucial for ex-
tracting accurate information about cellular features. Through
applications, such as NIH ImageJ, numerous implementations
of segmentation algorithms are widely available. However,
methods for choosing an algorithm that go beyond visual
inspection can provide useful tools in the algorithm selection
process and in justifying the application of an algorithm for a
particular data set.

Any evaluation procedure requires choosing appropriate as-
sessment criteria. A segmentation algorithm for cell images can
be considered a pixel classifer and a misclassification results
from the algorithm incorrectly labeling a pixel as belonging to
background or cell given the observed intensity matrix. Segmen-
tation routines that result in the lowest misclassification errors
are often more ideal algorithms [5]. Also, pixels with the same
classification are grouped together to form a cell object. The
ability to group cell pixels and the misclassification errors can
be related processes, but it is also possible for two algorithms to
have similar misclassification errors, but result in significantly
different cell objects due to differences in how the pixels are
grouped. This can lead to a fragmented object. To score the
grouping nature of a segmentation algorithm, a fragmentation
error can be assessed. Both of these metrics should be taken into
account for minimal evalution and comparison of segmentation
algorithms.

A unique feature of an imaging cytometry experiment is that
information about a population of cells on a cell-by-cell basis
can be acquired. If a sufficiently large number of individual cells
are sampled in the data set, a robust estimate of the distribution
of misclassification errors for the cells in the population can be
generated. This is different from other applications of segmenta-
tion (e.g., face/object recognition) where the sample size is often
not sufficiently large to make inferences about the distribution of
misclassification errors. If ground truth segmentation is known
for the cells in the cytometry images (i.e., expert manual seg-
mentation) then the percentage (p,0 < p < 100) of misclassi-
fied pixels per cell in an image due to a segmentation algorithm
can be found. Each algorithm will have a unique distribution of
misclassification percentages (p’s) for any particular cell pop-
ulation. Each misclassification distribution is uniquely charac-
terized by its cumulative distribution function (CDF) F'(p). An
estimate of F'(p) is used to compare and evaluate segmentation
algorithms. If there are enough data, then their sample empir-
ical CDFs are good estimators of the population CDFs, since
they are maximum likelihood estimators, as well as consistent
and unbiased. Evaluation based on misclassification of pixels is
particularly important, because controlling and assessing mis-
classification of pixels are important criteria for the statistical
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analysis of quantitative metrics involving pixel counts which
are highly sensitive to the accuracy of the segmentation scheme,
such as, projected cell area, aspect ratio, and diameter.

F(p) has several desirable properties as an evaluation crite-
rion. 1) F(p) is an increasing function in p. 2) If F4(p) and
Fp(p) are two CDFs for algorithms A and B, then A is better
than B at percentage p if F4(p) > Fp(p). This is because, if
F4(p) > Fp(p), then the probability that the misclassification
percent of A is less than p is greater than the probability the mis-
classification percent of B is less than p. Therefore, using this
criteria, algorithm A can be said to be the best algorithm if its
CDF F4(p) satisfies F'4(p) > Fp(p) forall 0 < p < 100 and
for all other algorithms B. Typically, it is difficult for unifor-
mity to hold over all 0 < p < 100. Alternatively, if a majority
of the cells have misclassification percentages less than pg, then
the criterion, algorithm A is the best if F4(p) > Fp(p) for all
0 < p < po and for all other algorithms B may be used. The
cutoff py can be found by finding that quantile of their proba-
bility density functions (PDFs) where the majority of the mass
lies below. When uniformity does not hold in either case, one
may rely on other population statistics to help make a decision,
such the mean, shape and spread of probability density func-
tions. It is important to note, that in addition to assessment of
misclassification errors, the fraction of ground truth cell objects
that are fragmented incorrectly also provides information about
the performance of an algorithm. Using this criteria, the best al-
gorithms would have a low fraction of fragmented cells. These
two quantitative metrics can aid in the decision of algorithm se-
lection which ultimately depends on the experimenter.

We are also interested in the details of how algorithms rank
in terms of getting cell shape characteristics correct, such as
area, roundness and roughness. This is done by comparing these
shape characteristics to those of the manually segmented ground
truth cells.

Several previous comparison studies have been performed for
cell segmentation, for example in [6]-[11]. Coelho et al. [6]
compared six thresholding methods including Otsu, a watershed
method, an active masks method and a region merging algo-
rithm. Most of these methods are based on summary indexes.
The novelty of our approach is that we go beyond summary
indexes. Our conclusions are based on an entire population of
misclassification percentages. Each algorithm is identified with
its population of misclassification errors and comparisons are
based on CDFs and familiar population statistics.

In this study, we compared four popular algorithms used for
cell segmentation, Otsu thresholding, k-means clustering (with
five means), the watershed and the Canny edge detector. Five
means have been shown to be near optimal [12]. Two cell types,
A10 rat smooth muscle cells and NIH-3T3 cells at three expo-
sures, short, medium, and long are compared. Fifty images of
fixed and fluorescently labeled cells that are seeded at low den-
sity on a substrate are compared. An image from each cell type
at three exposures is shown in Fig. 1.

II. MATERIALS AND METHODS

This section describes the cells, the image preparation
process, the imaging, and the ground truth.

Fig. 1. Cell images at short, medium, and long exposures. Upper panel: A10
rat vascular smooth muscle. Lower panel: NIH 3T3 mouse fibroblasts.

A. Cell Culture

A10 rat smooth muscle cells and NIH-3T3 cells were main-
tained under DMEM/10%FBS supplemented with glutamine,
nonessential amino acids, and occasionally penicillin/strepto-
mycin in 5% CO2 at 37 °C. For the experiment, the cell lines
were seeded at (800 and 1200) cells/cm? in three-wells, re-
spectively, of a six-well tissue culture treated polystyrene plate
(Falcon 4095) in maintenance media and placed in the incubator
for approximately 20 h. The media was removed; the cells were
rinsed with PBS and fixed for 3 h with 1% (v/v) formaldehyde
in PBS at 25 °C. The cells were stained with PBS containing
0.02% (v/v) TX-100, 0.5 ug/mL TxRed c2 maleimide (Invit-
rogen,5 mg/mL in DMSO stock), 1.5 pg/mI DAPI (Sigma,1
mg/mL in DMSO stock) for 4 h, rinsed, with PBS, PBS con-
taining 1% BSA and PBS containing 0.01% (w/v) sodium azide
([24]). Fixed and stained cells were covered with PBS and im-
aged within two days.

B. Automated Fluorescence Microscopy Imaging

Fluorescence images of fixed and stained cells were acquired
with an Olympus IX71 inverted microscope (Center Valley,
PA) equipped with an automated stage (Ludl, Hawthorne, NY),
automated filter wheels (Ludl), a Xenon arc lamp fluorescence
excitation source, a 10x ApoPlan 0.4 NA objective, and a
CoolSNAP HQ CCD camera (Roper Scientific, Tucson, AZ).
The filter combinations (Chroma Technologies, Brattleboro,
VT) for imaging the TxRed stained cells were a 555 nm notch
excitation (PN# S555_25x) and a 630 nm notch emission filter
(PN# S630_60m) with a custom coated multipass dichroic
beam splitter (PN# 51019+400DCLP) matched to these filters.
The illumination variations in the field of view were minimized
using a fluorescent Schott GG475 glass artifact (Edmund Scien-
tific, Barrington, NJ) on a six-well culture plate with an opening
in a well bottom, a FITC filter set and lamp alignment and focus
adjustments, Plant e al. [13]. This focus-based field flattening
minimizes the variability in the image segmentation results
across the image. The microscope stage, CCD, and automated
shutters were controlled by modular routines within ISee image
acquisition software (ISee Imaging Systems, Rayleigh, NC).
For each well of the six-well plate, a grid of 50 nonoverlapping
fields were imaged. All images were acquired using 2 X 2
binning on the CCD sensor. Three consecutive images of the
stained cells at different exposure times were acquired (see
Table I for exposure times). Images with varied exposure times
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TABLE I

Image [llumination | Exposure Exposure SNR Resolution®
Condition | Level Time (s) Time (s) Filter Type® ratio® (Ip/mm)
Al0 3T3
1 Low 0.015 (Short) 0.01 (Short) optimal filter 2548 203
(555 nm
excitation, 630
nm emission)
2 Medium 0.08 (Medium) | 0.05 (Medium) | optimal filter 103431 203
(555 nm
excitation, 630
nm emission)
3 High 0.3 (Long) 0.15 (Long) optimal filter 221472 | 203
(555 nm
excitation, 630
nm emission)

were converted to a signal-to-noise ratio using ground truth
masks. The signal was calculated as average intensity of cell
pixels minus the average intensity of the noncell pixels, and the
noise was determined as the standard deviation of the intensity
in the noncell pixels. The calculations for all images in the
dataset were generated with the use of macros in ImageJ.

C. Evaluation Criteria and Notation

The misclassification data was acquired as follows. Given
segmentation and ground truth masks of an image, the goal is to
compare cells in an algorithm mask to cells in the ground truth
mask. An algorithm may fragment some of the ground truth cells
into pieces. Since truth is assumed to be the manual segmenta-
tion, these fragments are assumed to be parts of some ground
truth cell. Since our cells are seeded at low density, fragments
either share common pixels with only one ground truth cell or no
ground truth cell. If a fragment has at least one pixel in common
with a ground truth cell, then it is assumed to be a part of that
cell. So, there is a one to one correspondence between cells in
the segmentation mask and cells in the ground truth mask. There
are fragments having no pixels in common with a cell in the
ground truth mask. This can happen in the identification of cell
fragments that are extensions (e.g., pseudopods) of a larger cell.
Fragments that cannot be grouped are considered to be totally
false and are given a 100% false positive error rate. We keep
track of the amount of fragmentation that occurs with an algo-
rithm and report this number as the fraction of cells fragmented
in the population.

Before misclassification calculations are performed, we used
a 50 pixel size discrimination filter to remove very small groups
of cell objects detected in the image. This size filter removed
debris that was detected as a cell object and very small pseu-
dopods that likely extend from the cell, but the connection was
not readily visable in the image. For the A10 and NIH3T3 cells
the 50 pixel filter resulted in a less than 2% reduction of the av-
erage cell area and did not significantly change the results of the
analysis.

The misclassification rate is calculated as follows. Given a
particular image I that has been segmented by an algorithm, let

C € I be the segmentation of the cell corresponding to cell
Cgr in the ground truth sementation of I, as described in the
previous paragraph. A pixel (z,y) € C is called a false positive
pixel if (z,y) € Cgr. A pixel (z,y) € C, but (z,y) € Car
is labeled a false negative pixel. Let ¢ denote the total number
of pixels in C' and Cg and let tpp, tpn be the total number of
false positive and false negative pixels, respectively.

The misclassification percentage, pc associated with cell C
is the value

t t
pe = 100 x M (1

0 < pc < 100. The data from the comparison experiment are
these percentages pc ranging over all the segmented cells. It is
assumed that the experiment was performed so that this set of
percentages S = {p;,i = 1,...,n} is a random sample from a
true, but unknown algorithm misclassification probability den-
sity f(p), n being the total number of segmented cells. A his-
togram estimate of f(p) based on S is defined as
fu(z) ,pn falling in (. — h,z + h)]
2
and a continuous approximation to this histogram is the kernel
density estimate

fK(m):ﬁ;KG;Lpi) /K(w)dle 3)

= % [IlO. Ofpl,...

where h denotes the bandwidth or smoothing parameter (see
Silverman [19]). In our histograms, we used the Freedman-Di-
aconis choice of histogram bandwidth h = 2IQR/n'/3,
where IQR = Q.75 — Q.25 is the interquartile range and
Qo.75, Qo.25 are the third and first quartiles, respectively. And,
in our kernel estimate h = 0.9min[g,QR/1.34)n""/>,
where & is the sample standard deviation of the misclassifica-
tion data. The Gaussian kernel K () = exp(—22/2)/v/27 is
used. The kernel estimate converges to the true misclassification
probabity density as n approaches infinity.
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The CDF of fx (p) is the continuous nondecreasing function
defined as

p
Fp) = /fK(w)dx 0 < p < 100. @)
0

In this study, we used this continuous approximation to the em-
pirical histogram

1 .
Fh(x) = E{#pl SJ,’./’L: 17"'7”}'

In our comparison of algorithms, their misclassification CDFs
are compared. The optimal error free algorithm has CDF which
is the unit step function. So, the closer a CDF is to the unit step
function the better its accuracy with respect to ground truth.
When comparing two algorithms A and B with misclassifica-
tion CDFs, F4 and F'g, A is said to be more accurate at per-
centage point p if F4(p) > Fp(p). That is, the likelihood that
the percentage of misclassified pixels will be p or fewer is larger
for algorithm A than for B. If this happens uniformly over all p,
then A unambiguously is the best algorithm by this criterion. If
the majority of the cells have misclassification percentages less
than pg, then uniformity over 0 < p < 100 may be replaced
with uniformity over 0 < p < pg. Thus, those cells with p > pg
are not considered in the CDF comparison. If uniformity does
not hold for any reasonable pg, then we rely on other population
statistics to help make a decision, such as the shape and spread
of probability density functions, sizes of means, and variances.

D. Shape Descriptors

To get a better understanding of how misclassification errors
arise, three morphological descriptors: area, roundness, and
roughness are investigated. The goal is to determine if an al-
gorithm’s segmentation misclassification errors are attributable
either to inaccurate cell area, roundness, or roughness as com-
pared to the ground truth cell area, roundness, and roughness.
Inaccurate area usually means too many pixels or too few pixels
were included in the segmentation of a cell and inacurrate
roughness means too much or not enough smoothing of a cell
boundary. Each of these characteristics have been shown to
be important for assessing cell function and may be useful for
benchmarking the phenotypic state of a cell culture.

The 2D projected size of the cell is taken as the area index,
that is the area of the polygon formed from the calculated
boundary points, rather than pixel area. Roundness describes
how much the cell shape differs from a circle and the roughness
index is the root-mean-squared average deviations between the
calculated cell boundary coordinates and their center of mass.
The roughness index increases as corners and edges are added.
Roundness is defined as

area

roundness = 4w 0 <roundness < 1. (5)

perimeter

That roundness is always less than one, with a circle having
roundness one, follows from the isoperimetric inequality [14].

TABLE II
NUMBER OF GROUND TRUTH CELLS FRAGMENTED OUT
OF 223 TOoTAL A10 CELLS AND 401 NIH 3T3 CELLS

(A10 Cells) (NIH 3T3 Cells)
Long Medium  Short Long Medium  Short
Otsu| 25 28 27 22 38 42
K-Means 4 10 16 3 8 10
Canny | 5 7 9 2 3 13
Watershed 2 5 7 1 2 3

For a cell with boundary pixels at r1, 79, ..
defined as

., Tn, Toughness is

1 - -1
roughness = — Z(di —d)? d= ) d;  (6)
=1 1=1

where d; = dist(r;,7) is the Euclidean distance between the
center of mass 7 and the sth boundary pixel. For comparison,
the roughness of a circle is zero. Roundness is unitless, where
as roughness is in units of distance between pixels.

For each algorithm, area, roughness, and roundness indexes
are computed. Histogram, kernel estimates and CDFs are
formed for each of these indexes and compared.

An additional metric that counted the number of cells that
were fragmented into more than one object was also collected

during image processing and is summarized in Table II.

E. Manually Drawn Segmentations of Cells and Reference
Data

To generate reference cell segmentation masks used in eval-
uating the algorithms, fluorescent images of the same 50 fields
were also acquired with the CCD setto 1 x 1 binning under op-
timal filter conditions. The 1 x 1 binning provided an effective
increase in resolution by using the minimum pixel size on the
camera. Cell objects in these images were identified by manu-
ally segmenting cells or groups of touching cells using the Im-
agelJ software package found at the NIH website. To facilitate
the accurate identification of the cell boundary each cell was en-
larged with the zoom tool. The paint brush tool was then used to
outline each cell in the frame using a brush width of two pixels.
Small processes that extend from the cells were only included
if the edge of the process could be clearly visualized during the
manual segmentation. Reference data from the expert drawn cell
image masks were generated using the particle analyzer in Im-
agel.

In order to validate our manual segmentations as ground truth,
we had the person doing the manual segmentations make repli-
cate segmentations on multiple cells. This gave us a measure of
repeatability of the manual segmentations. Three replicate seg-
mentations of a cell are shown in Fig. 2(a). The repeatability
of our manual segmentation appears acceptable, since the shape
and size features of the cell are approximately the same, ex-
cept for deviations at local features. Also, the ground truth was
validated by a second experiment. A second set of independent
manual segmentations were performed under the supervision of
an expert. Considering this segmentation as a fifth algorithm
along with Canny, Otsu, K-means, and watershed algorithms,
they were compared to our reference ground truth. The results
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Fig. 2. (a) Three manual segmentation replicates. (b) Segementations of an A10 cell at long exposure [use legend in (c)]. (c) CDF of manual compared to the
others and the unit step function. (d) An image with two cells segmented by Canny.
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Fig. 3. Histogram and kernel (solid line) estimates of PDFs, f(p) for NIH 3T3 fibroblasts and A10 cells at optimal (long exposure) setting.

of this comparison is shown in Fig. 2(c) for A10 cells at long
exposure. The unit step function is shown as the optimal CDF.
Fig. 2(c) shows that the misclassification CDF of the second seg-
mentation is uniformly better than the misclassification CDFs of
Canny, Otsu, K-means, and watershed. Because, the indepen-
dent second manual segmentation is closer to the ground truth
manual than any of the algorithms, the presumption is made that
a manual segmentation accurately represents the boundary of
the cell.

A visual comparison of a cell segmented manually and by the
algorithms is shown in Fig. 2(b). Fig. 2(b) provides some clar-
ification of where errors are made. The shape of the manually
segmented cell is mostly preserved, but there are variations in
area and boundary smoothness.

III. RESULTS

A. Comparison at Optimal Setting

Plots in Fig. 3 of histogram and kernel estimates of misclas-
sification percentages for A10 rat vascular smooth muscle cells
and NIH 3T3 fibroblasts cells at long exposure times provide
a summary of the algorithms’ error distributions. These plots
are based on a random sample of 223 AlO cells from 50 images
and 409 NIH 3T3 cells from 50 images. These sample sizes
are large enough to provide accurate approximations to their

//ﬂ
E 0.5 E 0.5} = Canny
O O

20 40 65
Misclassification Error
Long Exposure

NIH 3T3

20 40
Misclassification Error
Long Exposure
Al0

65

Fig. 4. Cumulative distributions, F'(p), for A10 and NIH 3T3 fibroblasts cells
at optimal (long exposure) setting.

CDFs and PDFs. The plots illustrate that different morpholo-
gies between and within cell populations give rise to unique
misclassification error distributions. The spikes at the far end
of the right tail are artifacts that are explained in Section II-C.
For A10 cells, the Otsu algorithm has a large misclassification
error mean and standard deviation as well, and poorly approxi-
mates ground truth compared to the other algorithms. This may
be because Otsu, a threshold algorithm, does not use as much
information about the relationships between the pixels as the
other algorithms. Canny, k-means and watershed statistics are
comparable, but there are distinct differences. All their PDFs are
right skewed, but k-means has a lighter right tail than the others.
Their PDFs have a lognormal appearance. Their misclassifica-
tion means and variances differ. For cells with morphologies
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Fig. 5. A10: comparison of kernel estimates (solid line) at three exposure settings and CDFs: See Legend in Fig. 4.

similar to A10 cells, one can expect an error rate approximately
9.6% when using k-means, which is slightly smaller than Canny
and watershed mean error rates.

The error distributions for the NIH 3T3 cells differ consid-
erably from those for A10 cells. These algorithms when ap-
plied to cell populations with morphologies similar to NIH 3T3
cells are less accurate and more variable. Because the NIH 3T3
cells are considerably smaller than the A10 cells, their relative
error means are about two times larger than the error means for
A10 cells. The NIH 3T3 error distributions of Canny and water-
shed are almost symmetric about their means, while k-means is
slightly right-skewed. A normal assumption for their error dis-
tributions may be appropriate. Otsu in this case is left skewed,

an undesirable quality. The k-means error distribution has mean
19.2% and it has the smallest mean among the algorithms.

Fig. 4 shows a comparison of CDFs. The CDFs of Canny,
k-means and watershed are almost indistinguishable for A10
cells with k-means slightly better. Their CDFs are uniformly
higher than Otsu’s. Ostu performs poorly as a segmentation al-
gorithm for both NIH 3T3 and A10 type cells. For NIH 3T3
cells, k-means CDF is uniformly higher than the CDFs of the
other algorithms over all 0 < p < 100. Thus, it is the best algo-
rithm at long exposure for NIH 3T3 cells.

One may conclude, based on the classification CDF compar-
ison and the other information in the first two paragraphs of this
section, the following. For cells similar to A10 cells, k-means is
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Fig. 6. NIH 3T3: comparison of kernel estimates (solid line) at three exposure

only marginally better than Canny and watershed at long expo-
sure times. For NIH 3T3 cells, k-means is uniformly better than
the other algorithms.

B. Robustness of Algorithms

In this section, we determine how varying exposure settings
from short, medium to long affect the misclassification distri-
butions of the algorithms, i.e., how robust are these algorithms
over exposure settings. We determine if there are significant
changes in their PDFs, CDFs, means, variances, and accuracies.
The plots in Figs. 5 and 6 are based on the random samples used
in Section III-A.

The signal-to-noise ratio increases when going from short
to medium to long, see Table I, and as expected, the misclas-
sification error means decrease as the signal-to-noise ratio in-
creases for each algorithm. In all cases, except Otsu, there is

settings and CDFs: See Legend in Fig. 4.

a decrease in their error standard deviations, as well. For A10
cells, k-means seems to be affected most by exposure settings;
its mean decreases by about 48% and its standard deviation de-
creases 52% in going from short exposure to long exposure.
In going from short exposure to long exposure, Canny’s mean
and standard deviation change by 19% and 60%, respectively,
and watershed’s mean and standard deviation change by 11%
and 65%, respectively. For NIH 3T3 cells, the following per-
cent changes in means and standard deviations %(c%) are ob-
served to occur in going from short to long; k-means 63%(28%),
Canny 17%(24%), and watershed 16%(34%). One can conclude
that Canny and watershed are not significantly affected by a low
signal-to-noise ratio, except by an increase in variability. Im-
portantly, this suggests that these two algorithms are reasonably
robust and can be used effectively over a variety of staining and
acquisition settings.
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Fig. 7. Al0: area, roundness, and roughness histograms and kernel densities (solid line) comparisons.

For A10 cells at short exposure using CDFs, one cannot def-
initely say either k-means, Canny, or watershed is the best al-
gorithm. For A10 cells at medium exposure using CDFs with
a threshold set at pg ~ 25, k-means is uniformly less accurate
than Canny and watershed, with watershed slightly better than
Canny. For CDFs associated with NIH 3T3 cells, the watershed
algorithm is uniformly best for short and medium exposures at
a threshold of approximately 60%. For long exposure k-means
is uniformly the best over the entire range of percentages. The
results show that the k-means algorithm improves fastest as the

signal to SNR increases, but Canny and watershed are least sen-
sitive to the SNR.

C. Fragments

Table II contains the fragmentation counts due to inadequate
grouping of the classified pixels. To evaluate if misclassifica-
tion results in significant cell pixel grouping errors (i.e., cell
fragmentation), we counted the number of cell objects that were
fragmented into more than one piece. This is shown in Table II.
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Fig. 8. NIH 3T3: area, roundness, and roughness histograms and kernel densities (solid line) comparisons.

As seen, fragmentation errors due to propagation of the misclas-
sification errors to the grouping part of the segmentation algo-
rithm are also dependent on signal to noise ratios. K-means per-
forms well at high signal to noise ratios, but results in significant
fragmentation of cell objects at lower ratios especially for the
smaller NIH3T3 cells. The Canny algorithm also shows frag-
mentation errors that are sensitive to the signal-to-noise ratio.
The watershed segmentation algorithm clearly resulted in the
lowest number of fragmentation errors at all signal to noise ra-
tios tested. Otsu performed the worst with the highest fragmen-

tation error for all five conditions. Up to 5% and 20% of the
cell objects in the NIH3T3 and A 10 cell image series were frag-
mented with this segmentation algorithm, respectively.

D. Shape Descriptors

Using the same random samples of Section III-A, histogram
plots of area, roundness, roughness indexes and their associ-
ated means and standard deviations for segmented A 10 fibrob-
lasts cells are shown in Fig. 7. Most noticeable in Fig. 7, Otsu
has area, roundness and roughness much lower than the manu-
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TABLE III
COMPARISON SUMMARY BASED ON CDFs
Long Medium Short
Al10 Canny, k-means, watershed | Canny, watershed similar | watershed
all similar and better than k-means slightly the best
NIH 3T3 | k-means watershed watershed
the best slightly the best slightly the best

ally segmented cells and than the cells segmented by the other
three algorithms. Otsu’s errors originate from severely falsely
labeling cell pixels as background, resulting in cells with re-
duced areas, overly smoothed boundaries and reduced round-
ness. As well, the other algorithms falsely labeled too many
cell pixels as background (especially the small cells) producing
areas on average smaller than the manually segmented cells. The
k-means, Canny and watershed algorithms produce cells with
similar roundness and roughness as the manually segmented
cells. For the A10 cells, most of the misclassification errors can
be attributed to falsely labeling cell pixels as background.

The plots in Fig. 8 are the shape descriptor distributions for
NIH 3T3 cells. Here too, Otsu’s errors result from severely la-
beling too many cell pixels as background, reducing roundness
as compared to manual segmentation results and Otsu smooths
the boundaries more than the manual segmentation. Also for
this type of cell, k-means, Canny and watershed algorithms
falsely label cell pixels as background, thus producing cells
with smaller area than the manually segmented cells. They
produce fewer large cells than the manual segmentations.
K-means, Canny and watershed have similar roundness and
roughness indexes as the manual segmentations. Since the right
tails of their roughness PDFs are lighter than the manual’s PDF,
these algorithms produce fewer spiky cell boundaries than the
manual.

IV. DiscussioN

We proposed comparing cell segmentation algorithms using
their misclassification error population statistics and by com-
paring fragmentation errors. In particular, we used misclassifi-
cation error CDFs, PDFs, means and variances to compare Otsu,
k-means, Canny, and watershed for segmentation of fluores-
cence images of fixed, stained cells. Manually segmented data
were used as ground truth. The algorithm with uniformly largest
CDF over the entire domain of the CDF is unambiguously the
best classification algorithm. When there was no uniformly best
CDF, other population statistics provided meaningful informa-
tion for forming a conclusion. If the majority of the cells have
fewer than pg of their pixels misclassified, then uniformity over
0 < p < pg may be used as a replacement for uniformity over
the entire range of the CDFs. This means that a small set of
cells is not considered in the CDF comparison. Our evaluation
process works when a large enough random sample of misclas-
sification errors can be generated from the imaging experiment
to accurately estimate the populations statistics. This strategy
is different from a classic analysis of sensitivity and specificity
in that only pixels in the union of the ground truth cell and the
result of the segmentation algorithm are considered. There are

no true negative pixels (background) in this union which is re-
quired to calculate a specificity value. We also evaluated frag-
mentation errors that can occur as a result of grouping the mis-
classified pixels. Both of these assessments are important, since
depending on where misclassified pixels lie in the cell object,
they can lead to inappropiate fragmentation of the cell object.

Two different cell populations having significantly different
shapes, NIH 3T3 mouse fibroblasts cells and A10 rat vascular
smooth muscle cells were imaged at short, medium and long
exposures. Fifty images with approximately four or five cells
per image with a total of 223 cells from a culture of A10 cells
and 50 images containing approximately eight to nine cells
per image with a total of 401 cells from a culture of NIH 3T3
cells were used in this study. The NIH 3T3 cells often have a
small thin spindly appearance, while the A10 cells are large
well spread cells that often have smooth edge appearances.
Consequently, our results may be generalized, since the shapes
of these two cell lines are representative of many cells used in
cell biology and provide two contrasting morphologies. In real
experiments, other parameters vary other than cell type and
exposure settings, e.g., illumination level, filter type, and cell
density. Ideally, an algorithm’s performance should be fairly
robust over all such parameters. Robustness over exposure
settings was only considered in this analysis. Our image sets
were collected over three variable exposure conditions (short,
medium, long) to allow testing of the image signal-to-noise
ratio on the performance of an algorithm. Table III contains
what was concluded from our analysis of CDFs.

We found that all these algorithms perform better at a long
exposure setting for both A10 and NIH 3T3 cells and are more
accurate for the larger and rounder A10 cells, although Otsu’s
performance is much worse than the other three. Also, by com-
paring with ground truth the shape indexes, area, roundness and
roughness of the algorithms, it was found that most of the er-
rors are due to falsely labels cell pixels as background, pro-
ducing cells with smaller area. In addition, Otsu oversmooths
the boundaries and gives incorrect roundness values. We also
found that watershed fragments less cells than the other algo-
rithms.

Importantly, our results suggest that for quantitative charac-
terization of a population of cells that have been experimentally
seeded on a substrate at low density and stained with a high con-
trast edge stain, cells imaged at longer exposure times can be
robustly segmented by many different algorithms giving similar
misclassification rates and fragmentation errors. This informa-
tion may be important for generating reference cell image data
that describe a population of cells. Several algorithms can pro-
vide similar quantitative segmentation results from the images
suggesting that high exposure is more robust to algorithm vari-
ations.
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