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INTRODUCTION

A satisfactory discussion of Banach space theory must include the
analysis of well known convexity properties. An in-depth study of these
concepts will reveal some of the connections between the geometry of Banach
spaces and other areas of functional analysis. It is the objective of this
paper to obtain new Iinsight into this subject by studying the asymptotic
behavior of finite dimensional subspaces of Banach spaces from the point of
view of multidimensional moduli of convexity.

A Banach space is said to satisfy the fixed point property whenever
every mapping which does not increase distances from a weakly compact sub-
set of the space into itself has a fixed point. Among the questions of
special interest we will address will be those relating to the evaluation
and limiting behavior of convexity moduli, and to the existence of struc-
tures under which a Banach space has the fixed point property. We will be
concerned with determining convexity conditions that imply normal struc-
ture. A Banach space has normal structure if every bounded convex subset
of the space contains a point whose maximum distance to any other point of
the subset is strictly less than its diameter. Since W. A. Kirk has proved
this property implies the fixed point property [18], we will also examine
particular examples of superreflexive spaces that satisfy the fixed point
property but do not have normal structure, and show they still have some
kind of structure.

A convexity condition easily seen to imply normal structure is uni-
form convexity. This property was first introduced by J. A. Clarkson in
1936 [2]. Independently from Kirk, F. E. Browder showed it satisfies the
fixed point property [1]. Geometrically, a uniformly coavex Banach space
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uniformly does not have arbitrarily flat arcs on the surface of the unit
ball of length arbitrarily close to any given fixed positive number.

Since, intuitively, length can be thought of as a measurement of the rela-—
tive positions of two points with respect to each other, we will generalize
uniform convexity to a property that utilizes the multiple-point concept of
area as studied by E. Silverman [19] and F. Sullivan [20]. This area no-
tion will be based on the usual definitious of areas and volumes in R3
which can be obtained by calculating the determinant of certain matrices
[3]. The property generalizing uniform convexity will be referred to as
k-uniform convexity, where %k can be any positive integer, and it will be
equivalent to uniform convexity in case k is equal to 1.

The first chapter of this paper deals with the behavior of moduli
of convexity in Hilbert spaces. Along with some fundamental results, the
definitions of k-uniform convexity and the corresponding modulus of con-
vexity are iutroduced in this chapter. For a given positive integer k ,
k~uniform convexity of a Banach space will imply the uniformly nonexistance
of arbitrarily flat ktl~dimensional convex regions on the unit sphere of
the space of "area" arbitrarily close to any given fixed positive number.
In a Banach space with this property the distance from the origin of the
space to the centroid of any ktl-dimensional convex hull with vertices on
the unit sphere and a given fixed positive “area" is at most one minus the
modulus of k-uniform convexity corresponding to the given "érea." Also,
the modulus of k-uniform convexity is the largest positive number satis-
fying this condition. Given these definitions, we then evaluate the
modulus of k~uniform convexity of Hilbert spaces corresponding to any
given positive "area” for any given positive integer k , and show that
this modulus approaches one as k goes to infinity. This will mean that

the centroids of all k+l-dimensional convex hulls in the unit ball of a




Hilbert space with a given fixed positive "area" collapse into the origin
of the space as k gets arbitrarily large.

In Chapter II convexity considerations play a central role. It
contalns the definitions of two important area-related conditions; proper-~
ties A and B. The former 1is the strouger of the two. These properties
will require a uniform behavior by all subspaces of a Banach space with
some fixed finite dimension. Geometrically, if this dimension is a posi~
tive integer k , they will correspond to the definition of a round unit
ball from the point of view of k-dimensionality. Following the sophisti~
cated argument employed by R. C. James to prove that uniformly nonsquare
Banach spaces are superreflexive [12], we show that property B also implies
superreflexivity. In order to have a complete treatment of the notion of
superreflexivity in the context of éroperties A and B, we include the proof
of a theorem by D. van Dulst and A. J. Pach [6]. A consequence of this is
that superreflexivity does not imply eilther A or B. Another result in this
chapter shows that a Banach space has property B if its norm is close
enough to an equivalent norm for which the moduli of k-uniform convexity
converge to one as k goes to infinity. We use this result together with
the main theorem of Chapter I to prove that the space treated in an example
by L. A. Karlovitz [17] has property B even though it does not have proper-
ty A. Next, a main result of this chapter shows that property A implies
the space has normal structure, from which it folleows that it must have the
fixed point property [18]. This makes property A the most general known
convexity condition for a space to have this type of structure., Finally,
in the remainder of the chapter, we present a result that gives a charac~
terization of property B in terms of certain structures related to normal

structures. Since Karlovitz's space satisfiles the fixed point property but



does not have normal structure, this shows it still has some kind of struc-
ture, namely property B.

In Chapter III, which is mostly independent of Chapters I and II,
we turn our attention to the definition of locally k-uniformly convex
Banach spaces. The principal result of this chapter is that a sufficient
condition for a Banach space to be reflexive is that its second dual be
locally k-uniformly convex for any k> 1 .

The last chapter contains a list of open questions or problems
which we feel are closely related to the main subject of this paper.

The terpinology used throughout this paper is standard. It should
be the same as in Dunford and Schwartz [7]. The following are exceptions:
Sx and By wilill denote the unit sphere and the unit ball of a Banach
space X respectively; [xj3, «+s , xx] will be the affine span of xi,
eeny Xk , lees if z € [x], eee, %] then 2z = ; Aixi , where

L A =13 and dist(xy41, [x1, see, xK]1) wiiilmean the distance
bizéeen ®+1 and  [x1, e, xK] o The numbering of definitions, lemmas,
theorems, and propositions 1s done in the order of appearance and there is
no discrimination among thewm. Thus, for example, Lemma 1.10 1s the tenth

numbered item of Chapter I. The nine previous items may include defini-

tions, lemmas, theorems, and propositions.



CHAPTER I

Moduli of Convexity in Hilbert Spaces

Among Banach spaces, Hilbert spaces have the most regular proper—
ties. In this chapter we confine our attention to Hilbert spaces, and
prove, in Theorem l.11, they satisfy the following regular property: By
plcking k arbitrarily large, the centroids of all k-dimensional convex
hulls in the unit ball with a given fixed positive "area" can be made arbi~-
trarily close to the origin of the space.

First some definitions and fundamental results are essential.

Definition l.1: A Banach space X 1is said to be uniformly convex if gjiven

Hxty
€ > 0 there exists & > 0 such that |lx~y|| < € whenever w——

1 -6 ,and %,y ¢ Sy

In a uniformly convex Banach space not only is it impossible to
find two distinct points on the surface of the unit ball for which the seg-
ment joining them is entirely contained in the unit sphere; but, regardless
of which two points are chosen, by knowing the length of the segment we are
able to conclude that the norm of the midpoint of the segment does not ex-
ceed some gilven fixed number between zero and one.

In order to generalize this two-polnt convexity property to one
utilizing any arbitrary finite number of points, a new concept had to be
created involving the determination of some type of measurement caused by
the relative positions of any given finite number of polnts. With this
purpose in mind, the notilon of area was bound to become the Intuitively ob-

vious choice.



Definition 1.2: Let X be a Banach space. If k 1is an integer, k > 1,

Xl »e¢, Xk € X , then the area of the convex hull determined by xj, «..,

Xk , 1s the nonnegative number —ZE—I;T- ¢ A(xy, +e+, xXK) , where

A(Xl, “00y Xk) = sup . . H fl, DX I fk_l € SX* s

fre1(x1) oo fre1(xK)

Here, and throughout this paper, |e| will denote the determinant. We
will call A(xj, +es, xi) the "area" determined by XJ, eee, Xi »

The next two lemmas are the backboune of the intultion employed in
defiaing the concept cf areas. The first lemma is due to Geremia and

Sullivan [10]. Its proof appears in [9].

Lemma l.3: If X 4is a Banach space, u an integer, mn > 2, X], «es, X

A(Xl, s 00y Xn) > A(Xl, LI Y Xnnl) @ dist(Xn,[Xl, coo0y Xn_l]) .

In the next lemma we show that in Hilbert spaces equality always

holds in the above relation [3].

Lemma l.4: If X Js a Hilbert space, n an integer, mn > 2, X], ees, X
€X , then

A(Xl, ooy Xn) = A(Xl, LI Y Xn_l) ° dist(xn,[X1, 0oy Xnml]) .

Proof: Since the notation becomes quite involved for large n , we only

present the proof for n = 3.,



Let A, B, C€ X .

Without any loss of generality we may assume C 1is the zero element of

X, and X = R2 ,

Suppose A = (aj,as) , B = (by,b) , C = (0,0) , f1'= (1,0) , £9 = (0,1) ,

and 6 1is the angle between A and B .

aj by
Letting d = , it follows that
ag by
[IB-Ccl| « dist(a, [B, €]) = |A|l |B] sin 6 = JA x B} = |d] .
1 1 1
aj bp £1(A) £1(B)
Since d = = =t £1(A) £1(B) £;(C)
as bo £2(A) £9(B)

£2(A) £2(B) £2(C)

it can be shown easily that

tal = sup { | 81(A) &1(B) 1(C) |: &1, 8

1 1 1

SX?‘:

o

g2(A) g2(B) g2(C)

and the proof is complete.

Clearly from this lemma, if xj, X9, x3 belong to a Hilbert space,

1
then TS A(x1, %2, x3) 1is the usual area of the triangle determined by

X1, X925 X3 o

He

nce, our definition of area generalizes the well known ele-

mentary concepts of area and volume. Intultively, from the last two lemmas

we may conclude that the area of the convex hull determlned by x}, ses, Xp

is not less than

1

n~1

times the product of its base, the area of the

convex hull determined by xj, ees, Xp.] , and its height, the distance

1

from =x, to the affine span of %], +e¢s, Xp~1 « Therefore, ===

A(xl, co ey Xn>

(n-1)!

makes sense as a definition of area.



The following property, introduced and examined by Sullivan [20],
generalizes uniform convexity. It utilizes the concept of area defined

above.

Definition 1.5: A Banach space X 1is sald to be k-uniformly convex,

(k-UR) , for some positive integer %k , if given € > O there exists

llxl + e +Xk+l"
§ > 0 such that A(xy, ses, xXp+1) < € whenever >
kt+1

1 -8, and XJ, eve, Xpp] € SY

From thils definition it 1s easy to see that a Banach space 1s
unlformly convex if and only if it 1s 1-UR .
The following simple proposition is related to the main result of

this chapter.

Proposition 1.6 (Sullivan [20]): If for some positive integer k a Banach

space X d1is k-UR , then it is k+l -~ UR .
Proof: Let e > 0 be given.

By the definition of k~UR pick § > 0 such that if yj, «ee, Vi1 € Sy

€ Hyy + ooo + vl
then A(y1, ee¢, Yk+1) < == whenever >1 -6 .
k-2 k1

We show that A(X], eee, Xp42) <& 1f Xp, eev, X4 € Sy , and

ey + oo+ il k1
> 1 - 6 o

k42 k+2

This will imply X is %k+1 — UR ,



It is clear then, by the triangle inequality, that for each i , 1 € 1¢

k+2,

+
k+2

SO

llxl + oeee xi._l + Xi»*.l + eee +Xk+2|l

k+2

k+2

k+2

Multiplying both sides of this inequality by )
1 < 1 € k42,

l!xl + eee -+ Xi...l + Xi.*.l + oees + xk+2'l k+2

k+1 kt+1

Hence, by the choice of § we must have

A(Xl, coe Xi_l, Xi»{-l, LN Xk{-z) <

kt2

o

< k+1 )
1 = {———]56
k+2

k+1 ) 1
§ -

k+2 k+2

we get for each 1 ,

Let f£1, «.o, fy4] belong to the unit sphere of X* .

Then by the theory of determinants

1 LI 1

£1(x21) eos T1(xp42)

* .
L] °

Blep1(x1) oo B (i)

it

k-+2

i=1

N

i o~ -

(-DT £7 (xg) 45 <

fdil

k+2

i

)

1

LD THeg L] Tagd



where

di‘

1
fo(x3)

10

LN 1
LY fZ(Xi_l)

1
£2(x54+1)

.

LI ].

e fz(Xk.i.z)

Frer1 (81D eee Fiepg (x4p)

Frr1 Gegpd ooe By ppn)

By taking the supremum over all choices of f15 ooy fygy » it is then easy

to deduce from this inequality that

k+2
A(Xl, eeey Xp4o) < 2 A(xy, woo, Kiwls Xitls esos Xk42)
i=1
< (k+2) » = g

k+2

which is the desired result. Hence X must be k+l - UR .

It is clear from this proposition that if a Banach space is k~UR

for some k then it is n~UR for n>k . Also, from its proof it might

n-dimensional convex

seem that as n grows, some of the centroids of

hulls with vertices on the unit sphere and a given fixed positive "area"
approach the surface of the unit ball. This is not necessarily the case,
In Hilbert spaces the opposite occurs: They collapse into the origin of
the space.

Before proving this surprising special property, a new definition

and some preliminary lemmas are in order.

Definition 1.7: The modulus of k-uniform convexity of a Banach space X

is the nonnegative function 0y defined by

llxl + LI Y + Xk+ll’

6 (€) = inf {1 - P Xy, seey Xpqpl € Sy,

k-1
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and A(X], eeey Xgt1) 2 €}

Lemma 1.8: Let X be a Hilbert space, €& a given positive number. If

X), ooy X € Sy , A(X], eeey, %) =€ , and for some a > 0 , for all

1 1 Lo 2D
1,3 1 <i,j<k, 1#j X§ = X4 = a then - a4 = —————
3 s ) [} ’ i J ’ 9 kl/(k"‘l) ’
and

K1 X+l Foees Fxe [P
e ) B = —— a2 for all i, 1< i< k1.
k-1 + 1 k-1 2

Proof: We first show the second assertion by induction on k-i .

For k-1 =1

1 1
e Iy = w0} |2 = — a2 .
N k-1 k 2

For 1 € k~i € k-2 assume it is true for k-1 . We show it then holds for

k"i + l -

By the induction hypothesis then

k-1 Kipl F oo T xR [ 2 i
e e Xq - 2 e g2
k=1 + 1 k1 I 2
and we would like to show that
- X + a w9 + X 2
k-i + 1 i k l 1
B e S X' — ] az "
i-1
k~1 + 2 k-i + 1 2
Xi -+ e e + Xk_ 1 k'-.-i Xim}_l -+ e 0o + Xk
Since = x4 +
k-1 + 1 k-1 + 1 k=i -+ 1 k=i
Xi + s o0 + X.k k»-i Xi.{.l -+ o e s + Xk
then - X3 = - Xq
k=1 + 1 i k=i + 1 k-1
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2 Xi+l+ooo +xk

Xi t oene + Xk k—i
and - X4 =
k=i + 1 k-i + 1

k=1 1
=2 R e I «—*—-—-a?‘ *
k=i + 1 2

Because {xj, »e., %} 1is a set of equidistant points we have by the

|
|

Pythagorean theorem that

2 Xi+.oo +Xk 2 Xi+oou +Xk
lxg = xqo1112 = | | %41 = + o
17 Al 1-1 k-1 + 1 ki + 1 :
glving
; Xi -+ ooo+Xk {2 o Xi+-ou +Xk 2
Xq{~1 - = |lxy = xq4=111% ~ - X
I -1 -1 + 1 I 17l k-1 + 1 i
k-1 1
N S b I
k-1 + 1 2
k-1 1
k=i 4+ 1 2
. k-1 -+ 2 __1...32
k=i 4+ 1 2
and hence
k-1 + 1 X Foees b oxp |2 1
NI I )
i-1
k-1 + 2 k=1 -+ 1 2
as required.
From this notice that
1 k."'l ‘k._.l Xz + ess + X'k 2
"“‘“"32 o xl - &
2 k k~1
- X3 + ees T X 2
k-2 3 . k 1 [ §|2
X - ® ee6s ¢ T Kl e - X1
k""l 2 k-2 2 kl k
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1 X2 + eee + Xk , 2
B e Xl - I * sse
k k-1
Xg—-1 + %k 2 )
Yz T el Hrer - ol

L]

1 1
"’“"A(X cse X 2 = _-—'62 .
I 1 ’ k) K

Therefore,
52/<k-1)

11/ (k1)

1
Tl :

which proves the first assertion, and completes the proof of the lemma.

Lemma 1.9: Let X be an infinite dimensional Hilbert space. Given an

integer k , k»2 , there exlst equidistant points X]s evey Xk e Sy , with

k \(k-1)/2
A(Ry, ooy %) = ( - )

each € > 0, for sufficiently large k .

. x1/2 Thus, 6k(e) is well defined for

Proof: We show there exist equidistant points X1y eeey X In Sy with

k
[xy - Xsz = 2(k_1

imply, by Lemma 1.8, that if A(xp, ..., Xx) = € then
1 2< k €2/(k"'1)
2 k-1 K1/ Ge-1)

ko \(k=1)/2
giving ¢ = (-~*“) « k12 a4 desired.

> for all i, j, 1 < i, <k, 1 # j. This will

Since X 1s infinite dimensional, we may choose Y1s soes Yk € Sy , aund

<yi,yj> =0 forall 4, j, 1 <4, j<k,i# j.

We prove that =xj, «.., Xk » defined as follows, will be as required.
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X1 =1
xp = ayyy tayy
i-1 1
Xy = ayy; - - ajyy toaiyy for 3< i<k
j=2 K=j
where
1
A] = =
1 k-1
ay = (l—a%)l/2
i-1 1
ag = (1 - ) e a% - a2)l/2 for 3< i< k-l
=2 (k=2 31
ak = 0 .

By the definition of yj}, eee, Yk, a], sss, ax , 1t is easy to see that

Hixpll o= wee = Hxgll = 1.

k
Also, in order to show |[x{ - lelz = 2<7:MI%> for all 4, j, 1 < i,

k
j <k, 1# j, 1t suffices to show |lx; = xy-1112 = 2{——] for 2 < i
i i-1 1

il

g = %1112 = (a1-1)2 + a% = (a1~1)? + (l*a%) = a% -2ay +1+1 - a%

o)) )l

For 3 < i < k~1 :

i

From the definition of aj, «e., ag~] it can be shown that for each 1 ,

2 <1i<k-l,




Hence, for 3 < i < k-1,

1
Ag_q b e g. )2 4 g2
g1+ ST A i

]

g = xq-q112

|}

2
k-1 + 2
< -~—) a2 + a2
k-1 + 1 i-1 i

2

< k-1 + 2 ) ( | 1 ) (1 1 )
k-1 + 1 (k~1 + 2)2 (k=1 + 3)2 o
( 1>< )
1 - 1 = e
(k-2)? (k-1)2
( ) ) )
1 - 1 - j E——— R
(k-1 -+ 1)2 (k=i + 2)2 (k-1 + 3)2
1
() ()
(k~ 2)7 (k~1)2
( (k=1 + 2)2 ) ( (k=i + 2)2 -1 ) ( (k=1 + 3)2 - 1 >
(k-1 + 1)2 (k=i + 2)2 (k-1 + 3)2 .

i

-4

1

(k=2)2 ~ 1 ) ( (k~1)2 - 1 )
(k~2)2 (k~1)2

(k-1 + 1)2 ~1>< (k=1 + 2)2 - 1)( (k=1 + 3)2 - 1)
(k-1 + 1)2 (k=1 + 2)2 (k=i + 3)2

(k-2)2 - 1 ) ( (k~1)2 - 1
(k-2)2 (k-1)2 )

(k=i + 2)2 (k=i + ) (~1 + 1) (=1 + &) (k-1 + 2)

-4

(k-1 + 1)2 (k=i + 2)2 (k-1 + 3)2

(k-1) (k-3) (k) (k~2)
(k~2)2 (k-1)2




For 1=k :

Mg = w1 112

This completes

16

(k=1+2) (k-1) (k=1+3) (k=1-+1) (k=1-+4) (k=1+2)
(k=1+1)2 (k~i+2)2 (k-1+3)2 .
(k~-1) (k-3) (k) (k=-2)
(k-2)2 (k-1)2

H

< (k-14+2) + (k-1i) ) ( k )_~ ( (2k=21+2) k
(k=1+1) k-1/ femit] > ( k-1 )
< k
] [E——
o)

= (ag-1 + ag-1)% + ag = (2ap-1)% + 0

il
o~
AN
i
N
\L/
e
et
i

1 1 1

32 (k-2)2 (k-1)2

4( 22 - 1 ) < 32 -1 ) (k=2)2 - 1 > < (k~1)2 - 1 )
22 2 ) ( (k~2)2 (k=1)2

i

4z (2-1) (3+1)(3-1) (k~1) (k=3) (k) (1~2)
22 32 o (k~2)2 (k~1)2
4(3)(1) (4)(2) (k~1) (k~3) (k) (k~1)

22 32 (k-2)? (k~1)2
4 K
2\ k-1
)
ZW
k-1

the proof of the lemma.

i

i

s g, i e 2
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The following lemma is based on an idea communicated by J. Hagler.

Lemma 1.10: Let X be an infinite dimensional Hilbert space. Given an

(k-1)/2
K ) . kl/z , then

k-1
there exist equidistant points Xj, e+s, Xp € Sy , with A(xy, «e., x) =

a

integer Kk, k > 2 , and a number €, 0 < & < (

€ o

Proof: By Lemma 1.9 there exist equidistant points Z]s sesy 2k € Sy ,
K ><k—1>/z

with A(Zl, sy Zk) = (—}::I—'

[lz; ~ z-ll, 1 <4, j<k, i1# j, then it can be shown that a =
L J

b))

Thus, again by Lemma 1.8, it suffices to show that given b, 0<b < a,

. xl/2 By Lemma 1.8 if a =

then there exist X}, «e., Xge Sy , with ||x; - Xj!l =b for all i, j,

1<d, jsk,1#4.

Since X is infinite dimensional we can find z e X, such that |]z]| = 1,

and <z,z4> = 0 for all i, 1 < i < k.

b \2 )2 b
Let ¢ = (1 - <-~) ) » and xj3 = ¢z + = z; for each i, 1 <1<k,
a

Then it follows easily that Xls seoy X are as required, and the proof of

the lemma is complete.

Theorem l.11: Let X be an infinite dimensional Hilbert space and 9§y

its modulus of k-uniform convexity. Then all of the following are true,

(i) For any given € > 0 , lim 6p(e) =1 .
k>
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(i1) Given an integer k, k » I, X}, «es, Xp4] € S » then A(x), «e»,

k1 \k/2
Xjet1) € ( : ) (k+1)1/2

k+1

k/2
(1ii) Given e, 0 < ¢ < ( ) (k-l-l)l/2 , k an integer, k > 1 , then

k az/k 1/2
== - 1 had L4
5k(€) ! ( k-+1 ((k—H)l/k ))

Proof: The following equation, whose proof follows from the definition of

the norm in terms of the inner product, holds for every integer k :

2

X (k-1) 1 k-1 k-1
+ = — |Ix]|2 + Hyll? - Hx - yll12 .
’ K k7 k k 4 K2 7

In particular given x], ..., xx € X we have by letting x = xj , and

X2 -+ s + Xk Xl -+ Xz -+ ] + Xk 2
y = , that =
k-1 k
X x9 + . + X 2
| 1 (k-1) X +oees toxg | 1 )
+ == x|
| k K k-1 k
. + 2 + + 2
k~1 Xz ™ aee Xk k—l Xz o0 Xk
+ - | Xy - () &
k k-1 k2 k-1
Now, we will show the following fact by inductioun:
Glven =%y, +es, X € Sy , then
‘ K] + eee + R 2 1 ( 1 | 2 2 Ki-1 + Xk 2
S Rt B B B TS B o oo LK) o e -~
l X K 2 k-1 K 3 k-2 5
'}" + x® 2 X - "o + X 2
3 Ag~2 see ik k-1 X2 ‘k
+ m— Rl - "l' s 0 + X - »
k-3 3 k ! k-1
2

X] + % 1 1 1

For k = 2 s = ] = e | xy = %012 = 1 e [ ——] %] - x ;’2
2 4 1 2 5 5 1 2
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by the parallelogram law.

Assume fact is true for k . We show it then holds for k + 1 .

By (%)
X1+x2+... +Xk+xk+1'2 1 5 k X9 +'“+Xk+l‘2
= x4 + |
k1 | k+1 k+1 K |
k X9 F oeee F Xy 2
_— e | gy -
(k+1)2 k
and by the induction hypothesis
‘X] t XYt oees F XE b XpH] iz 1 )
= Plxqld
I+l | Ik
k (1 1 <1 y 2 2 ; xe + X | [P
+ s | X <X o Rl T
K+l K \ 2 ok Tkl 3 | [ 2
3 X1 b X F KR ] 2
+ me—— y . bl + s 00
5| k-2 3 !
+ + 2 + + x 2
k-1 | A3 T oo ORpt] k X2 T oo k+1
+ Xy - Biiamnnd B 4 Bl :
k k-1 k12 || k
1 k 1 < 1 g 2 2 X+ X+l |]2
= + - - Xk — X il B < RO
Krl okl K+l \ 2 k 7 et 3 ||7%t 2
+ xp ok 2 + + xpepy |2
Xp-1 + X b Ker] k-1 X3+ e k1 H >
'*" s Kl - '*‘ P '*' X e
k2 3 k|| k-1 i
k X2 + 00 + Xl{-}-l 2
- | |xy - : -
(k+1)2 ] K
1 ( 1 y 2 2 Xp b Rkt
=1 - — I x = % e 1 — + oae
) 5 k k-+1 3 } k-1 2
+ + xerr |12
k X9t oees b X4
i IS as required.
k+1 k
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As mentioned above, since (X, |l ||) is a Hilbert space we know that
given X1, eee, Xp e X, A(X], oo, xi) = dist(x), [%x2, eee, xK])

A(Xz, LICIC N Xk) .

Hence, inductively, A(xy, ++e, x[) = dist(xy, [x9, <+, x]) o dist(xy,

[23, ceey K1) o oos o dist(xgeo, [xg-1, xx1) ¢ Jlxp-1 = xll

Let dj

dist(xg, [%i41s eees xk1), 1 € 1 € k-2,

i

dg-1 = g1 = xell o

Then A(Xl, LI Y Xk) = dl e dz © ees ° dk—l .

In order to show lim &y (e) =1 for a given e > 0 let us assume
ke

Xl, soey Xk € SX N and A(Xl, seey Xk) 2 € .

From the fact proved above

l X1k oees +oxp } Xg—1 Xk“

)

: 1 1<1 H 112 + -
S R0 U I I S
; k-1 = %k 3

=2 =

k I k 2
3 Kp-2 F Xpw] t Rk 2 k=1 X9 F oees tXp
e | I3y g Foaee o | g -
k-3 3 1 ko1
1 1 2 3 k-1
< 1~--~<--«- a2 4+ —— a2 ¢ A U st VAN
k \2 k-1 3 k-2 4 k-3 ko1
since dj = dist(xy, [Xi41, ecoy %XKl1)
Xi+1 + eoo T Xk
<%y - for 1 <1< k-2 s
k-1
and dg.g = L lxgeep - oxel

We know dj « dp * eos o dp-y] = A(x], oo, Xi) =B for some B > e .

Let us now define functions f and h from RK™l into R by

h( ) 1 ( 1 9 2 2 k-1 2) 1
e e css,y Bl W e — + — e toeee F e an
1> ®2 > Skl k 2 k-1 3 k-2 k177
f=1-h, where (ej, €, se0, €k-1) € rk-1 |
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We show that h attains an absolute minimum value on the closed surface
C = {(el, csey ek..l) H el hd ez ® eee * ER..l = B s and (el, co ey, ek_l)f

Rk-l}_

This in turn will imply that £ attains an absolute maximum value on this

surface.

Notice that, since h is continuous and its range is [0, »), p = h|C is

continuous and its range 1s contained in [0,») .
Pick (e), €2, veo, €x—1) in C , and let L =p (e], €2, eee, €)—]1) -«

Since (e], €92, see, €k~1) ¢ p"l ([0,L]) and [0,L] 1s a closed set then

p~! ([0,L]) 1is a nonempty closed subset of C .

We show p~! ([0,L]) is bounded, If not, we can find (ay, ag, ees, ag-1)
in p~l ([0,L]) of arbltrarily large norm. But this would mean beilng able
to find (aj, ag, eee, ap-1) in p"‘1 ([0,L]) with at least ome arbitrar-
ily large coordinate. However, this 1s not possible since then p (ay,

ees, ay.-1) would be arbitrarily large and in particular larger than L .
Therafore, p~} (I0,L]) is bounded and thus compact.

Since p-l ([0,L}) is nonempty, p is defined at each of its elements and
by compactuness it must attain a minimum value at some point 7Z of this

sete.

Suppose now that Y e C ., If Y € p"1 ([0,L]) then p(Z) < p(Y) by the
choice of Z . If Y ¢ p~1 ([0,L]) then p(Y) > L since p is
nonnegative. MHence p(Z) < L < p(Y) and thus p attains an absolute

minimum value on C at 7
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Define g : RK~1 5 R by glep, eee, €pey) = €] * €2 ¢ vas * ey — B

W}lere (el, LI ek..l) € Rk.-l .

Since f achleves a maxlmum value on the surface for which the function g
is equal to zero, then we may use Lagrange's theorem to conclude that there
must exist X , a real number, such that Vf(z) = AVg(z) , where Vh

denotes the gradient of the function h .

By the definition of £ and g it can easily be seen that

of of of > 2 (k—-l ) 2 ( k—-2>
"o 8 SIS AR e = - b e - —— re————— e * 50
de;  dey 7 dep— k k PO\ ) e
2 2 2 ( 1 ) )
indiasnaad —— (S5 . - e — €15
X 3 k=2 X 5 k=1
and

< 3g dg g
0o —— = a 2 ® eses ° QL. e e o ° coe °®
deq ’ dep ’ ’ dep—1 ( 2 3 kelo B 3

61{._1, boey el ? sse ° e1<_2> °

Taking Z = (b}, «.s, bg-]) we must have then

2 k-1
- “;* by = X by * «ou o bp.y

2 k-2
—— .-.;— ra——— e b2 = A bl » b3 L] PR @ bk“'l

o

2 2
__T(T)bk_z—_-}\ bl . bz * seo0 © bk__3 . bk-l

2 1
= === == 1 Dbr.1 = A by ¢ by ° wes o bp. .
Kk < 9 > k-1 1 2 k-2
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For each 1 , 1 < 1 < k-1 , multiply both sides of the ith equation above
by bj , and subtract AR from both sides to obtain the following

equations:

2 [ k-1
alenll v b2 = X8 = X by » by ¢ 4ee o by = A8 = 0

{
W[N
P
u,fha
~__
o
PIT‘N

N
i
>
™
i
(@]

2 k-1 2 k~2 2 1
Thus A = = smeee | oo 52 = e e ) 52 =, = = e (2] p2
kB k 1 kg k1 2 kB 2 k-1
k-1 k-2 1
giving <~ ) b2 = <~wu-) b2 = ,,, = __~> b2 .
k 1 k~1 2 2 k-1

k-1 k~1 k~2 k~1 1 k-1
Hence b2 = b2 = vee = [ = b2
k 1 k-1 2 2 k-1

B L S S o )
k 1 k=1 2 2 k-1
k~1 k=2 2 1 e v b b 1y2 1,
= o [ ] e o » e ———— G e o [ PRPEY - — -t.':-—-*—-B Py
K k-1 3 g LT P2 k-1 K
k-1 k-2 1 1 1/ (e-1)  g2/(k=1)
SO - 2="‘°"—""“' b2=oc- ;—‘mbz = _"““82 T e s
Kk 1 k-1 2 2 k=1 K 11/ (k=1)
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1 1 2 2 9 k~1 9
Therefore {(Z) = 1 = —=—={ —~=— b t D I i
2 k-1 3 k-2 k I

i

1 ( BZ/(k“'l) >
1 - — | (k~1) E——
k 11/ (k=1)

and as seen above

Xl T ees T+ Xk 2 1 1 2 k-1
: S 1= — = a2 +—a2 + ...+ d%)< £(z)
; ke kK \ 2 k-l 3 k-2 k 1
1 g2/ (k-1) 1 2/ (k=1)
= ] e <(k~1) *** s e )< 1 = — {(k-1) *-~«~«-m~> since B > € .
k 11/ (k=1) k 11/ (k=1)

Letting k go to infinity we get from this inequality that
¥

Thus, we may conclude that lim &y (e) = 1 , which proves (i).
koo

%1 + ves + X
+ 0 .

k

k+1 k/2
Suppose now that K]y sevy Kpq] € SX , and A(xl, seey Xk+1> > <-£‘“)

TS DL N L

Then, as seen ahove, we have

xXp +F oeee +oxpyy |2 Kk A(KX], ooy xk+l)2/k
I k1 ©l- k+1 < (k+1)1/k )
k+1\k/2 2/k
K <<T> <k+1>”2)
T hn (k1) 17K
=1-1=0

k+ /2 1/2
which is a contradiction. Hence A(X], +oe, Xp41) < - (k+1) ,

and the proof of (ii) is complete.
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k+1 \k/2
From above it 1s clear that for a given e , k> 1, 0 < ¢ < ( i) °
k
(k+1)1/2 | then
’ 1/2

k €2/k )
8 (e) » 1 - (1 - ( )) (xx) -
k.+1 (k+1)1/k

By Lemma l.10 we may choose equidistant points %3, «s¢, X41 1in Sy ,

with A(Xy], see, Xk+1) = € o

From Lemma 1.8 if a = lei - lel, 1<41, js k, i # j, then

¢ 2/k

1
2 (k+1)1/k
and

k+]. - i Xi.‘.l + oees + Xk.}.l 2

k

1
(A1) - 141 |27 =““'2"‘az for all 1, 1 < i< k.

From above we know that

| 1 1
I 1 e ka"Xk.{..]_HZ"}‘...

k+1 2
f )
i

i X1 F oeee t Xpp
l k

i
i

Xz o AP X]-\—‘-},.l

X} - " -

k

e

k1

2
- (o5 )
K+l 2
1 €2/k >
=1 - K
k+1 ( ((k+1)1/k>

k e2/k
;:1—-
k+1 ( (k+1)1/k >

which together with (xx) ilwplies

k sz/k 1/2
S (e) = 1 = (1 el ( (k+1)1/k ) ) .

SO

X] Foees + Xk'-}..l

i
-
f

k
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This proves (i1ii), and the proof of the theorem is complete.

In the next chapter we will exhibit an interesting consequence of

(i) of this theorem.



CHAPTER II

Normal Structure and Superreflexivity

The principal purpose of this chapter is to investigate some struc—
tural propertles of Banach spaces under certain area-related convexlty
conditions. The material we present originated from an attempt to charac~
terize all spaces Isomorphic to superreflexive Banach spaces in terms of
these conditions. However, because of the nonisomorphic nature of these
properties, it was to become apparent that a characterization with respect
to the structure of the space would be of greater feasibility.

Thanks to some deep and fascinating arguments due to R. C. James
(11, 12, 13, 14, 15] and P. Enflo [8], superreflexivity has been shown to
be equivalent to several other geometrical and topological properties of
Banach spaces. Because of its significance to our study, we first collect
some of the material that pertains to these characterizations, including

James' definition of superreflexivity.

Definition 2.1: Let X and Y be Banach spaces. Y is finitely repre-

sentable in X if for each finite dimensional subspace Z of Y and each
positive number e there exists an isomorphism T : Z + X for which

(-e)llzll < [Tzl < (+e)llzll if 2z ez .

Definition 2.2: A Banach space X 1is superreflexive if every Banach space

which 1s finitely representable in X is reflexive.

The next definition concerns the finite tree property.

Definition 2.3: A Banach space X is said to possess the finite tree

property if there exists € > 0 such that for any positive integer n

27
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there exists a subset {xy : 1 <1< 20 - 1} of By for which xi =

(x91 + %x2{+1)/2 and |lxp; - x2441l! » € for each 1, 1 < i< 201l -1,

Definition 2.4: A Banach space X 1is uniformly nonsquare if there is a

positive number n such that there do not exist members x and y of By

for which

13, 14,

,> 1 ~-n and

aone

2

{
;>1"'n »

The following theorem whose proof was obtained by James [11, 12,

15] and Enflo [8] connects these notions and several other charac—

terizations of superreflexivity.

Theorem
lent.
(1)
(11)

(id1)

(iv)

(v)

(vi)

ing the

2.5: The following conditions on a Banach space X are equiva-~

X 1is superreflexive,

X does not have the finite tree property.

For some € > 0, 0 < e <1, and some positive integer n , there
do not exist subsets {x], ..o, %y} of By and {fy, «ss, £}

of Bgx for which f (x3) > e 1f k < i, and f£fi (x;) = 0 if
k>1.

For some € > 0, 0 < e <1, and some positive integer n , there
does not exist a subset {xj, ».., Xz} of By such that, {if

1 < k < n, then dist(conv{xy, see, xp}, convi{xgiy, +oe, xp}) > € »
X is isomorphic to a uniformly couvex Banach space.

X is isomorphic to a uniformly nonsquare Banach space.

As mentiloned earlier we would like to determine conditions concern-

concept of area and thelr relationship to superreflexivity. With

this purpose in unind we now Introduce a list of definitions whose central

theme 1s

the notion of area.
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Definition 2.6: A Banach space X 1is sald to have property A if there

exist €, m, §, with 0< e <1, m an integer, m > 1, § > 0, such that
whenever {xj, «v., xp} 1s a subset of By , then
diSt(Xm, [X[n__l’ “eoy Xl]) * diSt (Xn._l, [an....z, LR Y Xl]) ¢ e

. dist(x3, [x9, x1]) » llxp - x1ll < ¢

xl + eee +Xﬂ1

if

biee

m

Definition 2.7: A Banach space X 1is said to have property A' if there

exist €, m, §, with 0< e <1, m an integer, wmn > 1, § > 0, such that
whenever {xj, «+., %Xy} 1s a subset of By , then A(x], X2, «ee, Xp) < €

Xl+-ov +Xm

m

Definition 2.8: A Banach space X is said to have property B if there

exist &8, m, with 6§ > 0, m an integer, m > 1, such that whenever
{x1, «sv, xp} 1is a subset of By , then dist(xy, [Xp-1, +++» X1]) *
dist(xy—1s [Xp-2, eeey x1]) ¢ oo o dist(x3, [x2, x11) » llxp = x;1] < 2m=1

Xl + ees + Xm

« (1 - 8) if

]>l'—60
m

Definlition 2.9: A Banach space ¥ 1s said to have property B' if there

exist &, m, with & > 0, m an integer, m > 1, such that whenever
{x1, «oe, xp} 1s a subset of By , then A(X], s, Xg) < o=l (1 -~ §) if

le toees b oxp

l ’>l'—5.
m

By Lemma 1.3, since A(Xy, «ev, Xp) > dist(xy, [Xp-1s soes X1]) @ «oe

+ dist(x3, [x2, x31) « llx9, x3!| for any xj, ..., x, € X , property A'
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implies property A and property B' dimplies property B . We will
confine our attention mostly to properties A and B . Clearly, property
A 1s a sufficient condition for a space to have property B , and as we
shall see, from an example due to L. A. Karlovitz [17], property A 1is the
stronger of the two. Since Karlovitz's example also depicts some other
properties of Banach spaces which we still have not defined, we will delay
its presentation until later in thils chapter.

We know that if xj, «.., x, € X, X a Hilbert space, then
A(xy, seey X)) = dist(xy, [xp-1, e, X11) ¢ oo. o dist(x3, [xp, x31]) *
[{xg = %11l + So, intuitively, if we think of dist(xy, [Xp-1, eves %X1]) *
ses o dist(xy, [x2, x1]1) - lez ~ x1l| as an alternate definition of area,
X1,y ssey Xy € X, X an arbitrary Banach space, then a Banach space with
property A can be thought of as uniformly not having, for some integer
m , arbitrarily flat m-dimensional convex regions on the unit sphere of
area arbltrarily close to 1 . On the other hand, Banach spaces having
property B do not have, for some integer m , arbitrarily flat

m~dimensional couvex regions on the surface of the unit ball of area
arbitrarily close to -1,

Intrinsic in the definltion of property B is the fact that
m—dimensional convex reglons in the unit ball of area arbltrarily close to
2m~1 have edges of length arbitrarily close to 2 . In contrast, whenever
the area of a m“dimensiénal convex region in the unlt ball is arbitrarily
close to 1 , it does not follow necessarily that the lengths of its edges
are also arbitrarily close to 1 . This last fact, then, makes property A
less suitable for certain calculations.

That Banach spaces possessing property A are superreflexive is

essentially due to W. Davis [4]. The proof is presented next.
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Theorem 2.10 (Davis): If a Banach space X possesses property A then X

is superreflexive.

Proof: If X is‘not superreflexive, then by Theorem 2.5 given e, 0 < g <
1, and a positive integer m , there exist subsets {xj, +es, x,u} of By
and {fy, «ev, £33 of Bgxx for which £ (xq) » ¢ if k< i, and

fr (x4) =0 1f k> 1 . Then

xl + 0o + Xm

Xl+ooo +Xm 1

m m m
1
~—= e ME = E .
n
i-1
Given 1, 2 < i <m, and z € [x], sos, Xj~1] then 2z = 2 Ajxy with
j=1
i-1
2}\j=lo
j=1

Hence llxi -zl » £; (x4 —2z) = £f1 (x4) ~£(z) >e ~-0=¢, so0
dist(xqy, [xj-1, sve, x1]) » ¢ for all 1, 2 < i< m, and therefore
diSt(Xm, [Xm._.l, eo 0y X]]) e diSt(Xm...‘[, [Xm—-z, v 0 vy Xl]) ® ses O°

dist(xg, [xg, x11) » llxg = x1|l > em1

Since € 1is an arbitrary number hetween zero and one and wn is any arbi-
trary positive integer, we get that X does not have property A , contra-

dicting the glven hypothesis. Hence X must be superreflexive.

A rather exceptional {idea is the heart of R. C. James' proof that
uniformly nonsquare Banach spaces are superreflexive [12]. We take advan-—

tage of this idea to improve Davis' result as follows:
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Theorem 2.11: If a Banach space X 1is not reflexive, then given § > 0O,

m an integer, m > 1, there exlst xj, .es, X 1In By such that
dist(xg, [Xg4]s eees Xpl) > 2(1 - 8§) for all 2, 1 < & < m1l, and

Xy X2 F e + Xy

> 1 - 6 L]

m

Hence, in particular, property B implies reflexivity.

Proof: R. C. James [11] has proved that since X 1is not reflexive, for
some 6, 0 < 6 <1, there exist sequences {z}, {f4}, 1in By and By«

respectively, such that fj(zk) =0 1f j <k, fj (zg) =0 1f j> k .

Following James' argument, if n 13 a positive integer and if p; < pg <
soe < poy Is a sequence of positive integers, let S(pj, ««s, P2y) =

{xe Xt £5(x)= (110 4if ppj-1 < j < ppi}, and Ky = lim inf(lin inf

Pl P2
(ooo (lin inf(infllx’l ¢ X € S(pl, so0y p2n))) s e )) fOI‘ eac}l N e
P2n
n
Notice that for each mn, ) (zp = Zp - 1) (-Dle S(py, e+ P2n) -
{=1 21 2i-1
n
Since || (z -z -1l € 20 then XK, € 2n  for all n .
12‘11 Py Pa1 1 o

Also by the definition of K, we have X,u1 > K, . Let 6§ >0, m> 1, an

Integer, be given,

Kp Ky
Since - - < 1 and = 1 for all n , there nust exist e > 0,
Kpt1 K
K1 — € Ry - €
and n a positive integer so large that -—————— > 1 - 3§ and -—
K, + ¢ K, + €

>1"'6.



For this n

Pon are positive integers with p < p; < pp < «ev < P2y

K, - € whenever

z € S(pP1, P2y seey P2n=2) »

Choose positive integers

p3 , wee, pol, po-l

o 1 2 2n
D < pi, < p% < pg < p? <

e < pg'l < P§"1 <

vee < pZ"I < Pﬁwl <

oo < pg"l < P?—l <

ers < pgn»é p?an

eee < Pg;iz < ngil < pgn~2 ¢

so lavge that there exist uj,

u S( 1 1 LI J 1 )
1 € P19 pz’ » pZn

u ES( 2 2 “oo 2 )
2 Pls Pz, ’ Pzn
U1 € S(pT“l, pg"l, s

ooy PR

u, € S(pm, p®
m 1: P on

and

there exists a positive integer p

Z € S(Pl’ P2s ooey pZH)!

pi, p

3 °o, pm~1’ P, PBy eee, PO,
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Such that if pl’ pz’ e vy

then |lzl] >
and |lzll > kp-1 = € whenever
1 1 y z2 ... 2 3 3.,
2’ Pznp pl’ Pz, I3 Pzn, Pl» pZ’ s
such that

1 2 2n

ves < piml ¢ om ¢ ¢ pl ¢ 2 ¢p2¢ ...
Pl Pl PZ P3 Pz P3

< pl <

<y <o) <ol <l

2 < * P 0
4 Ps

pt < pit < pl

<pl < p2 ¢ p2<.e
4 5 6 P70 P P

6 7

m ¢ pht < 1 ¢ L ¢ p2 ¢ 2 ¢...
P6 P7 P8 P9 PS P9

< pl < pl < p2 < p2 <
p2n~2 p2n~1 p2n~2 p2n-~1

< p1

ph
2n

< 2 < 3 < nas m~1 & ph
2-~1 T Pon P ’

2n

o8 e, um € X s With

m—l)
2n

Ilullly I|u2lly srey I;umw-ll!Q Hum’t<Kn+€°
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Let Sy = S(pT, P;: Pg’ Pi’ T p2n~1’ p;n’ )
So = S(P;, Pg’ pé, pi, T p;n~l, pzn*z
Sy = S(pg, P;» pg’ pZ’ T pin-l’ p3n~2
Sy = S(pg, p;, Pg’ PZ’ T pgn*l’ pgn~2

S .1 = s(pn~2, pmw~l pm=2 w-l = om-2 m=1 )
m~1 P3 » P2 s PS s P4 s ) p2n"l’ pZn—Z

S. = §( n—-1 m ool moo ., m-1 T
n P3 s Pza PS » P4: » Pzn_1’ pZn“Z

By the definition of p if =z e Sy, then [lz|| > K, -~ € , and 1f =ze

Sy, 2 € i <m, then [lzll > Kyoy -€

Lettl ul uz Upy N TPy
ett ng X1=W~,X2=w“, coey Xm=w-’,ten Xl s
Kh + ¢ Ky *+ ¢ Ky + ¢
Ky + ¢
|’X2ll, ey, lenlil < ———— 1 .
Kn+€

We now show dist(xg, [xg41, see, Xg)) > 2 (1 = 8), 1 < & < w1 .

Suppose ¥y € [Xg4], eoe, Xpl, 1 € & < m-1 .

m m
Then y = ) Apxp  with Y Ap=1.
n=4-+1 n=L+1 m
Au —-au
nﬂ§+1 nn .
By the definition of Sg4; it can be shown that 5 € Sp.1s
m
2 Au ~u
negel 20 A m
hence > Kh-1 — € and therefore Y ApXp < % | >
2 n=2+1
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Since y is arbitrary in [xgq], e, %] then dist(xg, [xg41, oo, %pl)

>2 (1l -8), 1< &< ml.

Hence  dist(xy, [x2, oo, xu])  dist(xy, [%3, oo, Xpl) o oo o

diSt(Xm-—Z’ [Xm—-l: xm]) . ”Xm—]_ - XmH > om=1 (1 - 5)mm1 .

tXl+X2+.a- +Xrﬂ
Now we show >1 -8 .
I n
u1+u2+..o+um
By the definition of 8; it can be shown that € 51
m
fup + eee + uy l X] + X9 + eee + xp i
hence > K, - €, and therefore ! I
m m
Kp - ¢
>" >1'—6.
Ky + ¢

Thus Xy, «ee, Xy satisfy the desired conditions, proving the first part

of the theorem.

Since 6 > 0, and m > 1, an Integer, are arbitrary, we get that if X
is not reflexive then it does not have property B , which is the second

assertion of the theorem.

Theorem 2.12: 1If a Banach space X has property B then X is super-—

reflexive.
Proof: Suppose X 1is not superreflexive.

Then there exists Y a Banach space finitely representable in X , and

nonreflexive.
Let § > 0, and m > 1, an integer, be given.

1f Il « 1] is the norm on ¥ , then, by the previous theorem there exist

Y1y *e+s Ym € By such that dist(yg, [yg41, eesy ypl) > 2 (1 = 8) for all
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>l"‘60

y1 +noo +ym
L, 1 €& < m~1, and

m

Let Y, be the linear span of yj, «eu, y, -

Since Y 1is finitely representable in X then there exists an isomorphism

T : Y, X for which

1 -8
*%I*;~g%~ FHy T < Hr < THyHD 4y e Yy, o

Let %] = Tyj, ees, x, = Typ o

Then from above llxjll, Iixoll, «vuy llx ll < 1.
m o
Also, if x = Z ApXp Wwith ) Ap =1, 1< 4 < w1, then
n=4£+1 n=4+1
(1~ ¢) (1 - é8)
Heg=xl] > ——— | liygy =~ yll] > ~=ewie ¢ 2(1 ~ 8) where y =
g (T+sy FTY (1 +9)
E}
) Anp¥p -
n=4+1
. o 2(1 - 8)2
Hence dist(xg, [Xgp1s oee, x,1) > ~~2?f:fgg- for all £, 1 € 4 € m~1 ,

and dist(zy, [X9, eee, Xpl) © eee 0 dist(xy-9, [x,-1, Xnl) llxmwl - Xmll >

- 2m—2
om-1 (,1 §) . .
(1 + 5)m*l
Xp F oeee +oxy [ (1 - §8)
Similarly (> = (r-8 .
Il m | (1 + 8)
i §

Since 6 > 0 , and @m > 1 , an integer, avre arbitrary, we get ihat X does
not have property B , contradicting the given hypothesis. Therefore X

must be superreflexive.

That property A and property B are not necessary caaditions for
a Banach space to be superreflexive is an easy consequence of the next

theorem.



37

Theorem 2.13 (van Dulst and Pach [6]): Let "X be an infinite-dimensional

Banach space with norm || ¢ || « Then there exist a norm [« 1 on
X , equivalent to || « || , and a sequence (xy)® ) in X such that
n:.‘

Plxy + ooe 4+ x5l

1 for all m, and

1

Hxplll = 1 for all n ,
m

Hixg = zlIl > 2 forany 2, k, 1 < 8 <k, and 2z €[xgqy, soe, xle

Proof: It can be shown that there exist K > 0, (yy)® 0 a sequence on the
n=

unit sphere of X , (y©)® 0 a sequence in Y* , where Y i the Banach
n n=

space generated by (y,)” 0 satisfying the following properi‘es [5]:
n=

1) G° 0 1s a basic sequence.
n:‘:

0

n »
(1) Whenever ) ajyy € Y, Il ) ajyill < x || ajyill for all n .
i=1 i=1 i=1

(111) ¥ (yp) =0 if n#m, ¥ (yy) =1 if n=m .
m m

(iv) JI¥*Hl < 28k for all n .
n

For each n let y* be the Hahn-Banach extension to X of ;* .

n n

Also for each n , n > 1, let x, = yg ~ 2yp, X' = yg +y*
n n

We define ||| « ||| on X by
1
T = sup ({*g* HxHYoll* ()] :n=1, 2, «v.}) for x € X .
n
L o« 11 is clearly a norm on X .

By the definition of x*
n
Hx*T1 < Hy®I + Hy*H < 48 for all n,
n 0 n

so |x* (x)] < 4K |lx]| for all n and all x € X s
n

1
and lIxl]] < max(~§~, 4r) |1x]] for all x e X .
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1
Since also |llx]|] » — llx|l for all x e X, it follows that

fIl < 11l is equivalent to || « [] .

By (ii1) if m # n then

x* (xy) = y* (vo = 2yy) + y* (vo = 2yn)
m 4] m

= y* (y0) - v* (2yy) +y* (yp) - ¥v* (2yp)
0 0 m n

i

1-0+0~090

and if m=n then

x* () = y* (y0) = v (2yn) + v* (yo) - v* (2yp)
m 0 0 m m
=1 =040 =2
:""10
Also  [lxpll < llypll + Il2yyll =3 and Ix™ (x3)] =1 for all n , m .
n
Hence [lixpll] =1 for all n .
Xl"%‘ooo”"}{m ‘ m

Similarly, x* = — =] for all m, so

mt1 m m

Xl + eee +Xm

= 1 for all m .

m

Suppose pow that z € [xgi1, ee0o, ], 1 € 2 < k&

k k
Then =z = Z Ajxy where ) Aj=1.
j=A+1 e+l
Again, lxz (xg = 2z)| = |-1 ~ 1] =2, hence [llxg - zll] » 2 which

completes the proof of the theorem.
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in spite of the last theorem, the following result shows that under
certain clrcumstances, a Banach space with a glven norn ||} « ||| has
property B,

Theorem 2.14: Let X be a Banach space, and || « || its norm. If for
!l}{l F oees Xk—!—lli

e

some £ > 0 linm 5£ {e) = 1

w

where Gi (¢) = inf{! -

i roo k+1
HXIH =g a. = ”Xk*%-lli =1 , and Hxl - X2” . dist(x:g, [Xl, X,z'l) L
distlmerr, [%1, soey x 1) > €}, then (X, |11 » {I]) has property B

A 1
vhenever for some A, C > 0 with e > 5 ATH=T < Hxl < e

for all x e ¥ .

A
Proof: For any x ¢ X let |lx]!* = — |ix|] . 1t is easy to show that
e C
we still gat 1lim 6° (e) = 1 if 6; is now defined in terms of || « |]°*.
koo K
From the hypothesis we now have
A
= P < Hxl b < Ikl for all x e X (&) .

L]

Assume  {X, {f! » |l]) does not have property B .

I
IS
'
=
hd
|
A\
=
VY
)
*

Then, du particular, given any integer %k , k > 1 » there exist wp, ...,

illxl +oeee T+ xklli

iy ?lgxlfli, feoy f?[xkifi < 1, with > .9, aud

k
sy = o] - distixg, [xy, %21)% vee o dist(xy, [x7, ., We1]) > ML
vhere 'EEEE{xi, [X1, seey %g-11) s dist(xq, [xp, no.; s:..1])  calculated
with 1] ] .
ilxl *oees Foxp ]t A

By Gy Hxqdly, oo, [ i <1, and — ; = > .9 m;« .
K "
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A
Also, since = M> 1, Ilxg = xoll" « dist'(x3, [x1, %9]) + +eu o

A \k-1
dist'(xy, [X], eee, XR-1]) > <??) . Ilixl = x9lll dist(x3, [x1, x2])

o A \k~1 , A k-1
® Lee * dist(xk, [Xl’ o, Xk"l]) > -—E:—.-. ° MLC""]. = “""(':""‘ M N for

sufficlently large k , where dist'(xy, [x], +es, %x4-1]1) 1is dist(xy,

[%X1, sesy %q-1]) calculated with || - {]* .

Thus, from above it is clear that 1im 8' (e) # 1 , which is a contradic—

K-rco
tion.
Hence (X, |l] « [ll) must have property B .
Coxollary 2.15: If (X, || « |l) 1is a Hilbert space then (X, |{| « I

A 1
has property B whenever for some A, C > 0 with = > k AllIxl] <
[leld < ¢ Hixlll for all x e X .
Proof: By Theorem 1.11 1im 8' (e) = 1 for any € > 0 « By Theorem 2.14
koo

(x, Il » I1]) must have property B .

As we shall see, it is a consequence of the last corcllary that the
space given in Karlovitz's example has property B .

Because of Theorem 2.13, it is evident that properties A and B
should be examined from the isometric point of view. With this in mind, we
show that spaces satisfying elther of the two area related conditlions also

possess some special geometrical structures related to fixed points.

Definition 2.16: A Banach space X is said to have normal structure if

for each bounded convex subset K of X , consisting of more than one
point, there 1s a point x e K such that sup{|lx -~ k]| : ke K} < diam(X)

z gup{{lh-k]] : h, k ¢ K} .
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Definition 2.17: A Banach space X is sald to have close to normal

structure if for each bounded convex subset X of X conslisting of more
than one point there is a point x € K such that ||x - k|| < dian(R) for

all k eXK .

Throughout this chapter a subset K of a Banach space X will be
called abpnormal whenever K is bounded, convex, consists of more than one
point, and for all x e K sup{|lx -~ k]] ¢ k € XK} = diam(X) .

Intuitively, in a Banach space having normal (close to normal)
structure, every bounded convex subset has at least one polnt that acts as
its "center of mass.”

Banach spaces with normal structure are of importance because they

satisfy the fixed point property [18], which we define next.

Definition 2.18: A Banach space X is said to have the fixed point

property if for every weakly compact convex subset K of X , and every
mapping T ¢ K + K which is nonexpansive, i.e. l[TX - Tyll < fx ~ vl

for all x, vy ¢ K, there exists 2 ¢ K with Tz = z .

We will show that Banach spaces possessing property A Thave normal
structure so that they also must satisfy the fixed polnt property. First

we consider some preliminary lemmas.

Lemma 2.19: If K 1is an abnormal subset of a Banach space with diam(K) =
1, then, given (B,) , a decreasing sequence of positive numbers

converging to zero, there exists a sequence (x,) in K such that

[1x5 = 2zl > 1 -~ By whenever 2z €co(x], eee, Xiup), 1 > 2 »

Proof: By induction we choose (xp) 1a K satisfying the following

property:



Xl + eoe + Ki...l
- for i> 20

i-1

Since X # ¢ , pick x3 ¢ K.

K being abnormal implies we may choose xp € K with [|x; - xpl] > 1 ~ 8y

B2
= ] - e=——-—-- go the property holds for n = 2 .
(-1 prop y

Suppose it is true for n = 1 . We show it holds for n = i+l .

By the induction hypothesis, we may choose %y, «.., %Xy € K such that

;]Xl"l"aeo +Xi.—.1 Bi
l‘ =Xyl
H i-1 i-1
Xl + see + Xi_l +Xi

By the convexity of K, 1 € X, so again since K 1is

[ X1+ oees kx4 ‘ Birl
abnormal we may choose xj41 with I - X441 ([P ) - e

| i 1

Bi+1
=] - ~-;-~Iw as required. Hence, we may choose (x,) in K satisfy-
i+l -
ing the gilven property.
Now, suppose 2z € co(X], eee, X4-1) , 1 2 2,
We show ||z - x> 1 -84 .
If i=2 then z=1x; and x4 = x9 so ||z - xill = Ixg - x> 1 =
Bo .
Thus, let us assume 1> 2 and |lz - x;l] <1 ~ By (%) .
i-1 i-1
Since 2z € co(Xy, es., Xj~1) then =z = E Aij , Where X Aj =1,
j;‘:l jzl

Ay >0 for 1< j<i-1.
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Hence, as shown above

l (I-A1) x3 + eee + (1=-X41) %41 AIX] + oees Aol X{-1 X{
4 o
J i-1 1-1 1-1
(1-2) | ] F el Fxg ! Bi
i xi‘ -] “xgl > 1 = memieen
(i-1) | i-1 Do (i-1)

so by the triangle inequality

(1-31) %1 + eee + (1=Xjo1) %q-] {=2 |
: -y
i-1 i-1 |
Pl Aqxp + oee + Ai{-] E{-1 x{ | Bi
+| S | P e
i-1 i-1 | (i-1)
or
R I
[l L =) x,
|| 3=t J 1-2 ‘ - Bi 1 ! Y
( - Xy | - - B R EAR &
| i i~1 - ii i-1 i~ *
and by (%)
i iil i
(1-2,) x, J
3=l 2 i-2 ;§> ! Lo )
—— ) - P e 8.
| ' 1-1 -1 t] i-1 1-1 *
1 i-2
s 1 - = .
i-1 i-1
i-1
Multiplying both sides of this inequality by ~T~E~ we obtaln
{
[ 1-1 ! i-1
yo(1=x)) x. YLD
, j:l J J jnl J i”'l e 1
1 - %Xy 1> 1 with = =1,
i 1-2 || i-2 i-2
i-1
(1-x,) x,
So by the convexity of X , - € K, but since x; e¢ X and
i~

diam(K) = 1 we get a contradiction. Therefore ||z - x¢|| » 1 - 8y
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whenever 2z € co(X], see, X4~1), 1 > 2, and the proof of the lemma is

complete.

Lemma 2.20: If X 1is an abnormal subset of a Banach space X with
diam(K) = 1 , then, given (B,) , a decreasing sequence of positive numbers
converglng to zero, there exists a sequence (x,) 1n K satisfying the
following properties:

(1) lz = xg44l] > 1 = By, whenever 2z  co(xpi], eees X[+i-1) Ffor all

positive integers L, 1 » 2.

i-1
(i1) |z = xp4q!l > 1 = N (i~1) 8y, whenever N> 0, z = '21 Aj XL4i s
J:
i~1
y Aj =1, B={x3:25<0,1<j<i1}# ¢, and Dyl <™,
3=1

1 € j<i-1, for all positive integers L, 1 > 3.

Proof: By Lemma 2.19 there exists (x,) a sequence in K such that
Ilxg = 2zl > 1 -~ gy whenever 2z € co(x], ese, X4=1) , 1 > 2 + We show

(x%,) 1is the desired sequence in X .

Let L Dbe any positive integer. TIf 2z € co(Xps1y ooy X ti-1)y 1 2> 2,
then from above [lxpqq - z|l > 1 = Bppq > 1 =~ By, since (By) is a

decreasing sequence, and co(Xp4l, soey XLpi~1) C cO(X], oo, X[pi-1) o
Thus, (i) 1s satisfied by (x,) .

Again, lett 1 be any positive integer, and suppose
HZ"“XL+3'_H <1 ~N (i~1) B1, (%)
i-1 i-1
where z = '21 Aj XL#j » '21 Ay =1, B={x53:2;<0, 1< j<i-1} #y,

and Iljl <N, 1< j< i~1, N some positive number, 1 > 3.
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(9]
]

Let {szxj>o,1<j<i-—1}.

Since B and C are finite sets there must exist integers k, h > 0 such

that B = {nj H j = l, LI Y k} Py C = {Yj H j == 1, ey h} .
i-1 h h k
Notice that since .z Ay =1, then .2 Yj# 0, and .E Yy~ .Z ny =1.
j=1 j=1 j=1 3=1
k
Also since B # ¢ , then ) ng # 0.
i=1

We will set xnj = X[4n 1f - njy =X, , and ij = Xp4n 1f vj5 =2y for

all n, 1 <n¢gi-l.

i-1 h k k
Hence z = .2 Aj RL4+j = 'z Yj Ry, ~ ) nj x,, or z- .z Nj *n,
J::]_ j=1 J J= . J:l J
i
Y %y -
j=1 4

Since Z Y3 # 0 we may divide both sides by this amount to obtain

31
k h
z+ ) n, L Y. %
=L N3 = Y
h h )
Iwo L
h J= J=
jzl "
Since -g~*~—* = 1 and Y32 0 for each j, 1< j<h we get that
Loy
i=1
h
oy, x
=1 [T
€ colx ceey X C co(x ooy X7 4q1) C
- \*k , yh) C co(R1+1s » X[ 4i-1) €
R
=17

Co(Xl’ ®osy XL+i~l) .
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So by the choice of (x,) we have
i )
z + n, X Y. X
=1 4 N =1 3 Y3
| - TOEL4L|| T - TR 2 1 =By > 1 - BL
i . .
| z YJ 'z YJ
i j=1 j=1
or
k h
D on, x 1oy, -1
z XLt =1 3 73 j=1 J N
. -}. — X oo
}z‘ lf E - L L
Y3 Y Y3 L3
51 1 =1’ =1
and by the triangle inequality
i )
Y on,x n
Y TR N R i ST | N
e I AR JEI I B B . ¢ -
¥ Y Y3
j=1 . j=1 ) =1 J
giving
K K
. X .
IR , — I
- PR 1 =B, - —m——— Z = X[44
h h Lk L h T+1
RE Loy RS
=1 =1 =1
1
> 1 - gy, - T (L= N e D) e ) by (8)
RS
=1 "
1 N« (i~1) « By,
= 1 - B - 4
BT h
LYy RS
3=1 J i=1
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. 1 N ¢ (1-1) » By,
=2 — -} ..-B
h h L
z Yj Z YJ
j=1 J=1
h
Loy, -1
j=1 r g N e (i~1)
i |3
Y3 RS,
j=1 j=1
k
L omy
=1 N o (i-1)
> e~ gince | —————————- - 1 > 0 for Yy < N for all j's .
h h
E Y3 X Y3
j=1 j=1
h
jzl '3
Multiplying both sides of this insquality by ~*{--~ we obtailn
Y n
=1 °
ok | $
D l Y on.
; - " XLk | > with TS 1.
H o d
L Ly i PERE
! j=1 k j=1
X
jzl "3 Ty
So by the convexity of X, —-~E--~—~ € X, but since =741 ¢ X and
Y on
=10
diam(K) = 1 we get a contradiction. Therefore ||z - x4l » 1 - N« (i~1)

* B » z as defined above, and (ii) is satisfied by (x,) -
This completes the proof of the lemma.

Now that the last technical lemma has become avallable we are ready

to prove a mailn result of this chapter.
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Theorem 2.21: If a Banach space X has property A then it has normal

structure.
Proof: Suppose X does not have normal structure.

Then X contains an abnormal subset K , and without any loss of general-

ity we may assume it is closed.

Since normality is invariant under scalar multiplication and translation,
we may assume without any loss of generality that diam(K) = 1 and that K

is bounded away from zero.

Plck e, m, 6§, 0 < e <1, m an integer, m> 1, § > 0, as in the defini-

tion of property A .

Let (B,) be a decreasing sequence of positive numbers converging to zero,

with B, < 8 for all n .

Since diam(K) = 1 , choose a sequence (x,) 1in K corresponding to (B,)

as dia Lemma 2.20.

Let L Dbe any positive integer, and set yL = X[A4]l " Kldmbl yg = X[b2

1 A
ALAmtl » 29> Yi = XAm T EL4wkl e

We know from Lemma 2.20 (1) that in particular

3 ] X4l F x4 Foeee Xy

i

A A1

N m
l y]’.; + YL -+ PR + yL ! !

1 2 m
So i;
m !

(K41 = Zmt1) *oeer t GLgm = K1) !l> L -8

m (=
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Also (ly?ll , sesy HyEIL €1 since diam(K) =1 .
m

By property A we must have

Lo yLl] o aise(yl, [yh, yU) » oon o distGyh, Iy, o, ¥R <
Hyy =y (v Iyys v2D) yo Iy2 s eees v

which implies , by the definition of y%, eev, vb, that
m

Mxpo = zpapl] o distCapes, [xpas xpa1l) o eoe o dist(apanm, [Xpam-1, o)

x14+11) <& (%) »

We show that for very large L the left side of (%) 1s bounded below by a

number between € and 1 , which will be a contradiction.

Since by Theorem 2.10 property A implies superreflexivity and thus
reflexivity we may assume without any loss of generality that there exists

x € X ; such that x, + x weakly.

Since K 1is closed and convex then X must be weakly closed so that x e
K . Also, since X is bounded away from zero we know x # 0 , and hence,

Hxl! # 0.

Let | - Ii be the Euclidean norm on RI .

For a given positive integer L , and 1 » 2 , define Fi : R » Rr by

Fi ((ag; eesy aq)) = l|al K41 F oeos +oay XL+i|[ for (aj, ««o, aj) € ri ,
It is easy to prove that Fi is continuous.

Let Uy = {(ay, eeoy 87) ¢ (@], cosy a{) ¢ Ri, [(ag, seey ag)ly =1,

aj>O}o

i 1k

j=1
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Since Uy 1s compact for each 1 , then for every L and i there exists

(bl P i) € Uy such that Fi ((b

eeey, D)) = |Ipl  x +
L+l I+ »oeees Br ) lL+1 L+1

i
L+1

ees bi XL+1 li < l'al Xb+1 + aee + ai XL+i!| for all
L+

(al’ LI Y ai) € Ui .

We show there exists L' , a positive integer, and A , a positive number,
such that if L > L' then |lay xp4; + +o¢ + ag xp4411 > A for all

(a1, «vs, ay) e Uy , for cach 1, 2< i< m.

Without any loss of generality, by the compactness of Uj; , we may assume

that for each 1, 2 < i € m there exists (bi, ceuy b%)e U; such that
i

bi “ve bi ks bi s oe bi L]
(L,,L)(l,,i)

+1 41

i
Since (bi, cse, bl) e U; then l(bi, seesy bi)li = 1 and 2 bl > 0 for
1 i ) 1 i j:l j
all i, 2 < i< m.

1
For a given 1, 2 € 1 < m , suppose b% > 0.
=1 3

w
Then since =x, + x , and there exlsts f € X * ’ el = 1 , with f(x) =
i

[ Ix1] , We must have f(bi RiAl F oses + bi Xi4i) > I( 2 b% x)
1 1

i
b% f(x) = X b% [l=l] > 0 since llxl|l # 0.
1 3 j=1

hi
[l

J

But f(blt x +oeee +bE xpag) < bt x + ove b1 x7.41l so
Ly Ll Ly Nl g Pt g Sl

J

there must exist Ay > 0 , and L; a positive integer, such that if L >

L' then flal Kl F oeee + ag XL+ill > Ay for all (ay, «ee, ay) € Uy o
i

i

Suppose now that X b% = 0, and Ay, L; do not exlst as above. Then
j'_':l J

for arbltrarily small B > 0 we can find arbitrarily large L such that



51
Ilb:]i: XL+1+.'° +bj‘. XL+i!' <B .

Without any loss of generallty assume bi # 0.

i i
i . b bi-1
Since Z bl =0 then bi+ ... +bl = -31pl g0 t oeee -
=1 ] 1 i-1 i -pi - pi
i i
=1,
i~ i
”bi XL+1 + veo + bl K i1 + pi XL+iH <B .
1 i-1 i
l i i i
s Pi-1 - ®) B
Hence | K4y hoeee T Rl T X (<O
Lo bl - bl - bl bl.
} i i i i
L i i !
M byl l B
or ( ! X XL+1 + o eee + " XL+i“']. - XL+ii < o (**) ®
| |- Bl - bt bt
I i 1 1[
i i
b i % byt
Letting N = sup {| s eees | s we must have by (i) and (ii)
= bl - bl
| i | i
of Lemma 2,20 that
oL d i }
| b by-1 l
R4l T oeve e K] i1 ~ XL+ l > min(l - BL, 1~ N+ (i=1) -
- bt - bl i
i i !

!

By) for all L.

But since By, * 0 as L » @ the last inequality contradicts (xx) for B

is very small.

So L' and A; must exist as desired. Also by letting L' = max {L'} ,
i 2<i<m 1
and A = min {A;} the claim is seen to be valid.
2<1<m
.1
Assume, now, X = (X, «e., Ag) € RL, ) Ay=1,2<1i<m.

1
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Then, since ) = >0 and -l =1, we must have
j=1 Ixly Iy Ixly 1
A
N € Uy , and by the fact just shown above we get
i

Al . Aq I
X+ + ees X1 41

> A for L> L',

H

50 ”Al Xipl Foeoe + A4 xL+i” > A I>‘|i for L > L' .

From this inequality, then, we may easily conclude that given P > O,

i i

there exists N > 0 , such that if z = A XL4g s El Ay =1, 2<1¢
J= =

m , and  sup lljl >N then |lzl] > P, for all L > L'.

1<3<i

Let M = sup{|Ix]| : x€ K} , and pick N> 0 corresponding to M-+ 1 as

above.

For 2<i<m, and L > L', we show dist(xp+i, [X#1s 200s XL+i-1]) >
min(l - By, 1 = N « (i=1) = Br) (wzx) .
i-1 i-1
If 2z = .z Aj X[ 49 » .2 Ay = 1, then by (1) and (ii) of Lemma 2.20 we
= ==
get for all L |lxp4q = zll » min(l - By, 1 = N « (i~1) + By) whenever
Irsl < W for all 3, 1< j< i-l.
On the other hand, for L > L' , if sup  [a4l > N, we know by the
1< 3<i-1
cholce of N that |lzl] > M+l .

So  tlxpeq ~ 2zl > Mzl = gl > M- = 1 > min(l - Bg, 1 - N » (i~1)

* BL)

Thus, |lxp4e1 = 2] » min(l - gy, 1 = N « (1-1) » B;) for L > L', for all

Z € [X[41, vees X{4i-1] » and (xus) must hold.

Since N is fixed, 2 < i < m , and By, » 0, then from (wx%), by picking L
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very large, we can make dist(Xp4i, [XL+{-1s +++, X1+1}) bounded below by
a number arbitrarily close to 1, for all i, 2 < i< m. This, in turn,
will imply that for very large L we can make |lxpqp = xpp1ll »

dist(xy43, [Xp42, xp41]) © eoo o dist(gp4y, [(Xr4m-1s «++» X141]) Dbounded

below by a number between € and 1 , which is the desired contradiction

to (x).
Therefore, X must have normal structure.

Corollary 2.22: 1If a Banach space X has property A then it satisfies

the fixed point property.

Proof: By Theorem 2.21 property A dimplies X has normal structure, and

this, in turn, implies the fixed point property [18].

At this point we will examine Karlovitz's example [17]. The
purpose of this example was to expose a superreflexive space which does not
have normal structure but in which the fixed point property is satisfied.
We will show that it has property B even though it does not possess

property A .

Example 2.23: Let X be the space &9 reunormed as follows:

Pl = max{llx}le, [l1xl19/¥2} , for all x € X , where Il « |le is the

%o norm and Il . ||2 the 29 mnorm.

Let K= {x : x = x(1), x(1) ¢ X, x(1) » O, ]lelz < 1} . It can easily be

proved that X is abnormal in X .
Thus, by Theorem 2.21, X does not have property A .

It is also easy to see by the definition of || « || that

Hxll < Tixlly < /2 Txl
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i 1
and since 29 1is a Hilbert space, > = , we must have by Corollary
V2 2

2.15 that X satisfies property B .

In the rest of this chapter we will concentrate on proving the
following theorem in which property B is characterized in terms of a
property related to normal sets. Here, é convex bounded subset of a Banach
space consisting of more than one point will be normal (close to normal) 1f
it has a center of mass as in the definition of normal (close to normal)

structure.

Theorem 2.24: The following conditions on a Banach space X are

equivalent.
(1) If Y 4is a Banach space finitely representable in X , then every

subset of Sy with diameter equal to 2 is normal.

(i1) If Y is a Banach space finitely representable in X , then every
subset of Sy with diameter equal to 2 1s close to normal.

(ifi) There exist &8, my, § > 0, m an integer, m > 1 , such that if

X1, eee, X € By , then dist(xy, co(®y-1, sesy X1)) * ocos o
dist(x3, colxy, x1)) = llxo = xyll < 2771 (1 ~ §) whenever

X] + e +X-[n

i
[
.

|
|
!

!
%i>1—s.

m {

(iv) X has property B .

Proof: (i) + (4i): This follows easily since normal sets are also close to

normal.
(i1) » (id4i): Assume (iii) is not true.

Let (e,) be an increasing sequence of real numbers between zero and one

converging to one.
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Since X fails to satisfy (iii), given an integer m, m > 1 , there exist

‘{m Xm
‘l+ooa+ m

|

i L
!l .
|| 3

[ > ep , and dist(x®, co(x® ,
m

B oL.., x™ ¢ By with
1* Tt Ty © X m-1

m

ceey XT)) * eee dist(xg, co(xg, x?)) . l]x? - XTII > om-1 € -

Since dist(xg, co(x® , ..., x?)) < 2 for all £, 2 < & < m, then

dist(xz, co(x?nl, cany XT)) > 2 e, forall 2,2< 2 <m, so

dist(xz, co(x™ | ..., x?)) + 2 as m»> o forall £, 2< £ < m .

Let Y be the vector space consisting of all finite linear combinations of

the infinlte sequence of symbols {£;} .

Use a diagonal process to obtain a sequence of integers {k,} for which

the following limit exists for all finite sets {aj, «.., ap} of rational

nunbers: ‘
|| ki
1im ?E z a, x ™ I.
m>e }in=l n
Anorm ||| « ||l can be defined for all finlte linear combinations of

members of {£4} with rational coefficients, by letting

|
!

i o~

;
|
= lim |
L |

i

|

an & %

1 t
|

i
:
|
i
i
This norm can be extended to all of Y and without any loss of generality
we may assume Y 15 complete so that it is a Banach space.

By the definition of ||| « ||l , Y is finitely representable in X .

Let K = co({£4}) .
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We show diam(K) = 2, K is not close to normal, and is contained in the

unit sphere of Y , which will be a contradiction to (ii).

k
By the definition of ||| « ||| , given 1 , lleilll = lim !Ix_mll <1,
m¥e 1

so Kk 1s contained in the unit ball of Y and therefore, diam(K) < 2 .

Xl +oeee +X2’

| -

i ; é‘;l + LI + ERI
Also, given & , ||| P>
; 4 ! L |
3 gl -+ eoe + E'Q' i
lim (eyp) = 1 , so =1 for all & , which implies
mre 2

K = co({Ei}) lies on the surface of the unit ball since we already know

that [1Egll] < 1 for all 1 .

On the other hand, given & , z € co(Ep, «vo, Eg1) ,

£~1 £-1
then z = ) AjE5 s ) Aj=1, 2320, 1<j<2-1,
j=1 3=1
- k
and ||| &g = ) A5 €j’ l= lim sz - z Aj X‘m !}= as mentioned above.
. 521 i
|

Thus, diam(K) = 2 and K is not close to normal, which completes the

proof of (dii) » (iii).
(iii) » (iv): This follows easily by the definition of property 3B .

(iv) > (1): Suppose Y is a Banach space finitely representable in X

containing a set K, diam(K) = 2, X not normal, and []yl] =1 if y ¢ X .

As in the proof of Theorem 2.21, for a given m , we can find Yis **s Y
€ K, such that for each 2, 2 < & < m, dist(yg, [yg-j, ++., vi]) is

bounded below by a number arbitrarily close to 2 .

Let ||} « ||l be the norm on Y .
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We know K 1lies on the surface of unit sphere,

/] .
so |yl = Hlyalll = oo = IHlyulll =1 and I = L
il m l

Thus, since Y is finitely representable in X , by an argument similar to
that of Theorem 2.12, we may utilize 1y}, +es, ¥y , to obtain Xj, .o, Xy
in By contradicting the definitlion of property B . This contradiction,

then, gives (1v) » (1).

The proof of the theorem Is now complete.



CHAPTER III

Locally K-uniformly Convex Spaces and Reflexivity

In this chapter we find, in the context of areas, a condition under
which a Banach space 1s reflexive. First, we Iintroduce some important

definitions.

Definition 3.1: A Banach space X 1is said to be locally uniformly convex

if given x € Sy, € > 0 , there exists § > 0 such that [z -yl <e

Hxty ]|
whenever --E~—- >1 -8, and ye Sy -

This definition resembles that given for uniformly convex spaces. However,
here the choice of 6 not only depends on & , but it is also determined
by the given =x . Therefore, locally uniform convexity is a weaker

condition than uniform convexity.

In the following definition we describe a property which is a

generalization of k-uniform convexity.

Definition 3.2: A Banach space X 1is said to be locally k-uniformly

convex, (Lk -~ UR) , for some positive integer k , if given x ¢ Sy , € >
0 , there exists ¢ > 0 such that A(x, Xj, «+s, %) < € whenever

'|X+Xl + oeee ok Xk’l

>1 -8 and x eesy, X1, € Sy .
k1 ’ 1s > Tk PP

From this definition it is easy to see that a Banach space is locally

uniformly convex if and only if it is L1 - UR .

58
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Sullivan has shown that if X** is L2 - UR , then X is
reflexive [20]. BHere, in Theorem 3.6, we prove that actually this is true
for any k > 1 .,

In what follows, for a sequence (x,) in a Banach space X,

Vi (x5) will mean the set of k~tuples of the (x4) » iee. the set
{(wyy eoey wi) ¢ wy € (%) , 1 <1 <Kk} o Since Vg (x4) 1s countable we

may say Vi (xp) = {vy :m=1, 2, ...} .

Given a positive integer m , 1f vy = (W}, ses, W) , by [vy] we will

mean the affine span of the points Wi, eee, Wi »

The next several lemmas are required for the proof of the main

theorem.

Lemma 3.3: If (x;) is a sequence in a Banach space X , |lxyll =1 for
all n, k a given positive integer, then one of the following 1s true:
(a) There exists a subsequence (xni) of (x,) , a positive integer
L , and sk > 0 , such that dist(xni, [vg1) > sk for L€ & <1 R
vy e Vi (xp)e
(b) Given € > 0 there exlsts a subsequence (xni) of (x,) aund

vy € Vi(xy) such that dist(xy , [vg]) <& for all 1.
i

Proof: Pick (sm) , a sequence of decreasing positive numbers converging

to zero.

We construct sequences of real numbers (Sk), subsets of the integers I, ,
i
for each positive integer m , satisfying the following:

(i) Iy 1s an infinite subset of the integers for each m .

(i1) If m> & then I, S Iy .
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(111) 0< 6K < 2 for all m .
m
1
(iv) > 6; < dist(xy, [vyl) < 6§ + ey for all j e I, , for each m .
The construction is done by induction on m .

For m = 1: Let &K = 1im inf diSt(Xj, fvi]) where I 1is the set of the
jel
integers.

Clearly O < 6? < 2, and we can easily get 1Ij , an infinite subset of the

1
integers, such that —E— 6? < diSt(Xj, [vi) < 6? + ey for all j eIy,

This takes care of the case for m= 1 .
Suppose the construction has been accomplished for m .
We show it holds for m+ 1 .

By the inductlon hypothesis I, exists as required. Let &K =
lim inf (Xj, [Vm+1]) .
jely

Again, it 1s clear that 0 < 6k+l € 2, and we can easily get Ty C I, ,
m
1

1
an Infinite subset of the integers, such that -—— 6;+1 g diSt(Xj, [vpe1 D
< 6§+1 + enpy for all j € Ipyy , which completes the construction for
m
m+1.

Therefore, we get (8K) and a subset of the integers I, , for each m ,
m

as required.

1 1
Let Bk- = ldim inf “‘;" S (*) s and Gk = —.—2-. Sk .

4
- m

1
Then 0 < &k < - < o by (1ii).
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Suppose sk>o0.

1
By (*) choose an integer L such that if & » L then *E~ 65 > sk,

By (1) and (i1) choose an increasing sequence of integers (ngy) with nge

I; for each 1 .

1
By (ii) and (iv) dist(xni, ve]) > - 55 >8K if 1> 2> L, which

implies (a).
Suppose 8K = 0 ,

1
Then lim inf —— 8k =0,
m 2 m
So for a given e > 0 there must exist £ so large that 6; +eg <¢

since €4+ 0 .

Thus, from (iv) diSt(Xj, [vg]) < §K + e < € for je Ig , which by (i)
m

clearly implies (b).

Lemma 3.4: If (x;) 1s a sequence in a Banach space X , |lxyl| = 1 for
all n , k a given positive integer, then one of the following is true:
(a) There exists a subsequence (Xni) of (xp), a positive Iinteger L,

and 8K > 0 » such that dist(xp , [vg]) > sk for L< 9 <1 ,
i

vy € Vi (x5) »
(b) (x5) has a strongly converging subsequence.

Proof: Suppose (a) is not tcue for (%) -

We construct sequences (yM) <& X , and subsets of the integers I, , for
n

each positive integer m , satisfying the following:
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(1) L, 1is an infinite subset of the integers for each m .

(i1) If m> 2, I, C1I, .

for j e I, , for each m.

i) llxg -yl <
i m

1
(iv)  Hym - y?ll < v for 1, j e I, , for each m.
] mn

The construction is done by induction on m .

For m = 1: Since (a) is not true by Lemma 3.3 we may assume by passing to
1
a subsequence that diSt(Xj, [va]) < ~§~ for some vy e Vg (%) for all

i's .
1
So there exists (yl) C [vg] such that ||y§ - lel < ~§~ for all j's .
n
1
Notice |lyll] < ||yl - xill + IIXjII <14 = for all j's .
R 3 3
This implies (yl) is bounded.
n
Since [vy] 1s contained in a k-dimensional subspace of X then there
exists Iy , an Infinite subset of the integers, such that {y% : joe Iy}
J

i3 a converging subsequence of (yl) .
n

By the definition of (y!) it 1s clear that in particular Ilyg - Xjfl <
n

1 1
2 for j e I , and since {y% : J € I;} must be Cauchy, we
3 3(1) J
1 1
may assume without any loss of generality that Hyl - ylll e i
3 i 3 3(1)

for all 4, j e Iy .
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This takes care of the case for m= 1.
Suppose the construction has been accomplished for m .
We show it holds for m+ 1 .

Since {Xj : j e Ip} 1is a subsequence of (x,) then (a) can not be true

for {xj : j € Iz} , either.

So by Lemma 3.3 we may assume by passing to a subsequence that
1
dist(xs, [vg]) ¢ ~~———~ for all j €1 for some vy € Vi (%Xn) o
j’ L 3(m+l) m » £ k T

1
So there exists (@) [v 1 such that |{y"tl - x.]] ¢ ————— for
Yo TSR 7y J 3(m+1)

all j eI .

Again, as above, there exists I,4] , an infinite subset of the integers
with I € Iy, such that {y’;‘+l : j e Inp1l dis a converging subsequence

of {y®l : j €1} .

By the definition of (y™l) it is clear that in particular l]y?+l - lel
n J
1
{ = for all j e 1 and since {y™1! : j € T ,.1} must be
3(mtl) J m+1 s ¥, J m+1
Cauchy, we may assume without any loss of genmerality that |[[yml - '?+lll
J

{ mwmmmmeee for all 4, j € L .
3(mh1) » ] w1
Thus the construction is complete for m+ 1 , and we get (y™) , I, , for
n

each m , as required.

Now, choose an increasing sequence of integers (ny) with uny ¢ Iy for

each 1 .

We show (%, ) 1s a Cauchy subsequence of (x,) , and hence 1t must
i

converge.
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By (1) and (i1) (Xni) must be a subsequence of (x) .
Let € > 0 be glven.

1
Pick an integer N so that -E* e .

Suppose m, £ » N .

Then by (11) I, S Iy, and Ig &Iy, so ny, ng e Iy , and by (1ii) and

(iv)
Hxp = xp 1< Hxy =y I+ 012y = g8 1+ [IyN = y¥ ]
m L m I, b7 ng g, ng
1 1 1 1
Q + + =—"""<€o
3N 3N 3§ N

Thus, (xni) is a Cauchy sequence, and this clearly implies (b) must be

truee.

Lemma 3.5: If (x,) is a sequence in a Banach space X, |lx,]l =1 for
all n, k¥ a given positive integer, then one of the following is true:

(a) There exists a subsequence (Xni) of (x,), a positive integer L,
and numbers 6J > 0 for j=2, «vo, k=1 , such that given vy e

Vj (xni) s L » L, there exists r for which dist(xnp, fve ) > 81

whenever p > r , for 2< j< k-1 .
(b) (xn) has a strongly convergent subsequence.

Proof: Suppose (b) 1s not true.

For each 1 , let xl = X{ , so that x! ) = (x1) .
nj ng
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We construct sequences (xj } , positive numbers Sj, 3= 2, eee, k-1,
nj
satisfying the following:

(L) Yor each j , 2 <j < k-1, (xJ ) is a subsequence of (x) -
nj

(11) If 3<%, 2 < j, & € k-1, then (xi ) 1s a subsequence of
(xd) . "
nj
(1ii) For some positive integer Li s if Ly <4< i then dist(xgi,
fve]) > 63 whenever vg € Vy (xgjl) s for 3=2, ¢ee, k-1 .

s

The construction is done by induction on i .

For j= 2 : By Lemma 3.4 since (b) is not true there exists (x2) a
nj

subsequence of (x,) , a positive integer Ljy , and 82> 0, such that

dist(x? , [vg]) > 82 for Lo < &< i, vge Vo (%) = Vg (x})
ny ni
This takes care of the case for = 2 .
Suppose the construction has been accomplished for j, 2 < j< k-2 . We

show it can also be done for j+ 1 .

Since (xJ ) is a subsequence of {x,} then (b) can not be true for
ny

(xJ ) , elther,
1 1.

So by Lemma 3.4 we can obtain (x3th) , a subsequence of (xJ ) , Lj+1 a
n{ ny
positive integer, and 6Jtl > 0 such that dist(xItl, [vp1) > s3Il for
nj

Lipp € & €4, vg e Vipp (x3)
14

1

Thus, the construction is complete, and we obtain (%3 Y, s , as required.
N
i
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By (ii) Vj (xs"l) E}Vj(xi"l) for each 3, 2 < j< k-1,
1 1

So given vy ¢ V4 (xk-1) » Vg = Vh e Vj (xJ=1) , where h 1is a positive
nj nj
integer.

Choose L so that if % > L and vy e & (xk~1) then h > Ly if
nj
Vg = V| € Vj (xj"l) y for any j, 2 < j< k-1.
nj

We show that L, 62, N gk-1 , (x%~1) are respectively the numbers and
nj
subsequence of (x,) satisfying (a).

By (1) (x%"1) is a subsequence of (%) -
nj

For a given j, 2 < j < k-1 , suppose vy ¢ Vj (xk"l) s £ 2 L.
ny

Then vy = vp € Vy (x3=1) and n > Ly by the definition of L .
ny

i

Thus, by (iii) dist(xd , [vp]) > 63 4f 1> n (&) .
nj

By (1i) (xk~1) 15 a subsequence of (xJ ) , so for some q, q > h, xJ e
ni nj nq
(x%~1) | and hence, xJ = x¥"!1 for some r .

From this, if p > r and xJ = xX"1 then 1> q » h , which by (x) gives
ny n,
dist(xd , [viy]) > §J , or dist(xk-l, [vg]) > §J3 , implying (a) must be
ni n
p
true. .

Now we are in a position to exhibit the connection between (Lk -

UR) and reflexivity.
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Kk

Theorem 3.6: Let X be a Banach space. If X is (Lk-UR) , k» 1,

then X 1is reflexive.

Proof: Suppose X is not reflexive. By James' theorem [16] there exists

£fex*, [lIf]] =1, such that £(x) <1 for all xe X, |lxl] =1 .

By the Hahn~Banach theorem there exists x°* ¢ X** with x**(f) =1,
Hx**1] =1 . Obviously, x**ﬁ. X .

Since |lfl] =1 we may choose (x,) , a sequence in X , [Ix!l =1 for

all n , such that f(x,) + 1.
No subsequence of (x,) converges strongly in X .

Otherwise, if xni + X, (xni) a subsequence of (x;) , x ¢ X, then

Ixll =1 and f(xni) + f(x) .

But by the definition of (x,) , f(xni) + 1.

i

So f(x) 1 which contradicts the definition of f . Thus, (a) of Lemma
3.5 must be true for (x,) , so that (Xn.) » a subsequence of (x5) , and
i

numbers L , 62, 63, ee. K71 » must exist as described in the lemma.

Since x**¢ X then dist(x™*, X) > n where n > 0.

Let € > 0 be given, and let & correspond to € » &1 » §2 o ,,, » §k-1

*n as in the definition of L1k-UR .

Since [|x™ + x + x +oees + x [ > <™ (f) + f(x ) +
k) TTM(k-1) Ri(1) Pi(k)

eos + £(x, (l)) , and x**(f) =1, f(xp ) » 1, then the right side of the
i

above inequality converges to k+l as 1(k), i(k=1), e.., i(1) approach

infinity.
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So there must exist a positive integer N such that

L Foaee oy f
Ty (k) T1(1) j

k+1

>1 -3

whenever 1(k), i(k-1), ..., i(1) > N .

ey Xg ) <e e 82

‘Thus, by the definition of 5 we get A(x**, X )
i

ni(k), e
e 83 o Lo e skl g dF 1(K), 1(k-1), ..., (1) > N .

We show (xn_) is a Cauchy sequence.
i

With L given as above, we may assume without any loss of generality that
N is large enough so that given any j, 2 < j < k~1 , whenever i(j),

1(3=1), eee, 1(1) > N, and [x,. ] = vg e

X LK BN 3 X
i MG-nT T TR
Vj (Xni) , them £ 2> L .

So suppose 1i(l), i(2) » N .

We show by induction that we can pick i(3), ..., i(k) , positive integers,

such that 1(3), ..., 1(k) > N, and dist(xg D

i(3)

b

[X 1] LR N X
"1(3-1) > (1)
> 6371 for =3, ceey koo

For j = 3: If |[x X
J i(2)” M)

we have that & > L . Hence, by the definition of

] = vy e Vy (%, ) , then by the choice of N
i

62 , there exists r

, 82,
Xni(l)]) >

so that if p > r then dist(x, , [x,.
P i(2)

By picking 1(3) > max (r, N), Xn.(3) is as desired.
i

Suppose we have chosen 1(3), ..., i(h) satisfying the given properties,

3 < h< k-1. We choose i(h+l) as follows.
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Again, if [x cee, X ] = v Vy (x4 ) then £ » L, and by the
g ’ ni(h), ’ ni(l) g € Vh ni 3
definition of 6B there exists r so that if p 2> r then dist(x, ,
j%
[x, ceey X 1) > &b,
T¢I TS )

By picking i(h+l) » max (r, N), is as desired.

X
P4 (h+1)

Thus, we may choose 1(3), ..., i(k) as required.

. *%& 2
Since 1(k), «es, 1(2), i(1l) > N then A(x ceey X ) <eé
( ), H ( )x (1) ( ’ Xni(k)’ ’ ni(l)

°oto'6k'no

By Lemma l.3 we know

A(x**, xn.( s seey Xp ) > dist(x**, [xq

1(k) (1) 1)’ 1

° ey

xni(l)

dist(x, N

1K) [xni(k—l)’ eeey Xp 1) © wee @

i(1)

dist(xg, .

13" gy Fnyeqyd) Hxa,

(2) X“i(l)" .

e * 62 ® se0 * (Sk..l *N
- X [l < =g for i(l),
12) ML) 82 « ...« k-l . 4

Therefore ||x,

LU ]

i(2) » N . So (Xni) must be Cauchy and, thus, it must converge.

But this is a contradiction, hence, X must be reflexive.



CHAPTER IV

Open Questions and Problems

It is not known whether in every uniformly convex Banach space the
modulus of k-unlform convexity converges to one for every positive number
€ as k gets arbitrarily large. Theorem 1.9 says that this 1s the case
in Hilbert spaces. Does this property characterize Hilbert spaces? If
not, what type of spaces does 1t characterize?

In Example 2.23 we showed that the space gilven 1n Karlovitz's ex-—
ample [17] has property B . The purpose of Karlovitz's example was to
exhibit a superreflexive Banach space without normal structure but satisfy~
ing the fixed point property. However, by Theorem 2.24, property B is
equivalent to certaln structures related to normal structure. Thus,
Karlovitz's space still has some kind of structure. The obvious question,
then, is as follows: Does property B dimply the fixed point property?
This is a very intevesting question since by Corollary 2.22 property A
implies the fixed point property. The following questions are also of
related interest: Does the fixed point property have an equivalent formu-
lation in terms of area? Does the fixed point property imply property B ?
Doas every superveflexive space have the fixed point property? Can super—
reflexivity be characterized in terms of area?

A property more general than property B can be given as follows:
A Banach space X ig sald to have property € 1f there exist 3§, m, with
§ >0, m anr integer, m > 1 , such that whenever {x3, «e., %3} ida a
suhset of By , then A(X], «0e, Xp) < /2 (1 - 8) if

" X1 + e F Zqy ii
| IR R
! ]

m
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Here we have chosen the number m/2 since it is the maximum value the de-
terminant of a m by m matrix can attain [3]. We may ask the next ques-
tions about this property: Does it imply the fixed point property? What
spaces does it characterize? How does it relate to normal structure and
superreflexivity? What spaces have property C while failing to have

property B ?
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