Computing Delaunay Triangulations for Comet-Shaped Polygons

J. Bernal

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Computing and Applied Mathematics Laboratory
Applied and Computational Mathematics Division
Galtersburg, MD 20899

November 1991
Computing Delaunay triangulations for comet-shaped polygons

Javier Bernal

National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract. In this paper, we present two triangulation algorithms which combined produce an algorithm for computing Delaunay triangulations for comet-shaped polygons. The first algorithm constructs in linear time a triangulation for a comet-shaped polygon. The second algorithm constructs a Delaunay triangulation for a polygon from any triangulation for the polygon. The algorithms can be used for deleting vertices in a Delaunay triangulation and for computing constrained Delaunay triangulations.

Key words. algorithm, comet-shaped polygon, computational complexity, computational geometry, constrained Delaunay triangulation, Voronoi diagram

AMS(MOS) subject classifications. 68U05
1. Introduction

Given S, a finite set of points in the plane, a triangulation for S is any collection of triangles in the plane having pair-wise disjoint interiors, each of which intersects S exactly at its vertices, and the union of which is the convex hull of S. Given T, a triangulation for S, we say that T is a Delaunay triangulation for S if for each triangle in T there does not exist a point of S inside the circumcircle of the triangle. Delaunay triangulations have been studied and algorithms for computing them have been presented in [1, 4, 5, 6, 7, 8].

Let R be a polygon in the plane. By a triangulation for R we mean a collection of triangles in the plane having pair-wise disjoint interiors, the vertices of which are the vertices of R, and the union of which is R. Given T, a triangulation for R, we say that T is a Delaunay triangulation for R if for each triangle t in T there does not exist a vertex P of R inside the circumcircle of t such that the boundary of R does not intersect the interior of the convex hull of $t \cup \{P\}$. The problem of computing Delaunay triangulations for polygons has been addressed in [3].

Let R be a simple polygon. Here and in the sequel, we denote by $I(R)$, $B(R)$, and $V(R)$, respectively, the interior of R, the boundary of R, and the set of vertices of R. In addition, given points P and Q in the plane, $P \neq Q$, we denote by $[P,Q]$ and (P,Q), respectively, the closed and open line segments having P and Q as end-points.

Given a simple polygon R, we say that R is star-shaped if there exists a point Q in $I(R)$, such that for each point P in R, $P \neq Q$, (P,Q) is contained in $I(R)$. An example of a star-shaped polygon is the union of the triangles in a triangulation having a given vertex in common.

Given a simple polygon R, and points P and Q in $V(R)$ and $B(R)$, respectively, $P \neq Q$, such that (P,Q) is contained in $R \setminus V(R)$, we say that R is comet-shaped relative to $[P,Q]$ if for each point U in $R \setminus [P,Q]$, there exists a point W in (P,Q) such that (U,W) is contained in $I(R)$. We say that R is comet-shaped if there exist points P and Q in $V(R)$ and $B(R)$, respectively, $P \neq Q$, such that R is comet-shaped relative to $[P,Q]$. Clearly, star-shaped polygons are comet-shaped. Figure 1 illustrates several comet-shaped polygons.

In this paper, we present two algorithms that can be combined to produce an algorithm for computing a Delaunay triangulation for a comet-shaped polygon. The first algorithm, which we call CMTTRI, constructs in linear time a triangulation for a comet-shaped polygon. The second algorithm, which we call OPTTRI, constructs a Delaunay triangulation for a polygon from any triangulation for the polygon.

Algorithm CMTTRI makes use of a modified version of an algorithm in [2], called EDGSTR, that was designed for computing a Delaunay triangulation for a polygon that
Figure 1: Several comet-shaped polygons. Each polygon is comet-shaped relative to $[P, Q]$.
is comet-shaped relative to a linear component of its boundary. This special type of comet-shaped polygon was called edge star-shaped in [2], and was used there in the context of Delaunay triangulations constrained by line segments. Let \(R \) be one such polygon. With \(r \) defined as the number of vertices of \(R \), assume \(P_1 \) and \(P_r \) are vertices of \(R \) such that \(R \) is comet-shaped relative to \([P_1, P_r]\), and let \(P_1, \ldots, P_r \) be the vertices of \(R \) in the order in which they appear in \(B(R) \) in a counterclockwise direction around \(R \). Given integers \(i, k, 1 \leq i < k \leq r \), we define the convex realization in \(R \) of \(P_i, \ldots, P_k \), as the subset of \(R \) which is the union of line segments of the form \([P_i, Q]\) where \(P \in [P_l, P_{l+1}] \), \(Q \in [P_m, P_{m+1}] \) for integers \(l, m, i \leq l, m \leq k - 1 \), and \([P, Q] \subseteq R \). In addition, by letting \(R_{ik} \) be the convex realization in \(R \) of \(P_i, \ldots, P_k \), we define the convex envelope in \(R \) of \(P_i, \ldots, P_k \), as the subset of \(R \) that contains a point \(U \) if and only if either \(U \in [P_i, P_r] \), or for some point \(W \) in \((P_1, P_r), (U, W) \) is contained in \(I(R \setminus R_{ik}) \). We notice, by letting \(E_{ik} \) be the convex envelope in \(R \) of \(P_i, \ldots, P_k \), that for some integer \(s, 2 \leq s \leq k - i + 1 \), points \(Q_1, \ldots, Q_s \) exist such that \(Q_1 \) equals \(P_i \), \(Q_s \) equals \(P_k \), \(E_{ik} \) equals \(\bigcup_{s=1}^{s-1} [Q_i, Q_{i+1}] \), and \(Q_1, \ldots, Q_s \) are the points in \(\{P_i, \ldots, P_k\} \cap E_{ik} \) in the order in which they appear in \(B(R) \) in a counterclockwise direction around \(R \). Figure 2 illustrates a polygon that is comet-shaped relative to a linear component of its boundary, and the convex realization and convex envelope in the polygon of a subset of the set of its vertices.

Let \(R \) and \(P_1, \ldots, P_r \) be as above. Given integers \(i, k, 1 \leq i < k - 1 < r \), a close analysis of algorithm EDGSTR in [2] reveals that by undergoing some minor modifications it can also be used for computing a representation for \(E_{ik} \) and a triangulation for each component of non-empty interior of \(R_{ik} \). The modified version of algorithm EDGSTR of which algorithm CMTRTRI makes use, does exactly this and is essentially EDGSTR without the step that enforces the Delaunay requirement. This modified version of EDGSTR, which we call EDGTRI, is also presented in this paper.

Let \(R \) be a comet-shaped polygon, and let \(P \) and \(Q \) be points in \(V(R) \) and \(B(R) \), respectively, \(P \neq Q \), such that \(R \) is comet-shaped relative to \([P, Q]\). In addition, without any loss of generality, assume that \([P, Q]\) is parallel to the x-axis of the 2-dimensional Cartesian coordinate system and that it partitions \(R \) into two regions of non-empty interior. Under these assumptions, we let \(R_L \) represent the polygon which is the portion of \(R \) on or below \([P, Q]\), and \(R_U \) the polygon which is the portion of \(R \) on or above \([P, Q]\). Also, for some positive integer \(j_L \), we let \(P_{j_L}^L, j = 1, \ldots, j_L \), represent the points that are vertices for both \(R \) and \(R_L \) in the order in which they appear in \(B(R_L) \) in a counterclockwise direction around \(R_L \) with \(P_1^L \) equal to \(P \); and for some positive integer \(j_U \), we let \(P_{j_U}^U, j = 1, \ldots, j_U \), represent the points that are vertices for both \(R \) and \(R_U \) in the order in which they appear in \(B(R_U) \) in a counterclockwise direction around \(R_U \) with \(P_1^U \) equal to \(P \). Clearly, \([P, Q]\) is a linear component of the boundaries of \(R_L \) and \(R_U \); \(R_L \) and \(R_U \) are comet-shaped polygons relative
Figure 2: Above, a polygon R with vertices P_1, \ldots, P_{12}. R is comet-shaped relative to $[P_1, P_{12}]$. Below, from left to right, the convex realization $R_{4,10}$ and the convex envelope $E_{4,10}$ in R of P_4, \ldots, P_{10}.
to $[P, Q]$; and the concepts of convex realization and convex envelope make sense in R_L for P^L_j, $j = 1, \ldots, j_L$, and in R_U for P^U_j, $j = 1, \ldots, j_U$. Algorithm CMTTRI computes a triangulation for R by essentially first partitioning R into three regions that have pair-wise disjoint interiors, and then triangulating each component of nonempty interior of each region. The first and second regions correspond to the convex realizations in R_L of P^L_j, $j = 1, \ldots, j_L$, and in R_U of P^U_j, $j = 1, \ldots, j_U$, respectively. Thus, algorithm EDGTRI is applicable for computing representations for the convex envelopes in R_L of P^L_j, $j = 1, \ldots, j_L$, and in R_U of P^U_j, $j = 1, \ldots, j_U$, and for computing a triangulation for each component of non-empty interior of the convex realizations in R_L of P^L_j, $j = 1, \ldots, j_L$, and in R_U of P^U_j, $j = 1, \ldots, j_U$. Finally, the third region corresponds to the closure of the complement in R of the union of the first two regions. This region is empty if Q is a vertex of R. Otherwise, it is the polygon whose boundary is composed of the line segment $[P^U_1, P^U_{j_L}]$, the convex envelope in R_L of P^L_j, $j = 1, \ldots, j_L$, and the convex envelope in R_U of P^U_j, $j = 1, \ldots, j_U$. Thus, the region is a comet-shaped polygon relative to $[P^U_1, P^U_{j_L}]$, and algorithm EDGTRI is also applicable for computing a triangulation for it. Figure 3 illustrates a comet-shaped polygon that has been partitioned into the three aforementioned regions. The shaded region is the interior of the third region. The first region is the rest of the polygon on or below $[P, Q]$ minus the interior of the linear component of the polygon that contains Q. The second region can be similarly identified on or above $[P, Q]$.

Let T be a triangulation for a polygon R. Given a triangle t in T, we denote by $A(t)$ the set of vertices of R that are vertices of triangles in T adjacent to t, and say that t satisfies the circle criterion in T if none of the vertices of R in $A(t)$ is inside the circumcircle of T. Using arguments similar to those in [4], it can be shown that T is a Delaunay triangulation for R if each triangle in T satisfies the circle criterion. Algorithm OPTTRI is an incremental algorithm which, based on this result, computes a Delaunay triangulation for a polygon R from an arbitrary triangulation T for the polygon. OPTTRI starts by selecting an arbitrary triangle, which we call t_1, in T. Let m be the number of triangles in T. Given a positive integer n, $n < m$, OPTTRI inductively selects triangles t_1, \ldots, t_n in T, whose union, which we call R_n, is connected, and computes triangles t^n_1, \ldots, t^n_n, the collection of which is a Delaunay triangulation for R_n. OPTTRI then proceeds to select a triangle t_{n+1} in T in such a way that t_{n+1} is different from the previously selected triangles and the union of R_n and t_{n+1}, which we call R_{n+1}, is connected. Because the vertices of the triangles in T are in $B(R)$, t_{n+1} must have exactly one side in common with R_n. Thus, an iterative edge-swapping procedure based on the circle criterion can be applied to $t^n_1, \ldots, t^n_n, t_{n+1}$, that starts by testing t_{n+1} for the circle criterion, and that ends with a possibly new collection of triangles $t^{n+1}_1, \ldots, t^{n+1}_n$, each of which satisfies the circle criterion, and the union of which is R_{n+1}.
Figure 3: A comet-shaped polygon and the three regions into which it is partitioned by algorithm CMTTRI.
2. The EDGTRI algorithm

Let \(R \) be a simple polygon, and let \(e \) be a linear component of \(B(R) \) such that \(R \) is comet-shaped relative to \(e \). Let \(r \) be the number of vertices of \(R \), and let \(P_1, \ldots, P_r \) be the vertices of \(R \) in the order in which they appear in \(B(R) \) in a counterclockwise direction around \(R \) with \([P_1, P_r]\) equal to \(e \). Let \(i, k \) be integers, \(1 \leq i < k - 1 < r \), and let \(R_{ik} \) and \(E_{ik} \) be, respectively, the convex realization and the convex envelope in \(R \) of \(P_i, \ldots, P_k \). Set \(j \) equal to \(k - i + 1 \), and define a one-to-one function \(F \) from \(\{1, \ldots, j\} \) onto \(\{P_1, \ldots, P_k\} \) by setting \(F(l) \) equal to \(P_{l+i-1} \) for each \(l, i = 1, \ldots, j \).

In what follows, we present algorithm EDGTRI which computes in linear time a representation for \(E_{ik} \) and a triangulation for each component of non-empty interior of \(R_{ik} \). The output from EDGTRI will consist of \(T \), the collection of triangles computed by EDGTRI, tacitly in the form of a data structure that describes the triangles and their interrelations; \(J, 2 \leq J \leq j \), the number of points in \(\{P_1, \ldots, P_k\} \cap E_{ik} \); and \(G \), the representation for \(E_{ik} \), in the form of a one-to-one function from \(\{1, \ldots, J\} \) into \(\{P_1, \ldots, P_k\} \), with \(G(1) \) equal to \(P_1 \), \(G(J) \) equal to \(P_k \), \(E_{ik} \) equal to \(\bigcup_{l=1}^{J-1} [G(l), G(l+1)] \), and \(G(1), \ldots, G(J) \) equal to the points in \(\{P_1, \ldots, P_k\} \cap E_{ik} \) in the order in which they appear in \(B(R) \) in a counterclockwise direction around \(R \). Here, given points \(Q_1, Q_2, Q_3 \) in the plane, \(Q_2 \neq Q_3 \) and \(Q_2 \neq Q_1 \), \(m(Q_2Q_3, Q_2Q_1) \) will represent the size in radians of the angle produced by a counterclockwise rotation around \(Q_2 \) from ray \(Q_2Q_3 \) to ray \(Q_2Q_1 \). The outline of EDGTRI follows.

\[
\textbf{procedure} \text{ EDGTRI}(T, F, j, G, J) \begin{align*} &\text{begin} \\
&1. \quad T := \emptyset; \ G(1) := F(1); \ G(2) := F(2); \ J := 2; \\
&2. \quad \text{for } I := 3 \text{ until } j \text{ do} \begin{align*} &\text{begin} \\
&3. \quad J := J + 1; \ G(J) := F(I); \\
&4. \quad Q_1 := G(J - 2); \ Q_2 := G(J - 1); \ Q_3 := G(J); \\
&5. \quad \text{while } (m(Q_2Q_3, Q_2Q_1) < \pi \text{ and } J \neq 2) \text{ do} \begin{align*} &\text{begin} \\
&6. \quad T := T \cup \{\triangle Q_1Q_2Q_3\}; \\
&7. \quad J := J - 1; \ G(J) := Q_3; \\
&8. \quad \text{if } (J \neq 2) \text{ then} \begin{align*} &\text{begin} \\
&9. \quad Q_1 := G(J - 2); \ Q_2 := G(J - 1) \\
&\text{end} \\
&\text{end} \\
&\text{end} \\
&\text{end} \\
&\text{end} \end{align*} \end{align*} \end{align*}
\]

8
end
end

The justification of EDGTRI is essentially that of EDGSTR in [2]. As for its complexity, it depends essentially on how often lines 6 through 9 of EDGTRI are executed. Since the latter depends essentially on how many triangles are created during the execution of EDGTRI, it follows that the complexity of EDGTRI depends linearly on \(j \).

3. The CMTTRI algorithm

Let \(R \) be a simple polygon, and let \(P \) and \(Q \) be points in \(V(R) \) and \(B(R) \), respectively, \(P \neq Q \), such that \(R \) is comet-shaped relative to \([P,Q] \). Let \(r \) be the number of vertices of \(R \), and let \(P_1, \ldots, P_r \) be the vertices of \(R \) in the order in which they appear in \(B(R) \) in a counterclockwise direction around \(R \) with \(P_1 \) equal to \(P \). Define a function \(F \) from \(\{1, \ldots, r+1\} \) onto \(V(R) \) by setting \(F(i) \) equal to \(P_i \) for each \(i, i = 1, \ldots, r \), and \(F(r+1) \) equal to \(P_1 \).

In what follows, we present algorithm CMTTRI which computes in linear time a triangulation for \(R \). The output from CMTTRI will consist of \(T \), the triangulation for \(R \), tacitly in the form of a data structure that describes the triangles and their interrelations. The outline of CMTTRI follows.

procedure CMTTRI(\(T, F, P, Q \))
begin
1. \(F_1(1) := F(1); F_1(2) := F(2); j := 2; \)
2. while \((Q \notin (F(j), F(j+1)) \text{ and } Q \neq F(j))\) do
 begin
3. \(j := j + 1; F_1(j) := F(j) \)
 end
4. \(j_1 := j; flag := 0; \)
5. if \((Q \neq F(j))\) then \(j := j + 1 \)
else \(flag := 1; \)
6. \(F_2(1) := F(j); F_2(2) := F(j + 1); j := j + 1; j_2 := 2; \)
7. while \((P \neq F(j))\) do
 begin
8. \(j := j + 1; j_2 := j_2 + 1; F_2(j_2) := F(j) \)
 end
end
9. if \(j_1 \geq 3 \) then EDGTRI\((T_1, F_1, j_1, G_1, J_1) \)
 else
 begin
 \(T_1 := \emptyset; \ G_1(1) := F_1(1); \ G_1(2) := F_1(2); \ J_1 := 2 \)
 end
10. \(j_2 \geq 3 \) then EDGTRI\((T_2, F_2, j_2, G_2, J_2) \)
 else
 begin
 \(T_2 := \emptyset; \ G_2(1) := F_2(1); \ G_2(2) := F_2(2); \ J_2 := 2 \)
 end
11. if \(\text{flag} = 0 \) then
 begin
 for \(j := 1 \) until \(J_2 \) do \(F_3(j) := G_2(j) \);
 \(j_3 := J_2 \);
 for \(j := 2 \) until \(J_1 \) do
 begin
 \(j_3 := j_3 + 1; \ F_3(j_3) := G_1(j) \)
 end
 EDGTRI\((T_3, F_3, j_3, G_3, J_3) \)
 end
12. else \(T_3 := \emptyset \);
13. \(T := T_1 \cup T_2 \cup T_3 \)
end

In order to simplify the justification of CMTTRI, we assume that \([P, Q]\) is parallel to the x-axis of the two-dimensional Cartesian coordinate system and that it partitions \(R \) into two regions of non-empty interior. Under these assumptions, let \(R_L \) be the polygon which is the portion of \(R \) on or below \([P, Q]\), and let \(R_U \) be the polygon which is the portion of \(R \) on or above \([P, Q]\).

Lines 1 through 8 of CMTTRI essentially partition the vertices of \(R \) into two sets. \(F_1(j), \ j = 1, \ldots, j_1 \), are the vertices of \(R \) that lie on or below \([P, Q]\) in the order in which they appear in \(B(R_L) \) in a counterclockwise direction around \(R_L \) with \(F_1(1) \) equal to \(P \). \(F_2(j), \ j = 1, \ldots, j_2 \), are the vertices of \(R \) that lie on or above \([P, Q]\) in the order in which they appear in \(B(R_U) \) in a counterclockwise direction around \(R_U \) with \(F_2(j_2) \) equal to \(P \).

Clearly, \(R_L \) is comet-shaped relative to \([P, Q]\) and \([P, Q]\) is a linear component of its boundary. Thus, if \(j_1 \geq 3 \) then algorithm EDGTRI can be used in line 9 of CMTTRI to compute \(T_1 \), a collection of triangles that is the union of triangulations for the components of non-empty
interior of the convex realization in R_L of $F_1(j)$, $j = 1, \ldots, j_1$; and $G_1(j)$, $j = 1, \ldots, J_1$, those points among $F_1(j)$, $j = 1, \ldots, j_1$, that lie in the convex envelope in R_L of $F_1(j)$, $j = 1, \ldots, j_1$, in the order in which they appear in $B(R_L)$ in a counterclockwise direction around R_L with $G_1(1)$ equal to $F_1(1)$.

Similarly, if $j_2 \geq 3$ then algorithm EDGTRI can also be used in line 11 of CMTTRI to compute T_2, a collection of triangles that is the union of triangulations for the components of non-empty interior of the convex realization in R_U of $F_2(j)$, $j = 1, \ldots, j_2$; and $G_2(j)$, $j = 1, \ldots, J_2$, those points among $F_2(j)$, $j = 1, \ldots, j_2$, that lie in the convex envelope in R_U of $F_2(j)$, $j = 1, \ldots, j_2$, in the order in which they appear in $B(R_U)$ in a counterclockwise direction around R_U with $G_2(1)$ equal to $F_2(1)$.

If Q is not a vertex of R, lines 14 through 17 of CMTTRI identify $F_3(j)$, $j = 1, \ldots, j_3$, the vertices of the polygon whose boundary is the line segment $[F_1(j_1), F_2(1)]$, the convex envelope in R_L of $F_1(j)$, $j = 1, \ldots, j_1$, and the convex envelope in R_U of $F_2(j)$, $j = 1, \ldots, j_2$. $F_3(j)$, $j = 1, \ldots, j_3$, are in the order in which they appear in the boundary of the aforementioned polygon in a counterclockwise direction around the polygon with $F_3(1)$ equal to $F_2(1)$. Since the aforementioned polygon is comet-shaped relative to $[F_1(j_1), F_2(1)]$, algorithm EDGTRI can be used in line 18 of CMTTRI to compute T_3, a triangulation for this polygon.

Finally, since merging T_1, T_2, and T_3 produces a triangulation for R, this is done in line 20 of CMTTRI.

As for the complexity of CMTTRI, it depends essentially on the complexity of the executions of EDGTRI. Since the latter depends linearly on the largest of j_1, j_2, and j_3, it follows that the complexity of CMTTRI depends linearly on r.

4. The OPTTRI algorithm

Let R be a simple polygon, and let T be any triangulation for R. In what follows, we present algorithm OPTTRI which computes from T a Delaunay triangulation for R. The input for OPTTRI must consist of T, the known triangulation for R, tacitly in the form of a data structure that describes the triangles and their interrelations; and t, any triangle in T, in the form of a variable that locates it in T. The output from OPTTRI will consist of T^*, a Delaunay triangulation for R. Here, given a triangle \hat{t} with vertices P_1, P_2, P_3, in one of the three orders in which they appear in $B(\hat{t})$ in a counterclockwise direction around \hat{t}, we denote \hat{t} by either $\Delta P_1 P_2 P_3$ or $\Delta P_2 P_3 P_1$ or $\Delta P_3 P_1 P_2$, and say that each one of the three ways of denoting \hat{t} identifies \hat{t}. The outline of OPTTRI follows.

```plaintext
procedure OPTTRI(T*, T, t)
    begin
```
\(P_1, P_2, P_3 := \) points such that \(\Delta P_1 P_2 P_3 \) identifies the triangle located by \(t \) in \(T \);
\(P_4 := P_1; T^* := \{ \Delta P_1 P_2 P_3 \}; j := 0; \)

for \(i := 1 \) until \(3 \) do

begin

if (there exists \(\hat{P} \) such that \(\Delta \hat{P} P_{i+1} P_i \) identifies a triangle in \(T \)) then

begin

\(\hat{P} := \) point such that \(\Delta \hat{P} P_{i+1} P_i \) identifies a triangle in \(T \);
\(j := j + 1; H(j) := \Delta \hat{P} P_{i+1} P_i \)

end

end

while (\(j \neq 0 \)) do

begin

\(P^*, P', P'' := \) points such that \(\Delta P^* P' P'' = H(j) \);
\(j := j - 1; \)

if (there exists \(\hat{P} \) such that \(\Delta \hat{P} P^* P'' \) identifies a triangle in \(T \)) then

begin

\(\hat{P} := \) point such that \(\Delta \hat{P} P^* P'' \) identifies a triangle in \(T \);
\(j := j + 1; H(j) := \Delta \hat{P} P^* P'' \)

end

if (there exists \(\hat{P} \) such that \(\Delta \hat{P} P' P^* \) identifies a triangle in \(T \)) then

begin

\(\hat{P} := \) point such that \(\Delta \hat{P} P' P^* \) identifies a triangle in \(T \);
\(j := j + 1; H(j) := \Delta \hat{P} P' P^* \)

end

\(P_{adj} := P'; P_{cur} := P''; \)
\(flag := 1; \)

while (\(flag = 1 \)) do

begin

if (there does not exist \(\hat{P} \) such that \(\Delta \hat{P} P_{cur} P_{adj} \)
identifies a triangle in \(T^* \) or (there exists \(\hat{P} \) such that
\(\Delta \hat{P} P_{cur} P_{adj} \) identifies a triangle in \(T^* \) and
\(\hat{P} \) is not inside the circumcircle of \(\Delta P^* P_{adj} P_{cur} \)) then

if (\(P_{adj} \neq P' \)) then

begin

\(\hat{P} := \) point such that \(\Delta P^* \hat{P} P_{adj} \) identifies a triangle in \(T^* \);
\[P_{\text{cur}} := P_{\text{adj}}; \ P_{\text{adj}} := \hat{P} \]
end
else \text{flag} := 0
else
begin
\[\hat{P} := \text{point such that } \Delta \hat{P} P_{\text{cur}} P_{\text{adj}} \text{ identifies a triangle in } T^*; \]
\[T^* := (T^* \setminus \{ \Delta P^* P_{\text{adj}} P_{\text{cur}}, \Delta \hat{P} P_{\text{cur}} P_{\text{adj}} \}) \cup \{ \Delta P^* P_{\text{adj}} \hat{P}, \Delta P^* \hat{P} P_{\text{cur}} \}; \]
\[P_{\text{adj}} := \hat{P} \]
end
end
end

The iterative edge-swapping procedure based on the circle criterion that is used in OPTTRI, has been discussed, among others, in [2], [3], [4], for incrementally computing Delaunay triangulations for point sets, polygons, etc. In each case, during the incremental step, an existing triangulation, say \(T_1 \), in which each triangle satisfies the circle criterion, is merged with a new triangle, say \(\hat{t} \), and a new triangulation is formed, say \(T_2 \), equal to \(T_1 \cup \{ \hat{t} \} \). The iterative edge-swapping procedure based on the circle criterion is then used on \(T_2 \), starting with \(\hat{t} \), and a third triangulation is obtained, say \(T_3 \), the union of the triangles of which is the union of the triangles in \(T_2 \), and in which each triangle satisfies the circle criterion. In each case, the procedure works because the triangles in \(T_1 \), if any, that are adjacent to \(\hat{t} \) and that are unaffected by the procedure continue to satisfy the circle criterion in \(T_3 \).

The same is true for OPTTRI. During the incremental step, an existing triangulation in which each triangle satisfies the circle criterion, is merged with a new triangle, and the iterative edge-swapping procedure based on the circle criterion is then used on the resulting triangulation. Since the new triangle is adjacent to exactly one triangle in the initial triangulation and this triangle is affected by the procedure, the procedure works due to the absence of triangles in the initial triangulation that are adjacent to the new triangle and that are unaffected by the procedure.

5. Summary

We have presented two triangulation algorithms which combined produce an algorithm for computing a Delaunay triangulation for a comet-shaped polygon. The first algorithm, called CMTTRI, computes in linear time a triangulation for a comet-shaped polygon. The second
algorithm, called OPTTRI, constructs a Delaunay triangulation for a polygon from any triangulation for the polygon.

A specialized combination of the two algorithms has been implemented at the National Institute of Standards and Technology for the purpose of deleting a vertex anywhere in a Delaunay triangulation and obtaining a Delaunay triangulation for the remaining vertices. With this implementation, only the triangles having the vertex in common are affected, and each computed triangle is contained in their union.

Finally, we remark that algorithm CMTTRI can be used to construct in linear time a triangulation for a polygon \(R \) if points \(P \) and \(Q \) exist in \(B(R) \) such that \(R \) would be comet-shaped relative to \([P, Q] \) if only \(P \) were in \(V(R) \). To do this, we first obtain a triangulation \(T \) by executing CMTTRI for \(R \), \(P \) and \(Q \) as if \(P \) were in \(V(R) \). Next, we let \(R' \) be the polygon which is the union of the triangles in \(T \) that have \(P \) as a vertex, and let \(P' \) and \(Q' \) be the vertices of \(R \) for which \([P', Q'] \) contains \(P \). Clearly, \([P', Q'] \) is a linear component of \(B(R') \), and \(R' \) is comet-shaped relative to \([P', Q'] \). Finally, we eliminate from \(T \) each triangle that has \(P \) as a vertex, and obtain a triangulation \(T' \) by executing CMTTRI, or for that matter EDGTRI, for \(R' \), \(P' \) and \(Q' \) as if each vertex of \(R \) in \(R' \) were in \(V(R') \). Clearly, \(T \cup T' \) is a triangulation for \(R \).

References

Computing Delaunay Triangulations for Comet-Shaped Polygons

Javier Bernal

In this paper, we present two triangulation algorithms which combined produce an algorithm for computing Delaunay triangulations for comet-shaped polygons. The first algorithm constructs in linear time a triangulation for a comet-shaped polygon. The second algorithm constructs a Delaunay triangulation for a polygon from any triangulation for the polygon. The algorithms can be used for deleting vertices in a Delaunay triangulation and for computing constrained Delaunay triangulations.