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Around 1964, | was a graduate student struggling with a major
part of my dissertation involving an approximation in a turning
point problem. Since | had to integrate the approximation, | had to
be particularly careful about the error. There was no shortage of
discussion of this problem in the literature. But | was not
completely comfortable with the O-symbols and uniformity

statements in these articles. | was very fortunate to find Olver’s
[12]:
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Frank Olver 1963 [12]

J. Soc. INpUsT. APPL. MATH.
Vol. 11, No. 3, September, 1963
Printed in U.S.A.

ERROR BOUNDS FOR FIRST APPROXIMATIONS IN
TURNING-POINT PROBLEMS*

F. W. J. OLVER}

1. Introduction and summary. In this paper we consider approximate

solutions of the differential equation
2

(1.01) iilx_? = {uzp(u,x) + q(u, z) }w,
in which u is a large parameter, We suppose that p(w, ) and q(u, z) are
free from singularities in the z-region considered, and that p(w, x) has
there a simple zero, a so-called turning-point or transition-point of the
differential equation. It is well known that in these circumstances approxi-
mate solutions can be expressed in terms of Airy functions. The asymptotic
nature of these approximations as |u| — « has been investigated by many
writers, particularly Langer [1, 2], Cherry [3], Jeffreys [4], Erdélyi [5, 6] and
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differential equation
d’w )
(3.01) 7z = @+ f(@)jw
has solutions wy(x), we(x), such that
(3.02) wi(z) = Ai(z) + (x), w'(z) = Ai'(z) + m(x),

(3.03) wy(z) = Bi(z) + e(z), w'(z) = Bi'(z) + m(z),

where

(3.04) la(z) | < x:{ei‘(’) - I}E'll(x)M(x),
m() | = M{e" ™™ — BE (2)N(x),
& o/ Ay M Fy(z) E M 7

(3.05) le(z) | = (M/NM)fe VE(z)M ()

| m(2) | £ /M) — 1E(2)N(2);
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What was remarkable about Olver’s article was the clarity of the
statements about error bounds [12, (3.04), (3.05)]. The properties
of functions Fi, F, M and E were treated in detail. They could be
thought of as “special functions” in their own right. This was
exactly what | needed and | was able to complete the related parts
of my dissertation.

Slnce then, | have had many opportunities to enjoy and benefit
from Frank's written work. | have also benefitted from his
tremendous support for some of my own work. Thanks, Frank!
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Bessel function J,(x)

In case v > —1,

oo X/2)V+2k
klr (v+k+1)

=0

has an infinite set of positive zeros. j,x, k=1,2,....

x~"J,(x) is even. For individual values of v, the form of the graph
of J,(x) is well-known [14, Fig. 10.3.1].

There is a diagram in [18, p. 510] that gives a good idea of the
behaviour of the zeros as functions of v note that j,, — 0 as

v— —k:
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Cylinder functions

We also consider the Bessel function Y, (x) with positive zeros

Yuk, k=1,2,.... Cylinder functions are linear combinations of
Ju(x) and Y, (x):

G (x,a) = cosad,(x) —sinaY,(x)

We use the notation c(v, a, k) for a zero of C,(x, @),
k representing the rank (first, second, etc.)
How does c(v, a, k) vary with v, k, a?

» dc/dv — Watson 1922 [18, p. 508]
» dc/da — Olver 1950 [10, (2.12)]
> dc/dk — Elbert 2001 [2, (1.4)]
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Variation of c(v, a, k) with v

G. N. Watson (1922)

d o0
d—i = 2c/0 Ko(2csinht)e™t dt

where -
Ko(X) — / e—xcosht dt.
0

A. Elbert (1977) used this formula to show that j, is a concave
increasing function of v on —k < v < 0.

A. Elbert and A. Laforgia use this formula very effectively during
the 1980s and 1990s to get inequalities and other properties for the
zeros of Bessel functions. See [2] for references.
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Olver [10], variation with a:

A NEW METHOD FOR THE EVALUATION OF ZEROS OF
BESSEL FUNCTIONS AND OF OTHER SOLUTIONS
OF SECOND-ORDER DIFFERENTIAL EQUATIONS

By F. W. J. OLVER
Communicated by E. T. Goopwin
Received 10 March 1950

1. Introduction. Methods for the evaluation of zeros of the Bessel functions J, ¥
wve been described in detail in a series of Notes by Bickley, Miller and Jones(1). In
e course of work for the British Association Mathematical Tables Committee, they
wcounted difficulties in computing these zeros for functions of orders other than zero
d unity. The two simplest methods of computation are inverse interpolation where
€ functions are tabulated at a small interval, and the McMahon expansion for the
rger zeros. To the accuracy required, the ranges of applicability of these methods
-erlap for the functions of zero and unit order, but after these a gap appears and
idens steadily with increasing order.

Attempts to close this gap were made in the series of Notes referred to above, in
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Variation of c(v, a, k) with a

F. W. J. Olver (1950): linearly independent solutions wy, wo of
Pw
dz?

with g(z) analytic.

C(z,a) = cosax wy(z) — sina wy(z2)
with a zero p(a). Then with ' = d/da, p(«) satisfies
20/ p" = 3p"% + 4q(p)p™* — 4p”* =0.

Can be approximated by g(p)p™ — p”> = 0, when p(a) varies slowly
with a.

This observation was the basis for a successful method of finding
the zeros of Bessel functions in the “gap region” where neither
methods based on series nor those based on asymptotic expansions
were effective.
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Olver 1951

Reprinted from the Proceedings of the Cambridge Philosophical Society,
Volume 47, Part 4, pp. 699-712, 1951.

A FURTHER METHOD FOR THE EVALUATION OF ZEROS
OF BESSEL FUNCTIONS AND SOME NEW ASYMPTOTIC
EXPANSIONS FOR ZEROS OF FUNCTIONS OF LARGE ORDER
By F. W. J. OLVER
Communicated by E. T. GoopwiN
Received 4 December 1950
1. Introduction. In a recent paper (1) I described a method for the numerical evalua-

tion of zeros of the Bessel functions J,(z) and ¥, (z), which was independent of computed
values of these functions. The essence of the method was to regard the zeros p of the

cylinder function € ,.(2)=J,(2) cosmt —Y,(2) sin ¢, (1-1)

as a function of ¢ and to solve numerically the third-order non-linear differential
equation satisfied by p(f). It has since been successfully used to compute ten-decimal
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Olver 1951 (co

values of j, ., ¥y, the sth positive zeros* of J,(z), ¥,(z) respectively, in the ranges
n = 10(1) 20, s = 1(1) 20. During the course of this work it was realized that the least
satisfactory feature of the new method was the time taken for the evaluation of the
first three or four zeros in comparison with that required for the higher zeros; the direct
numerical technique for integrating the differential equation satisfied by p(z) becomes
unwieldy for the small zeros and a different technique (described in the same Ppaper)
must be employed. It was also apparent that no mere refinement of the existing methods
would remove this defect and that a new approach was required if it was to be eliminated.
The outcome has been the development of the method to which the first part (§§2-6) of
this paper is devoted.

The basis of the new method is the integration of an integro-differential equation.
Previously p was regarded as a function of ¢ for fixed . This situation is now reversed;
keeping ¢ fixed, we consider the integration of the equation satisfied by p as a function
of n, taken as a continuous positive variable. This equation is given by Watson (2) in
another context but not in a form suitable for immediate numerical application. In
order to use his result it is necessary to derive an asymptotic expansion of the equation.

The method has been extended to include the determination of the values of the
derivative %,(z) at the zeros of %,(z), and also to the determination of the zeros of
%, (z) and the corresponding stationary values of €, (z). One advantage of these methods

is their production of zeros for half-odd-integer orders at the same time as for integer
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Variation of c(v, «, k) with a: continuous rank
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Continuous rank (cont.)

y(x, @) = cosa yi(x) — sin a ya(x)

The change of variables y(x) = [p(x)]"/2u(t), x'(t) = p(x)
transforms (1) into the trigonometric equation v”(t) 4+ u(t) =0
(see, e.g., [8, Lemma 2.3]) with general solution

u(t) = Asin(t + B). Hence the general solution of (1) is given by

) = Alp(a 2sin ([958,

We may redefine

-l )
([ 25)

p(u)
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Continuous rank (cont.)

The zeros of y1(x) on (a, b) are the (finitely or infinitely many)
numbers xi for which

Xk
/ A k=12,
2 p(t)

We define a function x(k) of the continuous variable x by

x(k) dt
/ —— =km, 0 < K < o0.
2 p(t)

This idea is due to J. Vosmansky [17].
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Continuous rank (cont.)

For positive integer values of , x(k) is a zero of y;. For each
nonintegral value of x, x(k) is a zero of some solution of (1) other
than yy. In fact, for 0 < a < 7, the solution

y(x, @) = cosay(x) — sinays(x) = [p(x)]1/2 sin </ pc(/; n 04)
has its zeros where

X dt
| =5 = koo

i.e., at the points x(k — a/7), k=0,1,2,....
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Continuous rank (cont.)

a and k are not really independent; they may be subsumed in a
single variable K = k — a/m. Elbert and Laforgia [3] explained this
idea in the case of Bessel functions. Thus each zero of y(x, a)
increases from one zero xi of yj(x) to the next larger one xx41. At
the same time a new smallest zero appears and increases from a to
x1. Thus it makes sense to define x(k) for any real x > 0, by

x(0) = a and x(k) = xx(«) where k = [k] is the largest integer
less than k + 1 and o = w(k — k). Thus x(k) is a continuous
increasing function of x on [0,00). The positive zeros of yi(x)
correspond to x(k), k =1,2,... and those of y»(x) correspond to
x(k—1/2), k=1,2,....

The graphs of the zeros of cylinder functions thus fill in the gaps in
the diagram:
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Zeros of cylinder functions
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Variation of c(v, o, k) with &

A. Elbert [2]

d . - w2 2. 2.
EJVH - 7 [JV(JVH) + Yz/ (JVH)]

d o0
le//i = 4j1/,{/. Ko(2juksinht)cosh2ut dt
k 0

Compare (Watson)

o0
ijun = 2J'un/ Ko(2jyksinht) exp(—2vt) dt
dv 0

The followings graphs are from [9].

Martin E. Muldoon Zeros of Special Functions



Variation of c(v, o, k) with &
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Variation

FIGURE 2. Approximate graph of the curve
T =COSK, Yy=sSInk, 2= J5, 0.2 <k <4.

Martin E. Muldoon Zeros of Special Functions



Variation

FIGURE 2. Approximate graph of the curve
T =COSK, Yy=sSInk, 2= J5, 0.2 <k <4.
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Variation of c(v, o, k) with &

Introduction Bessel functions

i, as a function of k
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Convexity, concavity

j1/2,n = KT, j—1/2,li = (H‘ - 1/2)7T
Jur is convex for |v| < 1/2, concave for |v| >1/2

3]
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Higher monotonicity

We have

dn
_1 n+1
=)™~

ok >0, |v|>1/2, n=1,2,...

This generalizes the result of L. Lorch and P. Szego [8]

(-1)" A%, >0, |v|>1/2, n=1,2,...
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Hermite functions

The differential equation
" ! o
y' =2ty +2\y =0.

has a solution

sinTA T(1+A) o= T ((n—)\)/2)
Hy(t) = — —2t)"

(1) o z_;) M(n+1) (=2t)
which reduces to the Hermite polynomials for A =10,1,2,.... In
terms of confluent hypergeometric functions,

22 AT Al
Hy(t) = —= |cos T F t?
M6 = 22 |eos TG + iG55 7)

AT A A13,
+2ts|n7r( +].)1F]_( E §7§,t) .
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Hermite functions (cont.)

We can define a solution Gy(t), so that e~*'/2H,(t) and
e~t"/2G,(t) are linearly independent solutions of the modified
Hermite equation

Y+ (@A +1-t)y =0.
The Wronskian of e"*/2H,(t) and e t/2Gy(t) is given by
W = 7= 12M1r (A 4 1).

The zeros of H)(t) as functions of A were considered in [4].
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Zeros of H,(t) as functions of A, A > —1

ZEROS OF HERMITE FUNCTIONS

ot

2F h,(\)

- h,(A)
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Hermite functions (cont.)

A. Elbert and MEM [4] proved a formula for the derivative with

respect to A of a zero h(\) of a solution of a linear combination of
H)\ and G)\.

@

Y vr / e (M7 4 hv/tanh 1) (2)

V/sinh T cosh 7’

for A > —1, where

o(x) = e’ erfc(x),
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Hermite functions (cont.)

This formula (2) for dh/dX was useful [5] in finding an asymptotic
expansion for the zeros (as A — +00)
The function

y(t) = e t/[cos a Hy(t) — sina Gy(t)]
satisfies the differential equation
Y+ @A+ 1)y =0,
and hence, if we write

p= (N3, A= VENT T, Gy = Y3 N21/4y12,

we find, after some simplification, that

1
Y(A t)= — — ut
( ) ) C)\y <2M3 :U’>
satisfies the differential equation

d’y
—— +(t— ')y =0. (3)

g
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Hermite functions (cont.)

Asymptotic information shows that Y'(\, t) satisfies the initial
conditions

Y (0) = cosa Ai(0)—sina Bi(0), Y’'(0) = cosa Ai’(0)—sin « Bi’(0).
(4)
The initial conditions (4) are independent of x and the coefficient
term t — p*t2 in (3) is an entire function of y for each fixed t.
Hence, for fixed t, the solutions of (3), (4) are entire functions of

.
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Hermite functions (cont.)

Thus a zero z(u) of a solution of a nontrivial solution of (3, 4) is
analytic in p in a neighbourhood of y = 0:

o0
2(p) = kTl Jul <R,
k=1

for some R > 0, where c; is the corresponding zero of
cos a Ai(—x) — sina Bi(—x). In other words, if h(\) is a zero of a
solution of (28), then

oo
h(A) = A+ A3 " g A4k,
k=1
where the series converges for A > M, for some M > 0.
This is also an asymptotic series

h(A) ~ A+ A3 g A DB A o,
k=1
in the usual sense.
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Hermite functions (cont.)

For h(k, ), the kth zero, in decreasing order, of a Hermite
function
cos aH)(x) — sin aGy(x),

the expansion will involve a — a(k, a) where 271/3a is the kth
positive zero of

cos aAi(—x) — sin aBi(—x).

Using (2), the first five terms are given by [5]

1 9 11
h(k —A— /\71/3_7 2/\75/3 7 =+ 3 /\73
(ko) ? 10° * 1280 ~ 350°

[ 277 823 34] AT

12600° ~ 63000
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Tricomi's asymptotic formula

G. N. Watson [18] provides some large v asymptotic
approximations for zeros of the Bessel functions J,(x) and Y, (x)
and the first of these was generalized by F. G. Tricomi [16]. This is
expansion is also convergent.
As pointed out by L. Gatteschi (1974), if u = 2%/3,2/3 3
constant multiple of the function J,[v exp(—ux)] satisfies
2
% — Xy = C(,Uﬁ X)yv (5)

y(0) = Ai(0), y'(0) = Ai'(0),

where )
UL - pux— e ], p#0,
cur)={ B ©)
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Tricomi's asymptotic formula (cont.)

For each fixed x, c(u, x) is analytic at u = 0. Thus the zeros of
solutions of (5) are analytic functions of 1 and may be expressed in
the form

oo
> an”, |ul <R,
k=0

for some R > 0.
Now J, [V exp(—pux)] has its zeros x where j = v exp(—ux). Hence

J=vexp [—Zanu"] = (1 —aop+ b +...), p=(2/v)*3
k=0
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Analyticity of j2 /(4(v + 1))

R. Piessens (1984) showed that

v+1 7(w+1)2 49w +1)3
4

jii=2w+1)Y? |1+ TR

for —1 < v < 0. As v decreases through —1, the zeros +j,1
become purely imaginary and move away from the origin returning
there as v approaches —2. This suggests considering j2;, v > —2:
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Graph of j2,, v > =2 [7]

| | | | |
-2 -18 -16 -14 -1.2 -1 -08 -06 -04 -02 0

Figure 1: j2, vs. v
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Analyticity of j2,/(4(v + 1)) (cont.)

It is an easy step from this to

1 12 7 12 2 1)*
2= a(+1) |:1+I/+ _(v+1) N (v+1)° 293(v +1)

2 12 144 8640

which is valid for —2 < v < 0 once we note that j2 /(4(v + 1)) is
analytic at —1.

This follows since z/2J,(2+/(v + 1)z) satisfies

d’y [1—-12 v+1
AP AT T P
dz2+[ 2 T2 ]y ’

the coefficient function being analytic in v at v = —1.
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