
Linking Canny edge pixels with pseudo-watershed lines

Javier Bernal

National Institute of Standards and Technology,

Gaithersburg, MD 20899, USA

Abstract

A method is presented for computing pseudo-watershed lines that can be used for

linking pixels that have been identified as edge pixels with the Canny edge detec-

tor. An additional procedure is also described for filling breaks that may still exist

between these lines and that takes advantage of the data structure for computing

pseudo-watershed lines. We have implemented the Canny edge detector together with

these methods, and have demonstrated the ability of the implementation to produce

complete characterizations of outer boundaries of cells in an image.

1 Introduction

Edge detection is an approach frequently used for segmenting digital images that aims at
identifying pixels in the image at which sharp changes in intensity occur.

The Canny edge detection algorithm [2] is considered by many the optimal edge detector.
Here being optimal means that the detector satifies three basic criteria. The first is low error
rate: all edges in the image should be found and there should be no responses to non-edges.
The second criterion is that edge points should be well localized: the distance between pixels
marked as edge pixels by the detector and the center of the actual edge should be at a
minimum. The third criterion is single edge point response: the detector should not return
more than one edge pixel for each true edge point.

Based on the preceding criteria, as described in [3] the Canny edge detection algorithm
consists essentially of four steps. In the first step the input image is smoothed with a Gaussian
filter. In the second step the gradient magnitude and direction images associated with the
filtered input image are computed. In the third step nonmaxima suppression is applied on the
gradient magnitude image, i. e. pixels at which local maxima of the gradient magnitude do not
occur in the gradient direction are suppressed. Finally in the fourth step, among the pixels
that were not suppressed in the third step (non-suppressed pixels), edge pixels (Canny pixels)
are detected by applying hysteresis or double thresholding on the non-suppressed pixels
together with a connectivity analysis as follows: for two appropriately chosen thresholds,

1



non-suppressed pixels whose gradient magnitudes exceed the higher threshold are declared
“strong” and Canny, and all others whose gradient magnitudes exceed the lower threshold
and are adjacent to at least one strong pixel are declared Canny as well.

Figure 1 shows an image of cells. Figure 2 shows Canny pixels obtained for this image
with our implementation of the Canny edge detection algorithm. Our objective here was to
identify the outer boundaries of the cells. Unfortunately, as can be seen in Figure 2, the
Canny edge detection algorithm did not produce a complete characterization of the outer
boundaries of the cells as the Canny pixels are not completely linked into edges.

The segmentation of an image using the concept of morphological watersheds [1] takes
place by visualizing the gradient magnitude image associated with the image as a topographic
surface that is being flooded by water. As the water slowly rises in distinct watersheds, dams
in the form of lines are built to prevent watersheds from merging. These dams or lines are the
boundaries of the watersheds and are therefore called watershed lines. Since local maxima
of the gradient magnitude tend to occur at watershed lines it is not surprising that Canny
pixels usually lie in these lines. Watershed lines are defined more precisely below.

Another concept related to morphological watersheds is that of pseudo-watersheds which
we define later in the paper. Pseudo-watersheds approximate morphological watersheds and
therefore their boundaries formed by lines called pseudo-watershed lines approximate the
boundaries of morphological watersheds. As it is the case in this work, depending on the
application it may be preferable to use pseudo-watersheds over morphological watersheds.

In what follows a (pseudo-)watershed line is a line for which two (pseudo-)watersheds
exist such that the line is exactly the boundary the two (pseudo-)watersheds have in com-
mon. Accordingly, for our purposes, (pseudo-)watershed lines are divided into foreground
and background (pseudo-)watershed lines as follows. Initially, foreground lines are those
that do not fall below the lower threshold used in the double thresholding step of the Canny
edge detection algorithm. All others are background lines. Then among foreground lines,
foreground lines that are not part of a closed curve made up of foreground lines become back-
ground lines. Such lines are called “whiskers” because of their appearance. Figure 3 shows
a watershed segmentation of the image in Figure 1. Figure 4 shows foreground watershed
lines with whiskers. Figure 5 shows foreground watershed lines without whiskers.

In this paper we present a method for computing pseudo-watershed lines that can be
used for linking Canny pixels into edges. Once computed, foreground pseudo-watershed
lines that contain Canny pixels are declared edges that link the Canny pixels they contain.
Since breaks between these edges may still exist, we describe an additional procedure that
usually can be used to fill these breaks with the help of the same data structure used for the
computation of pseudo-watershed lines.

The paper is divided as follows. In Section 2 we discuss morphological watersheds [1]
as presented in [3] and show why morphological watershed lines may not be appropriate for
linking Canny pixels. In Section 3 we discuss the concept of pseudo-watersheds as presented
in [4] and show how to compute pseudo-watershed lines that can be used for linking Canny
pixels into edges. In this same section we describe the procedure for filling breaks that may
still exist between these edges. Finally in Section 4 we summarize our results.

2



Figure 1: Image of cells.

Figure 2: Canny pixels obtained for image of cells.

3



2 Morphological watersheds and watershed lines

As pointed out in [3] an image can be visualized as a topographic surface with three types
of points:

1. Points belonging to a regional minimum.

2. Points at which a drop of water, if placed at the location of any of these points, would
fall with certainty to a single minimum.

3. Points at which water would be equally likely to fall to more than one minimum.

For a particular minimum the set of points of type 2 is called the watershed of that minimum.
The points of type 3 form crest lines on the topographic surface that are called watershed
lines. Accordingly, given an image, the principal objective of a segmentation algorithm based
on watersheds is to find the watershed lines of the associated gradient magnitude image.

As observed in [3] a logical algorithm for identifying watershed lines in a surface is one
based on the idea of immersion: water arising from regional minima progressively floods the
surface. When the rising water in distinct watersheds is about to merge, a dam is built to
prevent the merging. Dams are boundaries of watersheds and correspond to watershed lines.

The algorithm for computing a morphological watershed segmentation of an image by
immersion consists then of the following steps:

1. Place pixels on a stack in increasing order of gradient magnitude.

2. (Labeling) Extract pixel at top of stack (pixel of smallest gradient magnitude).
If none of the pixels that are 8-connected to the extracted pixel have been labeled,
label the extracted pixel with a label that has not been used yet (pixel is in a regional
minimum).
If those pixels that are 8-connected to the extracted pixel and that have already been
labeled all have the same label, label the extracted pixel with the same label (pixel is
in a watershed).
Otherwise leave extracted pixel without a label.

3. Redo step 2 until stack is empty.

Labeled pixels form the watersheds, one label per watershed. Non-labeled pixels form
the watershed lines, and by a watershed line it is meant a line for which two watersheds exist
such that the line is exactly the boundary the two watersheds have in common.

Figure 3 shows a morphological watershed segmentation of the image in Figure 1 obtained
with the above algorithm. As it is usually the case with morphological watershed segmenta-
tions an oversegmentation resulted. Figure 5 shows foreground watershed lines. As can be
seen in Figure 5, perhaps due to the repeated use of 8-connectivity throughout the execution
of the algorithm, the lack of roundedness of watershed lines as expressed by the presence
of lots of square corners in the lines is an indication that they may not be appropriate for
linking Canny pixels.

4



Figure 3: Morphological watershed segmentation of image of cells.

Figure 4: Foreground watershed lines with whiskers.

5



Figure 5: Foreground watershed lines (without whiskers).

3 Pseudo-watersheds and pseudo-watershed lines

Pseudo-watersheds as defined below approximate morphological watersheds, but their bound-
aries (pseudo-watershed lines) can be defined in such a way that they are affected less by
8-connectivity, i. e. they have fewer square corners, than those of morphological watersheds
(watershed lines) thus making them more suitable for linking Canny pixels.

In what follows we define pseudo-watersheds implicitly by describing how to construct
them in the same manner as in [4]. Given an image and its associated gradient magnitude
image, pseudo-watersheds are constructed by tracking downhill Maximum Gradient Paths
(MGP) starting from each pixel in the gradient magnitude image and terminating in a local
gradient magnitude minimum. The downhill MGP of each pixel p is tracked by recursively
selecting the pixel q in the 8-connected neighborhood of p for which the gradient magnitude
is minimal. The MGP terminates in the pixel m if no pixel in its neighborhood has strictly
smaller gradient magnitude. Each such pixel m is marked as a local mininum of the gradient
magnitude and given a label. If in the 8-connected neighborhood of m another minimum
has already been detected, its label is used. Each pixel in the image is assigned the label
of the minimum its downhill MGP terminates in. Thus given a label, the pixels with that
label form a pseudo-watershed, and the image is then partitioned into pseudo-watersheds,
one per label.

In what follows we describe how to compute lines to be called pseudo-watershed lines by
slightly altering pseudo-watersheds as defined above. Given a pixel p, p is a tentative bound-

6



ary pixel of the pseudo-watersheds if there is at least one pixel q in the 4-connected neighbor-
hood of p such that p and q belong to different pseudo-watersheds. Using 4-connectivity here
ensures that tentative boundary pixels are identified just enough to separate distinct pseudo-
watersheds. We compute pseudo-watershed lines by applying the idea of immersion to the set
of tentative boundary pixels together with the set of Canny pixels. Including Canny pixels
here guarantees that Canny pixels will tend to lie in pseudo-watershed lines. As presented
below, our method first uses 4-connectivity which ensures that pixels on pseudo-watershed
lines are identified just enough to separate distinct pseudo-watersheds. It then switches to
8-connectivity which ensures that the pseudo-watershed lines are indeed lines.

The algorithm for computing a pseudo-watershed segmentation of an image, i. e. for
obtaining pseudo-watershed lines in the associated gradient magnitude image consists then
of the following steps:

0. Remove labels from tentative boundary and Canny pixels and define a set of pixels B

as the set of tentative boundary pixels minus the set of Canny pixels.

1. Place pixels in B on a stack in increasing order of gradient magnitude.

2. (Labeling) Extract pixel at top of stack (pixel of smallest gradient magnitude).
If none of the pixels that are 4-connected to the extracted pixel have been labeled,
label the extracted pixel with label of the pseudo-watershed pixel is in.
If those pixels that are 4-connected to the extracted pixel and that have already been
labeled all have the same label, label the extracted pixel with the same label.
Otherwise leave extracted pixel without a label.

3. Redo step 2 until stack is empty.

4. Redefine the set of pixels B as the set of non-labeled pixels and redo steps 1 to 3 for
the new set B using 8-connectivity throughout instead of 4-connectivity.

Labeled pixels form the pseudo-watersheds, one label per pseudo-watershed. Non-labeled
pixels form the pseudo-watershed lines, and by a pseudo-watershed line it is meant a line
for which two pseudo-watersheds exist such that the line is exactly the boundary the two
pseudo-watersheds have in common.

Figure 6 shows a pseudo-watershed segmentation of the image in Figure 1 obtained with
the above algorithm. Figure 7 shows foreground pseudo-watershed lines. Comparing Figure 7
with Figure 5, one can conclude that pseudo-watershed lines exhibit more roundedness (fewer
square corners) than morphological watershed lines. Figure 8 shows foreground pseudo-
watershed lines that contain Canny pixels. As previously mentioned these lines are then
declared edges that link the Canny pixels they contain. Figure 9 shows endpoints (brighter
pixels) of these edges that belong to only one edge, i. e. endpoints of edges where breaks
still occur.

The computation of pseudo-watersheds and pseudo-watershed lines requires the creation
of a well-defined data structure that captures the relationships between pseudo-watersheds,

7



Figure 6: Pseudo-watershed segmentation of image of cells.

Figure 7: Foreground pseudo-watershed lines.

8



Figure 8: Edges or foreground pseudo-watershed lines that contain Canny pixels.

Figure 9: Endpoints (brighter pixels) of edges where breaks still occur.

9



Figure 10: Edges with breaks filled that characterize boundaries of cells.

pseudo-watershed lines and pseudo-watershed line endpoints. Once pseudo-watershed lines
have been computed and edges that link Canny pixels have been identified, the same data
structure is used to identify endpoints of these edges where breaks still occur. Still using the
same data structure, at each endpoint where a break occurs, the following procedure is used
to try to fill the break. Neighboring pixels of the endpoint on foreground pseudo-watershed
lines that have not been declared edges are identified. Among these pixels if its gradient
magnitude is similar to that of the endpoint the one of highest gradient magnitude is linked
to the endpoint, or else the break can not be filled. If the former occurs and there is still a
break at the newly linked pixel, the pixel is treated as an endpoint where a break occurs and
the procedure is repeated for this endpoint until the break is either filled or can not be filled.
Figure 10 shows edges with breaks filled that characterize completely the outer boundaries
of the cells in Figure 1.

4 Summary

A method has been presented for computing pseudo-watershed lines that can be used for
linking Canny pixels into edges. Since breaks between these edges may still exist, an addi-
tional procedure has been described that usually can be used to fill these breaks with the
help of the same data structure used for the computation of pseudo-watershed lines. Pseudo-
watershed lines approximate morphological watershed lines, and since local maxima of the

10



gradient magnitude tend to occur at morphological watershed lines, Canny pixels usually lie
in these lines. In this work pseudo-watershed lines were chosen over morphological water-
shed lines for linking Canny pixels as it was observed that they exhibited more roundedness
(fewer square corners). We have implemented the Canny edge detector together with these
methods, and have demonstrated the ability of the implementation to produce complete
characterizations of outer boundaries of cells in an image.

References

[1] S. Beucher, F. Meyer. The morphological approach to segmentation: the watershed trans-
formation. In Mathematical Morphology in Image Processing, E. R. Dougherty, Ed., Mar-
cel Dekker, New York, pp. 433-481, 1993.

[2] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Ma-

chine Intell., vol. 8, no. 6, pp. 679-698, 1986.

[3] R. C. Gonzalez, R. E. Woods. Digital Image Processing, Pearson Prentice Hall, 2008.

[4] F. Maes, D. Vandermeulen, P. Suetens, G. Marchal. Computer-aided interactive object
delineation using an intelligent paintbrush technique. In Computer Vision, Virtual Reality

and Robotics in Medicine, N. Ayache, Ed., Lecture Notes in Computer Science, Springer
Berlin, pp. 77-83, 1995.

11


