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Abstract. Higher transcendental functions continue to play varied and im-

portant roles in investigations by engineers, mathematicians, scientists and
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1. Introduction

When automatic computers began to appear in the 1950s various confident, and
often incorrect, predictions were made concerning the impact of these devices on
applied mathematics, science and engineering. One of these predictions was that
the need for special functions, or higher transcendental functions (as they are also
known), would disappear entirely. This was based on the observation that the main
use of these functions in those days was to approximate the solutions of classical
partial differential equations: with automatic computers it would become possible
to solve these equations by direct numerical methods. This observation is indeed
correct; nevertheless, a perusal of current computational journals in the sciences
reveals a persistent need for numerical algorithms to generate Airy functions, Bessel
functions, Coulomb wave functions, error functions and exponential integrals—to
name but a few of the classical special functions. Equally significantly, the National
Bureau of Standards’ Handbook of Mathematical Functions [AS64]1 continues to
be one of the best-selling mathematical books of all time2.

The purpose of the present paper is to provide some assistance to those math-
ematicians, engineers, scientists, and statisticians who discover that they need to
generate numerical values of the special functions in the course of solving their
problems. “Generate” is the operative word here: we are thinking primarily of
either software or numerical approximations that can be programmed fairly easily.
Numerical tables are not covered in this survey. Furthermore, for the most part we
shall concentrate on the functions themselves; only in certain cases do we include,
for example, zeros, inverse functions or indefinite integrals. Elementary functions,
also, are excluded3. Lastly, we believe that the majority of readers would prefer
us to emphasize the more useful algorithms rather than make an attempt to be
encyclopedic: algorithms or approximations that have clearly been superseded are
omitted.

We identify three stages in the development of computational procedures for the
special functions:

1. Derivation of relevant mathematical properties.
2. Development of numerical approximations and algorithms.
3. Construction and testing of robust software.

Included in Stage (i) are asymptotic expansions, continued fractions, difference and
differential equations, functional identities, integral representations, and Taylor-
series expansions. Included in Stage (ii) are expansions in series of Chebyshev poly-
nomials (“Chebyshev series”), minimax polynomial and rational approximations,
Padé approximations, numerical quadrature, and numerical solution of difference
and differential equations. In this paper the emphasis will be on Stages (ii)
and (iii), but in §2 we supply some general references for Stage (i).

1An explanation of the scheme used for acronyms of references is given on p. 21.
2In 1988 the National Bureau of Standards became the National Institute of Standards and

Technology.
3Methods for constructing and testing algorithms for generating elementary functions are sur-

veyed in [CW80]. See also [Bai93, Bre76, Bre78a, Bre78b, Cod93a, LCY65, MY91, Smi89, Smi91,

Ziv91].
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In §3 we make a general survey of software libraries and packages4 that include
collections of special functions.

In §§4 and 5 the functions are treated individually. We list software that is
already available and readily programmable numerical approximations. In §6 we
also include references to articles (or books) that may be useful for the testing or
comparison of existing software, or in the construction of new libraries. We do
not attempt what would be a herculean task of testing and comparing everything
that is available. Our philosophy in this survey has to be that of caveat emptor:
no algorithm, approximation or package that we mention should be relied upon to
produce accurate output in the absence of evidence of independent and systematic
checks.

As in the progress of other branches of numerical analysis, procedures used to
evaluate special functions are influenced heavily by the computing equipment avail-
able at the time. In the era of desk-calculating machines the medium was a printed
table of numerical values of the wanted function, or functions, generally for equi-
spaced values of the arguments. Nontabular values were calculated by means of La-
grange’s interpolation formula or central-difference interpolation formulas [Fox56].
In other words, local polynomial approximations were employed. These interpo-
lation procedures were reasonably successful for functions of a single variable, but
two-dimensional interpolation on desk-calculating machines was often a laborious
computation that was prone to error. The daunting task that faced a (human)
computer is summed up in the following quotation from the Introduction to Karl
Pearson’s tables of the incomplete gamma function [Pea22]:

“As a matter of fact, supposing the use of a machine, which every modern
computer has at his command, no interpolation suggested ought to take more than
an hour’s work and many much less. If the user of these tables groans under that
hour, let him compute de novo a function value, say I(6.86877, 47.1813) —including
of course Γ(48.1813)—to seven-figure accuracy, and when he has completed the task,
we believe his feelings towards those who have provided him with these tables will
be very sensibly modified.”

With electronic computers, the number of arithmetic operations that could be
contemplated for the generation of a single function value increased considerably. In
consequence, high-degree global approximations appeared for functions of a single
variable in the form of minimax polynomial or rational approximations, or truncated
Chebyshev-series expansions; see, for example, [Cle62, HCL+68] and [Luk77b].

Chebyshev series in two dimensions also became feasible [CP66, Luk71a, Luk71b,
Luk72a]. However, because of their more complicated asymptotic behavior, special
functions of two variables cannot be covered comprehensively simply by use of poly-
nomial or rational approximations or Chebyshev series. The situation is cloudier
still when the variables or parameters are complex, or of course when they are more
than two in number. For this reason, to achieve maximum speed, a comprehen-
sive software package for generating a function of two (or more) variables typically
employs several different algorithms in addition to, or quite commonly in place of,
polynomial or rational approximations or Chebyshev series. The construction and
testing of such a package invariably entails prodigious effort.

4Certain company products are identified in the text. In no case does such identification imply

recommendation or endorsement by the National Institute of Standards and Technology, nor does

it imply that the products are necessarily the best available for the purpose.
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Computers continue to increase in sophistication and power; in consequence
we should expect further changes in the algorithms used to generate the special
functions. So far, the potential offered by the introduction of vector and parallel
computing machines has not been exploited to any great extent. It might well lead
to simplifications in the algorithms needed for many functions, as well as to an
increase in execution speeds. We refer again to this possibility in the concluding
section (§7).

In assembling the bibliography of this paper we have been assisted by the ref-
erences collected and classified by the late Dr. L. W. Fullerton in his 1980 Bell
Laboratories report [Ful80], by access to Dr. N. M. Temme’s private collection
of references, and by GAMS, the Guide to Available Mathematical Software pre-
pared by the National Institute of Science and Technology [BHKS90]. Accessible at
http://gams.nist.gov/, GAMS is a convenient, free source for documentation and
nonproprietary source code.

We have searched through issues of the following journals of the past twenty-five
years for relevant references:

Applied Statistics (Appl. Statist.), Association for Computing Machinery Trans-
actions on Mathematical Software (ACM Trans. Math. Software), BIT, Collected
Algorithms from the Association for Computing Machinery (CALGO), Communi-
cations of the Association for Computing Machinery (Comm. ACM), Computer
Physics Communications (Comput. Phys. Comm.), Computing, Journal of Com-
putational and Applied Mathematics (J. Comput. Appl. Math.), Journal of Compu-
tational Physics (J. Comput. Phys.), Mathematical Reviews (Math. Rev.), Mathe-
matics of Computation (Math. Comp.), Numerische Mathematik (Numer. Math.),
U.S.S.R. Computational Mathematics and Mathematical Physics (U.S.S.R. Com-
put. Math. and Math. Phys.)5, Zeitschrift für Angewandte Mathematik und Physik
(Z. Angew. Math. Phys.), Zentralblatt für Mathematik und ihre Grenzgebiete (Zbl.).

However, because of the sheer volume and diversity of publications on special
functions it is almost inevitable that we have overlooked some useful algorithms
and important articles. In this event we tender, in advance, our apologies to the
authors.

2. Mathematical Developments

Comprehensive compendia of mathematical properties of the special functions
are provided by the National Bureau of Standards’ Handbook of Mathematical
Functions [AS64], published originally in 1964, and the 3-volume set that resulted
from the Bateman Manuscript Project [EMOT53a, EMOT53b, EMOT55], pub-
lished in 1953 and 1955. These references employ the same notation for the special
functions, and we shall follow them. The NBS Handbook has been reprinted many
times by the U. S. Government Printing Office and has also been issued in whole, or
in part, by other publishers including Dover Publications, Moscow Nauka, Verlag
Harri Deutsch and Wiley-Interscience.

The forerunner of [AS64] is the book of Jahnke and Emde [JE45], published
originally in 1909, and still in print6. It continues to be useful, especially for its
collection of graphs. Other useful compendia include those of Magnus, Oberhet-
tinger and Soni [MOS66], and (from the standpoint of hypergeometric functions)

5In 1991 this journal was retitled Computational Mathematics and Mathematical Physics.
6A more recent edition, with F. Lösch added as author [JEL60], is no longer in print.
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Luke [Luk69a]. For an introductory compendium, see the recent “atlas” of Spanier
and Oldham [SO87].

Books and articles that include descriptions or surveys of general methods for
computing special functions include [Bre78b, DKK81, Gau75, HCL+68, Luk69b,
Luk77b, PT84, PTVF92, Tem78, vdLT84].

Other books and articles that provide indepth coverage of pertinent topics in-
clude:

[Ask89, survey of compendia], [BG81a, BG81b, Padé approximations], [BH75,
asymptotic approximations], [Bre91, continued fractions, Padé approximations],
[BvI93, Padé approximations], [Cod70, polynomial and rational approximations],
[Fik68, polynomial and rational approximations], [FP68, Chebyshev polynomials],
[JT80, continued fractions], [Kar91, power series], [KG80, statistical computations],
[Luk75, supplement to AS64—especially for functions of hypergeometric type],
[Mor80, power series], [Olv74, asymptotic approximations], [Riv90, Chebyshev poly-
nomials], [Tem77, integral representations], [Tem85, asymptotic approximations],
[Wim84, recurrence relations], [Won89, asymptotic approximations].

3. Packages, Libraries and Systems

This section reviews a selection of mathematical software with respect to its
support for the numerical evaluation of special functions7. In some cases only a
descriptive overview is given while in others cross-references by individual function
are given in the subsequent sections §4 and §5. The cross-referenced packages,
libraries and systems are marked with a ♣. We used the following criteria in
assigning the ♣ marks:

First, a marked item must be readily accessible. Often this means it is commer-
cial software that is purchased or leased for a fee but we also include software that is
distributed, usually over computer networks, by journals and research institutions.

Second, a marked item must have a significant following in North America. (In
most cases the unmarked software is used widely elsewhere.)

Third, a marked item must be reasonably comprehensive in its coverage of special
functions.

3.1. Software Packages. In this paper software package will mean a set of sub-
routines, or just a single subroutine, that addresses a subfield of numerical mathe-
matics. There are three important series of software packages that include special
functions. These packages are research contributions written in a variety of pro-
gramming languages.

3.1.1. ♣ ACM Algorithms. These were published in the Communications of the
ACM, Volumes 3–18 (1960–75) and since then in the ACM Transactions on Math-
ematical Software (TOMS). The transition between the two journals took place
with Algorithm 493 in Volume 1, Number 2 of TOMS. Algol was required orig-
inally but Fortran and other languages were allowed after it became clear that
this condition was too restrictive. The current ACM Algorithms Policy appears at
http://www.acm.org/calgo/AlgPolicy.html; also see [Kro91]. The policy requires
ACM Algorithms to be self-contained, adequately documented through comments

7General reviews of mathematical software appeared regularly from 1988 to 1994 in the Com-

puters and Mathematics column of the Notices of the American Mathematical Society. An index

is given in [DW95].
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in the code, and reasonably portable from one machine to another. A test program
with sample output is also required. The policy provides for addenda to previously
published algorithms. All ACM Algorithms that appear in TOMS are refereed.
The ACM Algorithms Policy has been in effect, with little change, since 1975.

ACM Algorithms are accessible at http://www.acm.org/calgo/. For indexing
purposes, each is assigned a symbol from a modification of the SHARE classifica-
tion system; cf. [ACM] or [ACM64]. Cumulative indexes by SHARE classifica-
tion for 1960–1980, 1981–1986 and 1987–1988 appear in [ACM]. Algorithm 620
[Ham85, HM90b, RH84] provides a data base and Fortran program for preparing a
cumulative index by SHARE classification. This data base is updated periodically
by the ACM.

3.1.2. ♣ AS Algorithms. A section for statistical subroutines in Applied Statistics
was established in 1968 to “encourage the development of a published literature
on statistical computing” as the specialized needs of statistical computing were
“only partly met” by the algorithm sections of other journals [AS68]. The current
version of detailed instructions and other information for authors of AS Algorithms,
first published in 1968, can be found in [RWGH87]. All submissions adhere to a
standard format and are refereed. A test program is required for the referee’s
use. Addenda to previously published algorithms are accepted and are subjected
to the same refereeing process as original algorithms. An index appears at the
end of every volume. A cumulative index of the first 251 AS Algorithms (1968–
1989, with addenda) appears in [HM90a], organized according to the GAMS scheme
[BHK91]. Corrected and improved versions of selected AS Algorithms appear in
[GH85]. Instructions for obtaining AS Algorithms on computer diskette can be
found in issues of Applied Statistics starting in 1993.

3.1.3. ♣ CPC Programs. The journal Computer Physics Communications was be-
gun in 1969 to “facilitate the exchange of physics programs and of relevant in-
formation about the use of computers in the physics community”. It publishes
descriptions of CPC Programs and, in addition, general papers on the computa-
tional aspects of physics and physical chemistry. Programs and their descriptions
are refereed.

Program descriptions consist of a Program Summary (a concise description in
a standard format with keywords) and a Long Write-Up (a detailed description
of the underlying physics and algorithms). A test program is required for each
CPC Program, and each CPC Program is required to be well documented and as
portable and self-contained as possible. An index of CPC Programs is printed at
the end of every volume. Two cumulative indexes without Program Summaries
[CPC87, CPC90] and one with Program Summaries [CPC84] exist. A more attrac-
tive alternative is the up-to-date cumulative index, with Program Summaries, that
is accessible by electronic mail8. All these indexes are organized according to a
physics-oriented classification scheme.

CPC Programs can be ordered individually or by subscription service. Ordering
instructions and an order form are printed in the back of every issue of Computer
Physics Communications.

8To get started with the cumulative index, send the message “get cpc intro cpcindex” to

listral@earn-relay.ac.uk, or see the instructions printed in every issue of Computer Physics

Communications.
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3.2. Intermediate Libraries. Under this heading we place software that is in
some sense intermediate between software packages, which embody original research
contributions, and comprehensive libraries (§3.3 below). The libraries we con-
sider here provide support only for mathematical functions. Furthermore, they are
largely restricted to codification of existing algorithms with all their advantages—
and limitations.

3.2.1. ♣ Atlas for Computing Mathematical Functions [Tho97]. The purpose of
this book with CD-ROM is to provide C or Fortran 90 source code for most of
the functions included in the NBS Handbook of Mathematical Functions [AS64].
It claims “most of the functions are computed . . . to an accuracy of at least 10
decimal digits.” The functions are computed for real variables only.

3.2.2. ♣ C Mathematical Function Handbook [Bak92]. This volume with diskette
is keyed to the NBS Handbook of Mathematical Functions [AS64]. Most chapters
of the NBS Handbook have a counterpart here in which brief introductory material
is followed by C code listings. A complex arithmetic package is included since
C supports only real and integer arithmetic. The author advocates the use of
C because it “is rapidly becoming the lingua franca of the computer world” and
“algorithms written in C should be very portable”. He has written two other books
on C programming for technical applications.

3.2.3. ♣ Computation of Special Functions [ZJ96]. This book with included diskette
provides Fortran 77 code for most of the functions in the NBS Handbook of Mathe-
matical Functions [AS64]. For many of the functions, codes are supplied for complex
as well as real arguments. In some cases complex parameters are supported also.

3.2.4. ♣ Mathematical Function Library for Microsoft Fortran or C [ULI90]. These
volumes exist to “provide users with a comprehensive set of mathematical function
routines to assist them in solving their mathematical problems on IBM PC/XT/AT
or compatibles.” Each consists of a looseleaf manual with diskettes. The documen-
tation for each function gives usage instructions, input range, accuracy, definition
of the function, algorithm, sample program and sample results. The functions are
evaluated only for real arguments. The diskettes contain a compiled library in mi-
croprocessor assembly code for use with Microsoft compilers and the Fortran or C
source code for use with other compilers.

3.2.5. ♣ Methods and Programs for Mathematical Functions [Mos89]. This volume
with separate diskette of C programs presents a selection of special functions with
real arguments and integer or real parameters. The programs are designed for dou-
ble precision, and tables of test results included for every function typically show
absolute or relative errors (whichever is appropriate) of the order of 10−16. Where
polynomial or rational approximations are used, the expansion coefficients were gen-
erated in multiple precision using C programs that are given in the book. The pro-
grams have been collected under the heading “cephes” and are downloadable free-
of-charge from Netlib; see http://gams.nist.gov/serve.cgi/Package/CEPHES/.

3.3. Comprehensive Libraries. When new algorithms are developed they tend
to appear first as subroutines in software packages (§3.1 above). Later they may
be assimilated into more complete software products such as intermediate libraries
(§3.2 above). Even more useful are comprehensive libraries that integrate evaluation
of special functions with other essential elements of numerical computing and offer
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additional advantages such as uniform documentation, style of usage, and handling
of error conditions. Corrections and improvements, particularly in orienting the
programming toward particular computer architectures, are often made.

3.3.1. CERN Library. The European Laboratory for Particle Physics maintains a
comprehensive software library [CER93], mostly in Fortran but with a few routines
in assembly language, in support of high-energy physics research. The coverage
of special functions includes the error function of real and complex argument; the
Dawson and Fresnel integrals; exponential, sine, cosine and arctangent integrals; the
gamma and digamma functions of real and complex argument; incomplete gamma
function; real dilogarithm and complex generalized polylogarithms; Bessel functions
of real argument and orders 0, ± 1

4 , ± 1
3 , ± 1

2 , ± 2
3 , ± 3

4 and 1; Bessel functions of
real order and real or complex argument; Bessel functions of complex order and
argument; zeros of the Bessel functions J and Y and of their derivatives; Coulomb
wave functions of complex order, argument and parameter; complete and incom-
plete elliptic integrals; Jacobi’s elliptic functions (real and complex); Jacobi’s theta
functions (real); Bose-Einstein and Fermi-Dirac integrals ; Legendre and associated
Legendre functions; conical functions of the first kind; Struve functions. The library
is distributed, with some restrictions, to organizations outside CERN.

3.3.2. ♣ IMSL Library. International Mathematical and Statistical Libraries was
incorporated in 1970 “with the intent of providing high-quality, supported Fortran
subroutine libraries in mathematics and statistics” [Air84]. In its first ten years
it produced libraries tailored to twelve different computer lines, providing an al-
ternative to manufacturer-supplied libraries. Currently the company offers a wide
range of products for large-scale scientific computing. At the center of its product
line is the IMSL numerical subroutine library for mathematics and statistics, which
includes an extensive coverage of real and complex special functions [IMS91] ; this
reference includes a GAMS index [BHK91] and a KWIC (keyword in context) index.
The library is optimized, vectorized and parallelized where appropriate, depending
on the target computer architecture, but it contains no vector or parallel support
for special functions.

A subset of the IMSL library is offered also as a C library. This is an essential
component of a powerful interactive system (§3.4 below) which has the capability of
providing graphical and numerical computing with very large data sets. Optionally,
Maple (§3.4.3 below) can be incorporated to provide for symbolic computing.

3.3.3. ♣ Mathematical Software for the P.C. and Work Stations [WNO94]. This
book describes a library for scientific computing that was developed originally more
than 30 years ago in Japan. It has become a standard component of computer cen-
ters in Japanese universities and remains important because its developers have
continually provided modifications to keep abreast of advances in computers and
numerical analysis. Its coverage of special functions includes Bessel, gamma, in-
complete gamma and error functions; exponential, Fresnel and complete elliptic
integrals; and classical orthogonal polynomials. The Bessel and gamma functions
are supported for complex as well as real arguments. The library routines are
provided on a diskette that comes with the book.

3.3.4. ♣ NAG Library. An overview of the development, structure and contents
of the NAG Fortran library [NAG99] is given in [FP84]. After originating as a
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cooperative project among several British computing centers in 1970 with the pur-
pose of providing “a balanced, general-purpose numerical algorithms library,” the
Numerical Algorithms Group formed a not-for-profit company in 1976 to provide
for the wider distribution of the library. The library is organized around the ACM
modification of the SHARE classification system (see §3.1.1 above) and is available
for a wide cross-section of computing systems. A KWIC (keyword in context) in-
dex and an index in the GAMS classification scheme [BHK91] are provided in the
library documentation.

Subsets of the full library are available in Ada, Algol 68, C, Fortran 90 and
Pascal. NAG is actively developing and marketing an interactive system (§3.4
below) that integrates most of the numerical power of the full NAG library with
online symbolic and graphical capabilities.

3.3.5. NSWC Library. In 1976 the Naval Surface Warfare Center, Dahlgren, Vir-
ginia, began development of “a [Fortran] library of general purpose subroutines
that would provide a basic computational ability in a variety of mathematical ac-
tivities” [Mor93]. The design goals stressed reliability, transportability, efficiency,
ease of use, and generality. In 1993 the library contained 576 user-level subroutines,
including ones in real arithmetic for the error function and its inverse; Dawson’s
integral and Fresnel integrals; exponential, sine and cosine integrals; gamma, psi
and polygamma functions; dilogarithm; incomplete gamma function and its inverse;
incomplete beta function; complete and incomplete elliptic integrals; Jacobi’s and
Weierstrass’ elliptic functions; Bessel functions of real argument and order. It also
contained Airy functions and complete elliptic integrals of complex argument, and
Bessel functions of complex argument and integer or complex order.

3.3.6. NUMAL Library. In 1973 the Mathematisch Centrum, Amsterdam, intro-
duced this library of numerical procedures in Algol-60 with “ the aim . . . to pro-
vide Algol-60 programmers with a high-level numerical library which contains a
set of validated numerical procedures together with supporting documentation”
[Hem81]. In 1979 it contained approximately 430 subroutines, including ones for
the exponential, sine and cosine integrals; gamma function; incomplete gamma and
beta functions; error and inverse error functions; Fresnel integrals; modified and
unmodified Bessel functions of integer, half-integer or real order; Airy functions.
All subroutines are for real variables.

3.3.7. ♣ Numerical Recipes. This partly pedagogical series of books offers “for each
topic considered, a certain amount of general discussion, a certain amount of an-
alytical mathematics, a certain amount of discussion of algorithmics, and (most
important) actual implementations of these ideas in the form of working computer
routines” [PTVF92]. Besides being listed fully in the text, the computer routines
are available for purchase under a variety of licensing arrangements, one of which is
tailored to the needs of classroom instructors. Example books with test programs
and diskettes are available also. Standard fields of numerical computation are cov-
ered, with approximation of functions and evaluation of special functions included.
Except for the hypergeometric function, the software applies to real variables only.
The book is published in four versions with the software coded in Basic, C, Fortran
or Pascal; another volume for Basic is [Spr91].
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3.3.8. NUMPAC Library. The Nagoya University Mathematical Package is used
widely in Japan. It is a comprehensive Fortran library oriented toward Japanese
computers, including vector supercomputers. Coverage includes Airy functions;
error and inverse error functions; Dawson and Fresnel integrals; exponential, sine
and cosine integrals; complex gamma function; digamma function; dilogarithm;
Riemann’s zeta function; Bessel functions of integer or real order and real or com-
plex argument; zeros and integrals of Bessel functions; complete and incomplete
elliptic integrals; Jacobi’s elliptic functions; incomplete beta and gamma functions;
Legendre polynomials and associated Legendre functions; classical orthogonal poly-
nomials; Struve functions; Abramowitz, Debye and elliptic theta functions; solu-
tions of the Blasius and Thomas-Fermi equations. Information can be obtained in
Japanese and partially in English at http://numpac.fuis.fukui-u.ac.jp/.

3.3.9. PORT Library. This library [FHS78b, Fox84] is mentioned here because it
provides a framework [FHS78a] for constructing portable Fortran libraries that
has proven its utility. The framework supplies computer arithmetic parameters
via Fortran function calls. Algorithms are coded so as to be valid for a range of
values of the arithmetic parameters; actual values are substituted at run time. The
PORT framework is used, for example, in the SLATEC library (§3.3.10 below). It
is particularly valuable in the special function routines because of their sensitivity
to precision, underflow and overflow. The PORT framework is available as ACM
Algorithm 528 (§3.1.1 above).

3.3.10. Scientific Desk Library. C. Abaci offers the following products: (i) the Sci-
entific Desk Library, a Fortran-based collection of numerical software; (ii) the Sci-
entific Desk Analysis System, an interactive system (§3.4 below); (iii) software
produced by others, including the ACM algorithms (§3.1.1 above). The library is
available in object code for personal computers under a variety of Fortran compil-
ers and in Fortran source code for other computers. The Analysis System, which
is strongly oriented toward statistics, simplifies the programming burden and pro-
vides for simple graphical output. C. Abaci distributes the SPECFUN collection
[Cod93b] of Fortran programs for special functions and the ELEFUNT, INTFUNT
and CELEFUNT tests [Cod93a, CW80] for elementary functions. Inquire at C.
Abaci, Inc., P. O. Box 2626, Raleigh, NC 27602.

3.3.11. ♣ SLATEC Library. The acronym stands for Sandia, Los Alamos, Air Force
Weapons Laboratory Technical Exchange Committee9, formed in 1974 to “foster
the exchange of technical information among the three computing departments”.
In 1977 a subcommittee undertook the development of a complete, noncommercial
Fortran library for numerical supercomputing [Buz84]. The primary motivation
was that the suppliers of commercial libraries regarded the supercomputing market
as too small. The library subcommittee admitted subsequently five additional U. S.
Government agencies (the Lawrence Livermore, Oak Ridge and Sandia Livermore
National Laboratories, the National Energy Supercomputer Center at Lawrence
Livermore, and the National Institute of Standards and Technology). SLATEC Ver-
sion 1.0 appeared in 1981. Version 4.0, the third major revision and expansion, was
released in December 1992. The initial coverage of special functions coincided with
FNLIB [Ful77], FUNPACK [Cod75, Cod84a] and AMOSLIB [AD79]. Subroutines
from [ADW77a, ADW77b, Amo80a, Amo83a, Amo83b, Amo86, CN81, LS81, OS83]

9The Air Force Weapons Laboratory has been renamed the Phillips Laboratory.
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were added later. Available from Energy Science and Technology Center, P. O. Box
1020, Oak Ridge, TN 37831 and from http://gams.nist.gov/.

3.4. Interactive Systems. The software packages and libraries considered in the
preceding three sections are used in conjunction with standard programming lan-
guages. These languages are not fully interactive. A program needs to be written,
compiled and linked to libraries before it can be executed, and after the results are
examined the cycle may need to be repeated to correct errors or change parameters.
An interactive system provides a powerful set of commands which the user can enter
at the keyboard. The response to each command is displayed immediately. The
burden of programming and the compile-link-execute cycle is reduced. Program-
ming in an interactive system serves a new purpose: to extend or customize the
command set.

A striking characteristic of interactive systems is their ability to integrate non-
numerical tasks with numerical computation. Graphical and symbolic computing
work best in an interactive environment, and one or both are combined powerfully
with numerical computing in commercially available interactive systems. The trend
toward increased integration of these computational components is being recognized
by recent developments of the IMSL, NAG and Scientific Desk libraries (§§3.3.2,
3.3.4 and 3.3.10 above).

A particular type of interactive system with a special capability for the numerical
evaluation of special functions is the computer algebra system, developed to provide
symbolic processing of mathematical formulas and intended, primarily, to assist
in mathematical developments. These systems contain basic mathematical infor-
mation that enables them to manipulate algebraic expressions, make substitutions,
differentiate and integrate functions, solve algebraic, transcendental and differential
equations, manipulate power series, and the like. Some knowledge of mathematical
properties of special functions is built in, and more can be added by programming
extensions to the command set. Numerical approximations are to be avoided, in
keeping with the primary purpose of supporting exact mathematical developments,
but floating-point computation is provided as a secondary capability. This often
comes with a bonus when compared to the usual programming languages which
simply use the hardware computer arithmetic: the precision can be set arbitrarily.

The rationale for arbitrary precision is not entirely clear. It is clear that exact
rational arithmetic is essential in computer algebra applications. Perhaps multiple-
precision floating-point, being relatively easy to implement, is considered a worth-
while additional capability. Also, evaluation of symbolic expressions may require
high precision because of numerical sensitivity. Whatever the reason, for occasional
usage of arbitrary-precision floating-point, computer algebra systems are well worth
considering.

3.4.1. HiQ (Apple Macintosh, Sun). This system [Bim93] approaches the goal of
reducing the need to write programs by making concentrated use of the graphical
user interface (the image displays and controls associated with the computer screen).
The system opens with a blank worksheet (in a window on the screen) and an array
of icons. Each icon corresponds to a particular kind of task.

For example, one icon is called the “expression evaluator”. When activated by
the mouse, this icon presents a window with three areas. An algebraic expression
is entered into the input area in a conventional programming-language syntax (like
Fortran). This expression can contain numbers, symbols representing numbers, and
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symbols representing built-in HiQ functions. The symbols representing numbers
are assigned numerical values in the options area as constants or finite arithmetical
sequences. Output icons are generated in the output area when the “run button”
(another icon) is “pushed” by clicking the mouse. The output icons, when activated,
display tables and graphs of the computed data.

Other tasks that can be performed by similar sequences of manipulations with
icons are numerical integration, optimization, data fitting, finding roots of poly-
nomials and nonlinear functions of one variable, and solving nonlinear systems,
integral equations, and initial-value and boundary-value problems in ordinary dif-
ferential equations.

Special functions included in HiQ are Airy functions; beta, gamma, log gamma,
psi, incomplete beta, incomplete gamma, and complementary incomplete gamma
functions; Kelvin functions; Bessel functions of integer and half-integer order;
Struve and Weber parabolic cylinder functions; hypergeometric function and se-
ries; confluent hypergeometric function and series; Riemann zeta function. Al-
though HiQ performs complex arithmetic, most if not all the special functions are
evaluated for real arguments only.

3.4.2. Macsyma. Macsyma [Sym92] is a computer algebra system that supports
symbolic, graphical and numerical computing on personal computers, scientific
workstations and mainframes. Its built-in capabilities can be extended by pro-
gramming in either Lisp or an Algol-like procedural language.

Macsyma avoids numerical approximations unless floating-point numbers are
introduced, either explicitly or as the result of special commands. Floating-point
numbers are represented internally in machine single precision, machine double
precision, or software arbitrary precision. When arbitrary precision is being used
there is a precision specifier. Operand precisions are adjusted, if necessary, to the
specified operational precision by truncating or extending with zero digits before
arithmetic operations are performed. The precision specifier can be changed at any
time.

Macsyma supports the numerical evaluation of elliptic, error, gamma, poly-
gamma, polylogarithmic and zeta functions; Airy, Bessel and Legendre functions;
complete elliptic integrals and the exponential integral; classical orthogonal polyno-
mials. Only the gamma, polygamma and Riemann zeta functions are computable
in arbitrary precision. Some of the other functions are restricted to single precision.
Complex arguments are allowed for the error, gamma and Bessel functions.

3.4.3. ♣ Maple. Maple 6 is a computer algebra system containing symbolic, nu-
merical and graphical capabilities; see http://www.maplesoft.com/. It contains
extensive support for special functions, and is available for personal computers,
Unix workstations and vector supercomputers. The normal mode of operation is
interactive. A Pascal-like programming language, called the Maple language, is
provided also. Much of the Maple system is programmed in this language. This
part, called the Maple Library, can be viewed on the screen or printed, and serves as
useful supplementary documentation or as a guide for the preparation of additional
library modules. The core of Maple, written in the C programming language, is
not normally accessible to users.

Because of its emphasis on symbolic computing, Maple avoids any evaluation
which would introduce an inexact result unless the user specifically requests it. Ex-
pressions are evaluated symbolically, with numbers rendered as rational fractions
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with arbitrarily long numerators and denominators or represented as symbols. The
user can request floating-point evaluation to arbitrary precision. For mathematical
functions, Maple detects certain special values and can make appropriate substitu-
tions. Otherwise the functions are left as symbolic representations until the user
explicitly requests their evaluation in floating-point format. These evaluations, if
they can be done at all, are to the precision specified by the user.

3.4.4. Mathcad (PC with Microsoft Windows). This system [Mat93a] is oriented
toward the engineering professions but is useful also in educational, mathematical,
scientific and statistical applications. Mathcad can be regarded as an editor and
calculator that can be used to create complete documents. These documents can
include graphics, ordinary text, and mathematical text resulting from input com-
mands and their associated numerical or symbolic output. Commands are selected
from an extensive array of icons (similar to HiQ, §3.4.1 above) or they can be acti-
vated by appropriate keystrokes. Numerical commands support real and complex
computations with scalars, vectors and matrices; numerical differentiation and inte-
gration ; solution of algebraic equations; constrained and unconstrained minimiza-
tion; Fourier transforms; statistical operations. Symbolic commands are supported
by a subset of Maple (§3.4.3 above). Coverage of special functions includes error,
gamma and polylogarithmic functions; sine, cosine and Fresnel integrals; Bessel
functions of integer order. Except for the gamma function, all arguments must be
real.

3.4.5. ♣ Mathematica. Mathematica [Wol99] is a computer algebra system for sym-
bolic, graphical and numerical computing on personal computers, scientific work-
stations, and larger computers. It has extensive support for special functions. A
highly developed user interface, available on some of this hardware, integrates Math-
ematica output with ordinary text for the preparation of complete documents en-
tirely within the Mathematica system. A programming language, based on pattern
matching, is included and can be used for extending the capabilities of the system.

As with other computer algebra systems, Mathematica uses floating-point num-
bers only when requested explicitly. If numbers are introduced with no more sig-
nificant figures than the precision of the machine floating-point system, and if the
machine underflow and overflow limits are not exceeded, then computations pro-
ceed in hardware floating-point arithmetic. On the other hand, numbers that are
not machine-representable are stored in a software floating-point format. Each such
number is tagged with its own precision, and computations are performed in soft-
ware floating-point arithmetic. The precision of nonmachine numbers is arbitrary
but the internal representation is set to the highest justifiable precision. This is
determined by the number of significant figures in an input number and by the
precision of the operands or arguments in arithmetic operations and function eval-
uations. If numbers in a hardware computation underflow or overflow, then the
software arithmetic takes over automatically.

3.4.6. Matlab. This system [Mat92] uses matrix notation to provide a built-in set of
commands for standard algorithms of numerical computation. A graphics capability
is included also. Additional commands can be coded in concise procedures using
Matlab notation. Symbolic computing is supported through a recently introduced
option using Maple (§3.4.3 above). Matlab runs on a broad range of computers
from personal computers and scientific workstations to vector supercomputers. One
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of its strengths is that it treats complex arithmetic as the natural extension of
real arithmetic: variables do not have a fixed real or complex type as in Fortran.
Nevertheless, Matlab’s coverage of complex functions is limited. It supports Bessel
functions of real order and complex argument z but warns in the online help system
that the functions “may produce inaccurate results” for large order and |z|. Built-in
special functions for real arguments and parameters include error and inverse error
functions; gamma function; incomplete gamma and beta functions; Bessel functions
I, J, K and Y; complete elliptic integrals; Jacobi’s elliptic functions.

4. Functions of One Variable

In the references that follow an indication is made of the programming language
where applicable. Also, special note is made of references that include surveys.
Libraries and interactive systems are listed separately.

In the subsections of §4 and §5, a library or interactive system is listed only
if it employs an algorithm tailored to the restrictions of the subsection. For ex-
ample, NAG is listed in §4.1.1 and §4.1.2 because it has separate capabilities for
Airy functions of real and complex argument. Mathematica is listed only in §4.1.2
because it does not use a restricted algorithm for real arguments. Because these
distinctions are sometimes difficult to infer from software documentation and even,
when available, from source code, they should be regarded only as a guide, both in
§4 and §5.

4.1. Airy Functions. This section includes Scorer’s functions.

4.1.1. Real Arguments. [Mac94a], [Mac96a, Fortran], [Ném92], [Pri75, Fortran],
[RS81]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90], [ZJ96], IMSL, NAG, Nu-
merical Recipes, SLATEC.

4.1.2. Complex Arguments. [Amo86, Fortran], [CJR92, Fortran]. Libraries: NAG,
SLATEC. Systems: Maple, Mathematica.

4.1.3. Articles. [CCF83], [Gor69], [Lee80], [LO93], [Moo81], [SAG79], [VRZG96].

4.2. Error Functions, Dawson’s Integral, Fresnel Integrals, Goodwin-
Staton Integral.

4.2.1. Error Functions of Real Argument. [Ada69, Algol], [Cle62], [CMW63, Algol],
[Cod69], [Cod90a, Fortran], [CT85, Fortran], [Hil73, Fortran], [Luk69b], [Luk75],
[Ném92], [Sch78], [SL81], [SZ70, Fortran], [Tem94b, Pascal]. Libraries: [Bak92],
[Mos89], [Tho97], [ULI90], [WNO94], [ZJ96], IMSL, NAG, Numerical Recipes,
SLATEC.

4.2.2. Inverse Error Functions of Real Argument. [BEJ76], [Cun69, Fortran], [HD73,
Algol]. Libraries: [Mos89], [ULI90], [WNO94], IMSL, NAG.

4.2.3. Integrals of the Error Function. [Gau77a, Fortran], [Woo67]. Libraries: [Bak92].
Systems: Maple.

4.2.4. Dawson’s Integral of Real Argument. [CPT70], [Hum64], [Let97], [Ném92],
[Ryb89, Fortran]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90], IMSL, NAG,
Numerical Recipes, SLATEC.
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4.2.5. Fresnel Integrals of Real Argument. [Bul67, Algol], [Boe60], [Cod68], [Hea85],
[LG64, Algol], [Luk69b], [Luk75], [Ném65], [Sny93, Fortran]. Libraries: [Bak92],
[Mos89], [Tho97], [ULI90], [WNO94], [ZJ96], IMSL, NAG, Numerical Recipes.

4.2.6. Complex Arguments. [Gau69a, Algol], [Luk69b], [Lyn93, Fortran], [PW90a,
Fortran], [SZ81, Fortran]. Libraries: [Bak92], [ZJ96], IMSL, NAG. Systems:
Maple, Mathematica.

4.2.7. Goodwin-Staton Integral. [Mac96a, Fortran].

4.2.8. Articles. [BR71], [Cod90b, includes survey], [Col87a], [Fle68], [Gau70], [Gau77b],
[Hen79], [HR72], [Let98], [LW90], [LW91], [McC74], [Mor83], [MR71], [PW90b],
[Str68], [vdLT84], [Wei94a, includes survey], [Wei94b].

4.3. Exponential Integrals, Logarithmic Integral, Sine and Cosine Inte-
grals.

4.3.1. Exponential Integrals of Real Argument. [Amo80a, Fortran], [Cle62], [CMW63,
Algol], [CT69], [Gau73, Algol], [Luk69b], [Luk76], [Pac70, Fortran], [SZ76, Fortran].
Libraries: [Bak92], [Mos89], [Tho97], [ULI90], [WNO94], [ZJ96], IMSL, NAG,
Numerical Recipes, SLATEC.

4.3.2. Logarithmic Integral of Real Argument. Libraries: [Bak92], [Tho97], [ULI90],
IMSL, SLATEC. Systems: Maple.

4.3.3. Sine and Cosine Integrals and Hyperbolic Sine and Cosine Integrals of Real
Argument. [Bul67, Algol], [Luk69b], [Mac96b, Fortran]. Libraries: [Bak92], [Mos89],
[Tho97], [ULI90], [WNO94], [ZJ96], IMSL, NAG, Numerical Recipes.

4.3.4. Complex Arguments. [Amo90a, Fortran], [Luk69b]. Libraries: [Bak92], [ZJ96].
Systems: Maple, Mathematica.

4.3.5. Articles. [Amo80b], [Amo90b], [CT68], [TM68], [vdLT84].

4.4. Gamma, Psi, and Polygamma Functions.

4.4.1. Gamma Function of Real Argument. [BZ92], [CH67], [Cle62], [CMW63, Al-
gol], [CT85, Fortran], [FS67, Algol], [Luk69b], [Luk75], [Mac89, Fortran], [Ném92],
[Tem94b, Pascal]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90], [WNO94], [ZJ96],
IMSL, NAG, Numerical Recipes, SLATEC.

4.4.2. Psi and Polygamma Functions of Real Argument. [Amo83b, Fortran], [Bow84,
Fortran], [CST73], [Luk69b], [Luk75]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90],
[ZJ96], IMSL, NAG, SLATEC.

4.4.3. Complex Arguments. [BD80, Fortran], [Köl72a, Fortran], [Kon96, C], [Kuk72a,
Fortran], [Luk69b]. Libraries: [Bak92], [WNO94], [ZJ96], IMSL, SLATEC. Sys-
tems: Maple, Mathematica.

4.4.4. Articles. [AB87b], [Bri95], [Cha80], [Cod91, includes survey], [FW80], [Kat78],
[Krä90], [Kuk72b], [Luk70a], [McC81], [Ng75, includes survey], [Spo94], [vdLT84].

4.5. Landau Density and Distribution Functions.

4.5.1. Real Variables. [KS84d, Fortran], [Sch74, Fortran].

4.6. Polylogarithms, Clausen Integral.
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4.6.1. Dilogarithms. [GZ75, Fortran], [Luk75]. Libraries: [Bak92], [Mos89], [Tho97],
IMSL, SLATEC. Systems: Maple.

4.6.2. Higher Polylogarithms. Libraries: [Bak92], [Tho97]. Systems: Maple,
Mathematica.

4.6.3. Clausen Integral. [Köl95], [Mac96a, Fortran]. Libraries: [Tho97].

4.6.4. Articles. [GT81], [JL72], [Mor79], [OPP95].

4.7. Zeta Function.

4.7.1. Real Arguments. [CHT71], [Luk69b], [Mar65, Algol], [PB72]. Libraries: [Bak92],
[Mos89], [Tho97].

4.7.2. Complex Arguments. [BD80, Fortran], [YKK88, Fortran]. Systems: Maple,
Mathematica.

4.7.3. Articles. [AB89], [EKK85], [Ker80, includes survey].

4.8. Additional Functions of One Variable.

4.8.1. Lambert Function (W–Function). [BBC95, Fortran]. Systems: Maple,
Mathematica.

4.8.2. Articles. [BCB95].

5. Functions of Two or More Variables

As in §4, an indication is made of the programming language where applicable
and special note is made of references that include surveys. Libraries and interactive
systems are listed separately, and similar remarks apply about the inclusiveness of
the subsections.

5.1. Bessel Functions. All of the following subsections apply to the ordinary
Bessel functions (J and Y ) and the modified Bessel functions (I and K).

5.1.1. Orders 0 and 1, Real Arguments. [Bla74], [BS92, Fortran], [Cle62], [Hil81,
Fortran], [Luk69b], [Luk75], [WBR82]. Libraries: [Bak92], [Mos89], [ZJ96], IMSL,
NAG, Numerical Recipes, SLATEC.

5.1.2. Integer or Half-Integer Orders, Real Arguments. This subsection includes
spherical Bessel functions. [AM61], [AM78, Fortran], [BZ95, Fortran], [Col80, For-
tran], [Hil81, Fortran], [MM90], [PB82], [RF93, Fortran], [SFR97, Fortran]. Li-
braries: [Bak92], [Mos89], [Tho97], [ULI90], [WNO94], [ZJ96], IMSL, Numerical
Recipes.

5.1.3. Real Orders, Real Arguments. [ADW77a, Fortran], [Bar82b, Fortran], [Cam79,
Fortran], [Cod83, Fortran], [CP66], [Luk69b], [Luk71a], [Luk71b], [Luk72a], [Luk75],
[Mat93b, Fortran], [Ném92], [Pie84b, Fortran], [Tem75, Algol], [Tem76, Algol]. Li-
braries: [Mos89], [ULI90], [WNO94], [ZJ96], IMSL, Numerical Recipes, SLATEC.

5.1.4. Integer or Half-Integer Orders, Complex Arguments. This subsection includes
Kelvin functions. [BKN88a, Fortran], [BKN88b, Fortran], [Bur63], [CM83], [dT93],
[Mas83, Fortran], [Ném92]. Libraries: [Bak92], [Tho97], [ULI90], [WNO94], [ZJ96],
IMSL, NAG.
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5.1.5. Imaginary Orders, Real Arguments. [PA99].

5.1.6. Real Orders, Complex Arguments. This subsection includes Hankel func-
tions. [Amo86, Fortran], [Cam81, Fortran], [Luk69b], [Luk75], [TB87, Fortran].
Libraries: [ZJ96], IMSL, NAG, SLATEC.

5.1.7. Complex Orders, Complex Arguments. [TB85, Fortran]. Systems: Maple,
Mathematica.

5.1.8. Integrals of Bessel Functions. [Amo83a, Fortran], [And82a, Fortran], [BEJ78],
[Cha83, Fortran], [Feu91, Fortran], [GP64], [Lem97, Fortran], [Mac96a, Fortran],
[Ném92], [PB84, Fortran], [Pie82, Fortran], [SZ79, Fortran], [Tal83, Fortran], [Wie99,
Fortran]. Libraries: [Bak92], [ZJ96], SLATEC.

5.1.9. Zeros of Bessel Functions. [Cam84, Fortran], [KRVZ98, Fortran], [Let96],
[Ném92], [Pie84a], [Pie90, Fortran], [Tem79, Algol], [VRS+95, Fortran]. Libraries:
[Bak92], [ZJ96].

5.1.10. Articles—Functions. [Ach86], [ADW77b], [Amo74], [Bar81a], [BGV93], [BL96],
[Cam80], [CF87], [CMF77], [Cod80, includes survey], [Col87b], [CS89, includes
survey], [Gau91b], [GB87], [GS78], [Hit68], [Jab94], [KS84b], [Luk72b], [Luk77b],
[Mac94b], [Mat93b], [Nes84], [OS72], [Rem73], [SJ96], [TB86], [VGK+91], [Wal84],
[WC90], [WFQ92], [YM97], [YN74], [Yos92], [ZB95], [ZB97], [Zha95], [Zha96a],
[Zha96b].

5.1.11. Articles—Integrals. [Amo83c], [And82b], [BFST86], [BGV93], [BP96], [Cam95],
[Can81], [Chr90], [Cof91], [Cor72], [DK90], [Ehr95], [Gab79], [Gab80], [GM81],
[Gue94], [Han85], [IKJ95], [Joh75], [Lew91], [Lin72], [LK73], [LPM81], [LS95],
[Luc95], [Lun85], [MDS92], [Moo83], [OFM78], [PB82], [PB83], [PB85, includes
survey], [PDL93], [Puo88], [SBK92], [Sec99], [Sid97], [Sie77], [vVNZ94], [ZK95].

5.1.12. Articles—Zeros. [CH70a], [IKF91], [IKF+93], [KS84a], [KS84c], [KS85a],
[KS85b], [KS85c], [KS87], [Let96], [Mac97], [MF86], [Seg98], [Sko85], [VGRZ97],
[VRS+97], [ZGRV96].

5.2. Coulomb Wave Functions.

5.2.1. Real Arguments and Parameters. [Bar76, Fortran], [Bar81b, Fortran], [Bar82b,
Fortran], [BDG+72, Fortran], [BS80, Fortran], [CH70b], [CT94, Fortran], [HN97b,
Fortran], [NT84, Fortran], [Sea82, Fortran], [She74]. Libraries: [Bak92], [Tho97].

5.2.2. Complex Arguments and Parameters. [TB85, Fortran], [TR69, Fortran].

5.2.3. Articles. [AS92], [Bar81a], [Bar82a], [Bar82c], [Gau69b], [HN97a], [Köl72b,
includes survey], [MBF94], [Nes84], [Pex70], [SG72], [TB86].

5.3. Elliptic Integrals and Functions. An important recent change in the old
subject of elliptic integrals is a renormalization of the definitions of the integrals.
This is due to B. C. Carlson: references will be found in §5.3.5.

5.3.1. Complete Elliptic Integrals. [Bel88], [Bul65a, Algol], [Bul65b, Algol], [Bul69b,
Algol], [Cod65a], [Cod65b], [DR94a, Fortran], [Luk69b], [MH73, Algol]. Libraries:
[Bak92], [Mos89], [ULI90], [WNO94], [ZJ96], IMSL, Numerical Recipes. Sys-
tems: Maple, Mathematica.
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5.3.2. Incomplete Elliptic Integrals. [Bul65a, Algol], [Bul69b, Algol], [Car87, For-
tran], [Car88, Fortran], [CN81, Fortran], [Luk69b], [PT90, Fortran]. Libraries:
[Bak92], [Mos89], [Tho97], [ULI90], [ZJ96], IMSL, NAG, Numerical Recipes,
SLATEC. Systems: Maple, Mathematica.

5.3.3. Jacobi’s Elliptic Functions. This subsection includes the theta functions.
[Bul65a, Algol]. Libraries: [Bak92], [Tho97], [Mos89], [ULI90], [ZJ96], IMSL,
NAG, Numerical Recipes. Systems: Maple (includes inverse functions), Math-
ematica (includes inverse functions).

5.3.4. Weierstrass’ Elliptic Functions. This subsection includes modular functions.
[Eck76], [Eck77], [Eck80, Fortran]. Libraries: [Bak92], [ULI90], IMSL. Systems:
Maple, Mathematica.

5.3.5. Articles. [ACJP85, includes survey], [Bul69a], [Car65], [Car77a], [Car77b],
[Car79], [Car87], [Car88], [Car89], [Car91], [Car92], [Car95], [CGL90], [Cri89],
[DR94b], [FGG82], [FI94], [FL67], [Kin88], [Lee90], [Lee92], [Luk68], [Luk69b],
[Luk70b], [LY88], [MH73, Algol], [Mid75], [Mor99], [NC66], [PDK96], [Sal89], [War60].

5.4. Fermi-Dirac, Bose-Einstein, and Debye Integrals. This section includes
the Lerch transcendent.

5.4.1. Real Parameter and Argument. [BDM81, Fortran], [CT67], [FR86, Fortran],
[Goa95, Fortran], [Mac96a, Fortran], [Mac98, Fortran], [NDT69]. Libraries: [Bak92],
[Tho97].

5.4.2. Complex Argument and/or Parameters. Systems: Maple, Mathematica.

5.4.3. Articles. [Bui91], [Gau93a], [Gau93c], [LS91], [MN97], [NM93], [Pas88], [Pas91],
[Pic89], [Sag91a], [Sag91b].

5.5. Hypergeometric and Confluent Hypergeometric Functions.

5.5.1. Hypergeometric Functions. [For97, Fortran], [Hsu93, Fortran]. Libraries:
[Bak92], [Kha97], [Mos89], [Tho97], [ULI90], [ZJ96], Numerical Recipes. Sys-
tems: Mathematica.

5.5.2. Confluent Hypergeometric Functions. [BS80, Fortran], [NPB92a, Fortran],
[NT84, Fortran], [Tem83, Algol], [Yos95]. Libraries: [Bak92], [Mos89], [Tho97],
[ULI90], [ZJ96], SLATEC. Systems: Maple, Mathematica.

5.5.3. Other Hypergeometric Functions. [CM84, Pascal], [Ném92, Fortran], [PBN93],
[RP96, Fortran]. Libraries: [Bak92], [Mos89]. Systems: Maple, Mathematica.

5.5.4. Articles. [AB91], [BMOF92], [CG89], [CLM97], [dIVPM95], [Kal92], [Luk75],
[Luk77a], [MF94], [Mor96], [Ném92], [NPB92b], [Pas95], [Wim74].

5.6. Incomplete Bessel Functions, Incomplete Beta Function. This section
includes F–, t– and von Mises’ distribution functions.

5.6.1. Incomplete Bessel Functions. [Hil77, Fortran].

5.6.2. Incomplete Beta Function. [CS97, Fortran], [DM92, Fortran], [Dor68, Algol],
[Gau64, Algol], [Hil70a, Algol], [Lev69, Fortran], [MB73a, Fortran], [Mor69, Algol],
[Phi90, Basic]. Libraries: [Bak92], [Tho97], [Mos89], [ULI90], [ZJ96], IMSL, NAG,
Numerical Recipes, SLATEC. Systems: Maple, Mathematica.
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5.6.3. Inverse Incomplete Beta Function. [AS93a, Fortran], [Hil70b, Algol], [MB73b].
Libraries: [Mos89], [ULI90], IMSL, NAG. Systems: Maple, Mathematica.

5.6.4. Articles. [AS93b], [DJ67], [OM68], [Tem92b].

5.7. Incomplete Gamma Functions, Generalized Exponential Integrals.
These functions are essentially equivalent; thus Ep(z) = zp−1Γ(1−p, z). This section
includes the chi-square distribution function.

5.7.1. Real z and Integer or Half-Integer p. [Amo80a, Fortran], [FO94], [SP75,
Fortran], [SZ74, Fortran]. Libraries: [Mos89], [Tho97], [ULI90], [ZJ96], IMSL,
SLATEC. Systems: Maple.

5.7.2. Real z and Real p. [CLM90a, Fortran], [CLM90b, Fortran], [DM87, Fortran],
[Ful72, Fortran], [Gau79a, Fortran], [Moo82, Fortran], [She88, Fortran], [Tem94b,
Pascal]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90], [WNO94], [ZJ96], IMSL,
NAG, Numerical Recipes, SLATEC. Systems: Maple.

5.7.3. Complex z and Real or Complex p. Systems: Maple, Mathematica.

5.7.4. Inverse Function. [DM87, Fortran], [Phi88, Fortran]. Libraries: [Mos89],
[ULI90], IMSL, NAG. Systems: Maple, Mathematica.

5.7.5. Articles. [AB87a], [Amo80b], [Bar61], [CLM87], [CLM88], [CLM90c], [ČP98],
[DM86], [Gau79b], [Gau99], [JT85], [LDP93], [Luk75], [Mar82], [Tem85], [Tem87],
[Tem92a], [Tem94a], [Tem95].

5.8. Legendre Functions and Associated Legendre Functions. This section
includes the conical and toroidal functions. See also hypergeometric functions (§5.5)
and orthogonal polynomials (§5.10).

5.8.1. Real Argument and Parameters. [Bra73, Fortran], [Del79, Fortran], [Gau65,
Algol], [GS97, Fortran], [GS98, Fortran], [LS81, Fortran], [OS83, Fortran]. Li-
braries: [Bak92], [Tho97], [ZJ96], Numerical Recipes, SLATEC.

5.8.2. Conical Functions. [Köl81]. Libraries: [Bak92]. [Tho97].

5.8.3. Complex Argument and/or Parameters. [GS98, Fortran]. Libraries: [Bak92].
Systems: Maple, Mathematica.

5.8.4. Articles. [CM78], [CM79], [EWB84], [Fet70], [Hun95], [LW95], [SOL81].

5.9. Mathieu, Lamé, and Spheroidal Wave Functions.

5.9.1. Characteristic Values of Mathieu’s Equation. [Cle69, Fortran], [Del73, Al-
gol], [Lee79, Fortran], [RL80, Fortran], [Shi93a, Fortran]. Libraries: [Bak92], [ZJ96],
IMSL. Systems: Mathematica.

5.9.2. Mathieu Functions. [Cle69, Fortran], [Del73, Algol], [RL80, Fortran], [Shi93a,
Fortran]. Libraries: [Bak92], [ZJ96], IMSL. Systems: Mathematica.

5.9.3. Spheroidal Wave Functions. [BC83a, Fortran], [BC83b, Fortran], [KBH70,
Fortran], [KvB70, Fortran], [vBBH70, Fortran]. Libraries: [Bak92], [Tho97], [ZJ96].

5.9.4. Articles. [ADK+84], [ADKL89], [ADKL91], [Alh96, includes survey], [ATZ83],
[Bla46], [Cal88], [Can71], [DNM96], [DR98], [Egl84], [EP69], [Hod70], [LF94], [Liu96],
[Pal69], [Shi93b], [SM75], [TP83], [vBBHK72], [VGK+92].
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5.10. Orthogonal Polynomials. See also hypergeometric functions (§5.5), Le-
gendre functions (§5.8), and Weber parabolic cylinder functions (§5.13).

5.10.1. Classical Polynomials (Chebyshev, Hermite, Jacobi, Laguerre, Legendre etc.),
Real Arguments. [LPT80, Fortran], [Sim64, Algol], [Wit68, Fortran]. Libraries:
[Bak92], [Tho97], [ULI90], [WNO94], [ZJ96].

5.10.2. Classical Polynomials, Complex Arguments. Systems: Maple,
Mathematica.

5.10.3. Other Orthogonal Polynomials. [Bis91, Maple], [Coo68, Fortran], [EK92],
[Gau94, Fortran], [Öpi87, Fortran].

5.10.4. Articles. [BEGG91], [BR91], [Chi92], [Cra94], [CS93], [FG91], [FG92], [Gau82],
[Gau85], [Gau90], [Gau91a], [Gau93b], [GZ95], [Luk75], [PA92], [Ren96], [Upo92],
[WMC97].

5.11. Polylogarithms (Generalized).

5.11.1. Real Variables. [KMR70, Algol]. Systems: Mathematica.

5.11.2. Articles. [Bar74], [Pas95].

5.12. Struve and Anger-Weber Functions.

5.12.1. Struve Functions or Integrals of Struve Functions. [Luk69b], [Luk75], [Mac93],
[Mac96a, Fortran], [New84]. Libraries: [Bak92], [Mos89], [Tho97], [ULI90], [ZJ96].
Systems: Maple, Mathematica.

5.12.2. Anger-Weber Functions. Libraries: [Tho97]. Systems: Maple.

5.12.3. Integrals of Anger-Weber Functions. Libraries: [Bak92].

5.12.4. Articles. [Zan75].

5.13. Weber Parabolic Cylinder Functions. See also confluent hypergeometric
functions (§5.5).

5.13.1. Real Arguments and Parameters. [SG98, Fortran], [Tau92, Fortran]. Li-
braries: [Bak92], [Tho97], [ZJ96].

5.13.2. Complex Arguments, Real Parameters. [BN89]. Libraries: [ZJ96]. Systems:
Maple.

5.13.3. Articles. [LR74], [MMV81], [RL76], [SGA81].

5.14. Zeta Function (Generalized).

5.14.1. Real arguments. [AB89]. Libraries: [Bak92], [Mos89]. Systems: Maple,
Mathematica.

5.14.2. Articles. [CHT71], [Cra98], [Moi88].

5.15. Additional Functions of Two or More Variables.

5.15.1. 3j, 6j, 9j Symbols (Clebsch-Gordan Coefficients). [Kae95, Pascal]. Libraries:
[Tho97]. Systems: Mathematica.

5.15.2. Articles. [RBMW59].
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6. Testing and Library Construction

In this section we list articles and books that provide general observations on
the testing of software and/or the construction of software libraries for the special
functions. For information on individual libraries see §3.

[Cod74], [Cod76], [Cod82], [Cod84b], [Cod85], [CS91], [Eva74, especially pp.
275–301 and 357–435], [Ful77], [Gaf88], [Kuk71], [LMS73a],
[LMS73b], [Mos89], [PTVF92, example books], [Ric83], [Sch76], [SL73].

7. Future Trends

Great progress has been made in recent years in the construction of software for
generating the special functions, yet enormous gaps remain for functions having
variable parameters in addition to the argument. This is especially true when the
variables are complex. In this concluding section we offer some general suggestions
concerning future work in this area.

First, because of the sheer magnitude of the effort required, there should be a
perceived physical or other applied need before a decision is made to embark on the
construction of extensive new software for functions of two or more variables. At
present there are simply too many gaps to fill to be able to indulge in the luxury of
arbitrary selection. Moreover, great care should be exercised in the choice of actual
functions to be generated. For example, neither the Airy function Bi(z) nor the
Bessel function of the second kind Yν(z) has a useful role when the argument z is
not real; compare [Olv74, Chapters 7 and 11].

Second, coverage of a chosen region should be dictated by uniform accuracy
requirements (in an appropriate measure), not by the limitations of the methods
that happen to be used. At the very least it is frustrating for users to discover that
the precision yielded by a package varies widely, or worse still disappears altogether,
in parts of the claimed regions of coverage.

Third, the potential offered by the ongoing increase in power of computers should
be exploited with a view to reducing the number and complexity of algorithms to be
used. This includes, for example, the use of parallel or vector methods for summing
series [Kar91] or solving differential or difference equations [LO93].

Fourth—and here we are looking further into the future—the use of systems of
computer arithmetic other than floating-point should be considered. The floating-
point system has two disadvantages which become especially annoying and time-
consuming in the construction of special-function software. One is that the associ-
ated error measure, relative precision, is quite inappropriate in the neighborhoods
of zeros. The other stems from failure due to overflow or underflow: here the usual
remedy of rescaling can be difficult to apply, owing to the extremely varied asymp-
totic behavior of functions of several variables. A system of computer arithmetic
that is capable of overcoming both problems in an elegant manner is the so-called
level-index system [COT89].

Lastly, any new algorithm or package should be documented fully. It should also
be subjected to exhaustive testing procedures, and these, too, need to be docu-
mented. Indeed, the proposed testing procedures should be considered at an early
stage in the planning of the main algorithms10. There are so many pitfalls in the

10For example, it is better to avoid the use of Wronskian and Casoratian relations in the main

computing package, if possible, in order to reserve these identities for consistency checks.
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construction of algorithms for the special functions that the use of undocumented
or insufficiently tested packages is a risky proposition11.
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[ČP98] P. Čársky and M. Polášek, Incomplete gamma Fm(x) functions for real negative and

complex arguments, J. Computational Phys. 143 (1998), 259–265.
[CPC84] Master index volumes 1–30, July 1969—December 1983, Comput. Phys. Comm. 35

(1984), B1–B75, C1–C928.
[CPC87] Program master index volumes 1–40, July 1969—June 1986, Comput. Phys. Comm.

(1987), 1–75.

[CPC90] Master index volumes 41–50, July 1986—July 1988, Comput. Phys. Comm. (1990),
17–30.

[CPT70] W. J. Cody, K. A. Paciorek, and H. C. Thacher, Jr., Chebyshev approximations for
Dawson’s integral, Math. Comp. 24 (1970), 171–178.

[Cra94] Isabella Cravero, The computation of the zeros of Laguerre polynomials, Atti Accad.

Sci. Torino Cl. Sci. Fis. Mat. Natur. 128 (1994), no. 3-4, 105–115 (1995).
[Cra98] R. E. Crandall, Fast evaluation of multiple zeta sums, Math. Comp. 67 (1998),

1163–1172.
[Cri89] C. L. Critchfield, Computation of elliptic functions, J. Math. Phys. 30 (1989), 295–

297.

[CS89] W. J. Cody and L. Stoltz, Performance evaluation of programs for certain Bessel
functions, ACM Trans. Math. Software 15 (1989), 41–48.

[CS91] W. J. Cody and L. Stoltz, The use of Taylor series to test accuracy of function
programs, ACM Trans. Math. Software 17 (1991), 55–63.

[CS93] A. S. Clarke and B. Shizgal, On the generation of orthogonal polynomials using

asymptotic methods for recurrence coefficients, J. Computational Phys. 104 (1993),
140–149.

[CS97] R. Chattamvelli and R. Shanmugam, Algorithm AS 310. Computing the non-central
beta distribution function, Appl. Statist. 46 (1997), 146–156.

[CST73] W. J. Cody, A. J. Strecok, and H. C. Thacher, Jr., Chebyshev approximations for

the psi function, Math. Comp. 27 (1973), 123–127.
[CT67] W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for Fermi-

Dirac integrals of orders −1/2, 1/2 and 3/2, Math. Comp. 21 (1967), 30–40.
[CT68] W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for the

exponential integral E1(x), Math. Comp. 22 (1968), 641–649.

[CT69] W. J. Cody and H. C. Thacher, Jr., Chebyshev approximations for the exponential
integral Ei(x), Math. Comp. 23 (1969), 289–303.

[CT85] M. Carmignani and A. Tortorici Macaluso, Calcolo delle funzioni speciali Γ(x),
log Γ(x), β(x, y), erf(x), erfc(x) alle alte precisioni, Atti Accad. Sci. Lett. Arti

Palermo Ser. (5) 2 (1981–82) (1985), no. 1, 7–25.



NUMERICAL EVALUATION OF SPECIAL FUNCTIONS 29

[CT94] J. A. Christley and I. J. Thompson, CRCWFN: coupled real Coulomb wavefunctions,

Comput. Phys. Comm. 79 (1994), 143–155.

[Cun69] S. W. Cunningham, Algorithm AS 24. From normal integral to deviate, Appl. Statist.
18 (1969), 290–293.

[CW80] W. J. Cody and W. Waite, Software manual for the elementary functions, Prentice
Hall, Englewood Cliffs, New Jersey, 1980.

[Del73] Delft Numerical Analysis Group, On the computation of Mathieu functions, J. Engrg.

Math. 7 (1973), 39–61.
[Del79] G. Delic, Chebyshev expansion of the associated Legendre polynomial PML (x), Com-

put. Phys. Comm. 18 (1979), 63–71.
[dIVPM95] C. de Izarra, O. Vallée, J. Picart, and N. T. Minh, Computation of the Whittaker

functions Wκ,µ(z) with series expansions and Padé approximants, Comput. in Phys.
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Birkhäuser Boston, Boston, MA, 1994, pp. 551–562.
[Tem94b] N. M. Temme, A set of algorithms for the incomplete gamma functions, Probab.

Engrg. Inform. Sci. 8 (1994), 291–307.
[Tem95] N. M. Temme, Asymptotics of zeros of incomplete gamma functions, Ann. Numer.

Math. 2 (1995), 415–423.

[Tho97] W. J. Thompson, Atlas for computing mathematical functions: an illustrated guide
for practitioners, with programs in C and Mathematica, John Wiley & Sons Inc.,

New York, 1997, Includes CD-ROM. Fortran 90 edition exists also.
[TM68] R. F. Tooper and J. Mark, Simplified calculation of Ei(x) for positive arguments,

and a short table of Shi(x), Math. Comp. 22 (1968), 448–449.



44 D. W. LOZIER AND F. W. J. OLVER
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