Olver's asymptotic theory, Green's functions and fixed point theorems

J. L. López

Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra.

- 1 Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

- 1 Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- The nonlinear case
- Cases II and III

2 / 40

- 1 Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

2 / 40

- Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- The nonlinear case
- Cases II and III

- 1 Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- The nonlinear case
- Cases II and III

- Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

Second order linear differential equation:

$$\ddot{w} - [\Lambda^2 f(t) + h(t)]w = 0,$$
 Λ large.

Double change of variable:

$$\begin{cases} t \to x \\ w \to y = \dot{x}^{1/2}w \end{cases} \Longrightarrow y'' = \left[\Lambda^2 \left(\frac{dt}{dx}\right)^2 f(x) + g(x)\right] y.$$

t(x) fixed by the conditions:

- t and x are analytic functions of each other at the transition point (if any),
- For g(x) = 0, solutions which are functions of a single variable.

Case I.
$$\left(\frac{dt}{dx}\right)^2 f(x) = 1$$
, which means $x = \int_0^t f^{1/2}(s) ds$.

In case I the DE reduces to

$$y'' = [\Lambda^2 + g(x)]y.$$

When $\Lambda \to \infty$ we seek for a formal solution of the form

$$y_1(x) \sim e^{\Lambda x} \sum_{n=0}^{\infty} \frac{A_n(x)}{\Lambda^n}.$$

• $A_0(x) = \text{constant}$ (we may take $A_0(x) = 1$ without loss of generality).

 $A_{n+1}(x) = -\frac{1}{2}A'_n(x) + \frac{1}{2}\int_0^x g(t)A_n(t)dt, \qquad n = 0, 1, 2, ...,$

A second formal solution:

•

$$y_2(x) \sim e^{-\Lambda x} \sum_{n=0}^{\infty} (-1)^n \frac{A_n(x)}{\Lambda^n}.$$

In general, these expansions are divergent. Olver's theory:

- Proof of the asymptotic character of these expansions.
- Error bounds for the remainders of the expansions:

$$R_{n,1}(x) := y_1(x) - e^{\Lambda x} \sum_{k=0}^{n-1} \frac{A_k(x)}{\Lambda^k}; \quad R_{n,2}(x) := y_2(x) - e^{-\Lambda x} \sum_{k=0}^{n-1} (-1)^k \frac{A_k(x)}{\Lambda^k}.$$

- Behavior of the coefficients $A_k(x)$ at the singularities of the DE (if any),
- Uniformity properties.
- Discussions about the regions of validity of the expansions.

- Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

Consider the following initial value problem:

$$\begin{cases} y'' - \Lambda^2 y - g(x)y = 0 & \text{in } [0, X], \\ y(0) = y^0, & y'(0) = y'^0, \end{cases}$$

$$X>0, \quad y^0,y'^0, \Lambda\in\mathbb{C}, \quad \Re\Lambda\geq 0, \quad g:[0,X]\to\mathbb{C} \text{ continuous.}$$

Consider the auxiliary initial value problem

$$\begin{cases} \phi'' - \Lambda^2 \phi = 0 & \text{in } [0, X], \\ y(0) = y^0, & y'(0) = y'^0, \end{cases}$$

Unique solution:

$$\phi(x) := y^0 \cosh(\Lambda x) + \frac{y'^0}{\Lambda} \sinh(\Lambda x).$$

Change of unknown $y(x) \rightarrow u(x) = y(x) - \phi(x) \Rightarrow$ homogeneous IC:

$$\left\{ \begin{array}{ll} &u^{\prime\prime}-\Lambda^2 u=(u+\phi)g & \text{ in } [0,X],\\ \\ &u(0)=0, \quad u^\prime(0)=0, \end{array} \right.$$

We seek for solutions of $\mathbf{L}[u] := u'' - \Lambda^2 u - (u + \phi)g = 0$ in

$$\mathcal{B}_0 = \{u: [0,X] \to \mathbb{C}, u'' \in \mathcal{C}[0,X]; u(0) = u'(0) = 0\}$$

equipped with the norm

$$||u||_{\infty} = \operatorname{Sup}_{x \in [0,X]} |u(x)|.$$

Key point, write:

$$\mathbf{L}[u] = \underbrace{u'' - \Lambda^2 u}_{\mathbf{M}[u]} - (u + \phi)g$$

For large Λ :

$$(u + \phi)g$$
 is negligible $\Longrightarrow \mathbf{L}[u] \sim \mathbf{M}[u]$.

Then solve the equation L[u] = 0 in the form

$$u = \mathbf{M}^{-1}[(u + \phi)g],$$

where

$$\mathbf{M}^{-1}(v) = \int_0^X G(x,t)v(t)dt,$$

G(x, t) is the Green function of the problem $\mathbf{M}[u] = 0$:

$$\begin{cases} G_{xx}(x,t) - \Lambda^2 G(x,t) = \delta(x-t) & \text{in } [0,X], \\ G(0,t) = G_x(0,t) = 0, & t \in [0,X], \end{cases}$$
$$G(x,t) = \frac{1}{\Lambda} \sinh[\Lambda(x-t)] \chi_{[0,x]}(t).$$

Then, any solution u(x) of the IVP is a solution of the integral equation

$$u(x) = \mathbf{M}^{-1}[(u+\phi)g] = \frac{1}{\Lambda} \int_0^x \sinh[\Lambda(x-t)]g(t)[u(t)+\phi(t)]dt.$$

Equivalently, defining

$$\tilde{u}(x) := e^{-\Lambda x} u(x)$$
 and $\tilde{\phi}(x) := e^{-\Lambda x} \phi(x),$

any solution $u(x) = e^{\Lambda x} \tilde{u}(x)$ of the IVP is a solution of

$$\tilde{u}(x) = [\mathbf{T}\tilde{u}](x),$$

$$[\mathbf{T}\tilde{u}](x) := \frac{1}{2\Lambda} \int_0^x \left[1 - e^{2\Lambda(t-x)} \right] g(t) [\tilde{u}(t) + \tilde{\phi}(t)] dt.$$

From the fixed point theorem, if \mathbf{T}^n is contractive in $\mathcal{B}_0 \Rightarrow$

- $\tilde{u}(x) = [\mathbf{T}\tilde{u}](x)$ has a unique solution $\tilde{u}(x)$ and
- $\tilde{u}_{n+1} = \mathbf{T}(\tilde{u}_n), \, \tilde{u}_0 = 0, \, \text{converges to } \tilde{u}(x).$

We show this by using the bound

$$\left| \frac{1 - e^{2\Lambda(t-x)}}{2\Lambda} \right| \le x - t, \quad \text{for } t \le x.$$

in

$$[\mathbf{T}\tilde{u}](x) := \frac{1}{2\Lambda} \int_0^x \left[1 - e^{2\Lambda(t-x)} \right] g(t) [\tilde{u}(t) + \tilde{\phi}(t)] dt.$$

By means of induction over n, for n = 1, 2, 3, ...,

$$||\mathbf{T}^n z - \mathbf{T}^n w||_{\infty} \le \frac{||g||_{\infty}^n X^{2n}}{(2n)!} ||z - w||_{\infty}.$$

Therefore \mathbf{T}^n is contractive for large enough $n \Rightarrow$ the sequence

$$y_n(x) = e^{\Lambda x} [\tilde{u}_n(x) + \tilde{\phi}(x)]$$

converges uniformly in $x \in [0, X]$ to the unique solution of the IVP.

Moreover:

$$|\tilde{u}(x) - \tilde{u}_n(x)| \le \frac{||g||_{\infty}^n x^{2n}}{(2n)!} ||\tilde{u}||_{\infty}.$$

$$y(x) = e^{\Lambda x} \tilde{u}(x) + \phi(x)$$

and

$$y_n(x) = e^{\Lambda x} \tilde{u}_n(x) + \phi(x)$$

we find

$$|R_n(x)| \le \frac{||g||_{\infty}^n x^{2n}}{(2n)!} ||e^{-\Lambda x}(y-\phi)||_{\infty}.$$

Theorem 1. Let $g:[0,X]\to\mathbb{C}$ be continuous. Then,

$$\begin{cases} y'' - \Lambda^2 y - g(x)y = 0 & \text{in } [0, X], \\ y(0) = y^0, & y'(0) = y'^0, \end{cases}$$

has a unique solution y(x). Moreover, for n = 0, 1, 2, ...,

$$y_{n+1}(x) = \phi(x) + \frac{1}{\Lambda} \int_0^x \sinh[\Lambda(x-t)]g(t)y_n(t)dt,$$

$$y_0(x) = \phi(x) := y^0 \cosh(\Lambda x) + \frac{y'^0}{\Lambda} \sinh(\Lambda x)$$

converges to y(x) uniformly in $x \in [0, X]$.

The remainder $R_n(x) := e^{-\Lambda x}[y(x) - y_n(x)]$ is bounded by

$$|R_n(x)| \le \frac{||g||_{\infty}^n x^{2n}}{(2n)!} ||e^{-\Lambda x}(y-\phi)||_{\infty}.$$

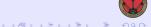
Observations:

- ullet and uniqueness \to direct consequence of the Picard-Lindelöf's Th.
- Different election of the "main operator" $\mathbf{M}[u]$: $\mathbf{M}[u] = u''$ in the standard Picard-Lindelöf's theorem. Here $\mathbf{M}[u] = u'' + \Lambda^2 u$.
- For large Λ , $\mathbf{M}[u] = u'' + \Lambda^2 u$ "closer" to $\mathbf{L}[u]$ than $\mathbf{M}[u] = u''$: Similar error bound in the Picard-Lindelöf's iteration, but replacing

$$||g||_{\infty} \rightarrow ||g||_{\infty} + \Lambda^2.$$

When $\Lambda >> ||g||_{\infty}$, we have a faster convergence.

• Moreover, the recurrence $y_n(x)$ is an asymptotic expansion of y(x) for large Λ .



- Introduction (Olver's method, Case I)
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

We have

$$y(x) = \lim_{n \to \infty} y_n(x)$$
 uniformly in $[0, X]$.

In other words, y(x) admits the series expansion

$$y(x) = \phi(x) + \sum_{k=0}^{\infty} [y_{k+1}(x) - y_k(x)] = \phi(x) + e^{\Lambda x} \sum_{k=0}^{\infty} [\tilde{u}_{k+1}(x) - \tilde{u}_k(x)],$$

with

$$\tilde{u}_n(x) := e^{-\Lambda x} [y_n(x) - \phi(x)], \qquad n = 0, 1, 2, ...$$

We define the remainder of this expansion in the form

$$R_n(x) := e^{-\Lambda x} [y(x) - y_n(x)],$$
 $n = 0, 1, 2, ...$

Then we may write the series expansion in the form

$$y(x) = \phi(x) + \sum_{k=0}^{n-1} [y_{k+1}(x) - y_k(x)] + e^{\Lambda x} R_n(x) =$$

$$\phi(x) + e^{\Lambda x} \left[\sum_{k=0}^{n-1} [\tilde{u}_{k+1}(x) - \tilde{u}_k(x)] + R_n(x) \right].$$

To show the convergence of the recurrence $y_n(x)$ we used the bound

$$\left| \frac{1 - e^{2\Lambda(t-x)}}{2\Lambda} \right| \le x - t, \quad \text{for } t \le x.$$

Bad bound for large Λ .

To show the asymptotic character we need:

$$\left| \frac{1 - e^{2\Lambda(t - x)}}{2\Lambda} \right| \le \frac{1}{|\Lambda|}, \qquad \Re \Lambda \ge 0, \qquad x \ge t.$$

in

$$[\mathbf{T}\tilde{u}](x) := \frac{1}{2\Lambda} \int_0^x \left[1 - e^{2\Lambda(t-x)} \right] g(t) [\tilde{u}(t) + \tilde{\phi}(t)] dt.$$

We obtain:

$$||u_{n+1}-u_n||_{\infty} \leq \frac{X}{|\Lambda|}||g||_{\infty}||u_n-u_{n-1}||_{\infty}.$$

We also have:

$$||\tilde{u} - \tilde{u}_n||_{\infty} \le \frac{||g||_{\infty}^n X^n}{|\Lambda|^n} ||\tilde{u}||_{\infty}$$

and
$$\tilde{u} = \lim_{n \to \infty} \tilde{u}_n = \sum_{k=0}^{\infty} [\tilde{u}_{k+1} - \tilde{u}_k] = \sum_{k=0}^{\infty} \mathcal{O}(\Lambda^{-k-1}) = \mathcal{O}(\Lambda^{-1}).$$

Theorem 2. Let $g:[0,X]\to\mathbb{C}$ be continuous in [0,X]. Then,

$$y(x) = \phi(x) + e^{\Lambda x} \left[\sum_{k=0}^{n-1} [\tilde{u}_{k+1}(x) - \tilde{u}_k(x)] + R_n(x) \right].$$

is an asymptotic expansion for large Λ of the unique solution of

$$\begin{cases} y'' - \Lambda^2 y - g(x)y = 0 & \text{in } [0, X], \\ y(0) = y^0, & y'(0) = y'^0, \end{cases}$$

uniformly in $x \in [0, X]$. More precisely, for n = 1, 2, 3, ...,

$$\tilde{u}_n(x) - \tilde{u}_{n-1}(x) = \mathcal{O}(\Lambda^{-n})$$
 and $R_n(x) = \mathcal{O}(\Lambda^{-n-1})$

uniformly for $x \in [0, X]$.

21 / 40

Observations:

- This expansion is not of Poincaré type.
- Compare the construction of Olver's and this expansion:

$$y_1(x) \sim e^{\Lambda x} \sum_{n=0}^{\infty} \frac{A_n(x)}{\Lambda^n}, \qquad A_{n+1}(x) = -\frac{1}{2} A'_n(x) + \frac{1}{2} \int_{-\infty}^{x} g(t) A_n(t) dt,$$

and

$$\tilde{u}_{n+1}(x) = \frac{1}{2\Lambda} \int_0^x \left[1 - e^{2\Lambda(t-x)} \right] g(t) \left[\tilde{u}_n(t) + \tilde{\phi}(t) \right] dt,$$

The integrand in the RHS of Olver's recursion is independent of Λ The integrand in the RHS of the recurrence $\tilde{u}_n(x)$:

$$\mathcal{O}(1)$$
 as $\Lambda \to \infty$, contains an exponentially small dependence on Λ .

Example. For any $\Lambda \in \mathbb{C}$ and X > 0, the unique solution of the IVP

$$\begin{cases} y'' - \left(\Lambda^2 + \frac{x^2}{4}\right)y = 0 & \text{in } [0, X], \\ y(0) = U_{\Lambda^2}(0), & y'(0) = U'_{\Lambda^2}(0), \end{cases}$$

is the Parabolic Cylinder function $U_{\Lambda^2}(x)$. For this problem

$$\phi(x) = \frac{\sqrt{\pi}}{2^{\Lambda^2/2+1/4}} \left[\frac{\cosh[\Lambda x]}{\Gamma(\Lambda^2/2+3/4)} - \frac{\sqrt{2} \sinh[\Lambda x]}{\Lambda \Gamma(\Lambda^2/2+1/4)} \right],$$

$$y_0(x) = \phi(x)$$
 and, for $n = 0, 1, 2, ...,$

$$y_{n+1}(x) = \phi(x) + \frac{1}{4\Lambda} \int_0^x t^2 \sinh[\Lambda(x-t)] y_n(t) dt.$$

 $y_n(x)$ converges absolutely and uniformly in [0, X] to $U_{\Lambda^2}(x)$. The sequence $y_n(x)$ is also an asymptotic expansion of $U_{\Lambda^2}(x)$.

Numerical experiments:

n	3	5	7	10
Olver's method	0.029931	0.711066	2.397264	34.189849
$y_{n+1} = \phi + \mathbf{T} y_n$	2.9242086E-7	2.117221E-13	0E-19	0E-11

Table: Parameter values: $x = 1, \Lambda = 0.5$.

n	3	5	7	10
Olver's method	0.035784	1.046597	1.215351	20.55906
$y_{n+1} = \phi + \mathbf{T} y_n$	2.401301E-7	1.701563E-13	0E-19	0E-12

Table: Parameter values: x = 1, $\Lambda = 0.5i$.

n	3	5	7	10
Olver's method	0.103680	0.025607	0.626	1.015444
$y_{n+1} = \phi + \mathbf{T}y_n$	0.117456	0.00313190E-2	0.229839E-4	2.373983E-9

Table: Parameter values: x = -4, $\Lambda = 1$.

n	3	5	7	10
Olver's method	0.178926E-3	1.888427E-6	4.157060E-9	1.105044E-10
$y_{n+1} = \phi + \mathbf{T} y_n$	0.203539E-2	4.885380E-6	4.823895E-9	4.315667E-14

Table: Parameter values: x = -4, $\Lambda = 10$.

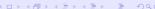
n	3	5	7	10
Olver's method	2.386986E-5	1.437328E-6	4.800630E-8	6.697113E-10
$y_{n+1} = \phi + \mathbf{T} y_n$	9.812156E-3	2.960339E-4	2.435708E-8	9.491949E-13

Table: Parameter values: x = -4, $\Lambda = 10i$.

n	3	5	7	10
Olver's method	2.975095E-8	3.729794E-12	1.568155E-16	1.023331E-20
$y_{n+1} = \phi + \mathbf{T} y_n$	1.49924E-5	5.268923E-10	8.74661E-15	1.108888E-22

Table: Parameter values: x = 4, $\Lambda = 100i$.

- Introduction (Olver's method, Case I
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III



Consider

$$\begin{cases} y'' - \Lambda^2 y - f(x, y) = 0 & \text{in } [0, X], \\ y(0) = y^0, \quad y'(0) = y'^0, \end{cases}$$

where $f:[0,X]\times\mathbb{C}\to\mathbb{C}$ is continuous in its two variables.

Linear case: f(x, y) = g(x)y, g(x) continuous.

Nonlinear case, we require the Lipschitz condition:

$$|f(x,y)-f(x,z)| \le K|y-z| \qquad \forall y,z \in \mathbb{C} \text{ and } x \in [0,X], \quad K > 0.$$

This condition replaces

$$|g(t)| |y(x) - z(x)| \le ||g||_{\infty} ||y - z||_{\infty}$$

used in the linear case.

Repeating the arguments of the linear case, but replacing the bound

$$|g(t)| |y(x) - z(x)| \le ||g||_{\infty} ||y - z||_{\infty}$$

by the bound

$$|f(x,y)-f(x,z)| \le K|y-z| \qquad \forall y,z \in \mathbb{C} \text{ and } x \in [0,X], \quad K > 0,$$

29 / 40

Theorem 3. Let $f:[0,X]\times\mathbb{C}\to\mathbb{C}$ continuous and satisfy the Lipschitz condition. Then, the problem

$$\begin{cases} y'' - \Lambda^2 y - f(x, y) = 0 & \text{in } [0, X], \\ y(0) = y^0, \quad y'(0) = y'^0, \end{cases}$$

has a unique solution y(x). Moreover:

• For n = 0, 1, 2, ... and $y_0(x) = \phi(x)$, the sequence

$$y_{n+1}(x) = \phi(x) + \frac{1}{\Lambda} \int_0^x \sinh[\Lambda(x-t)] f(t, y_n(t)) dt,$$

$$\phi(x) := y^0 \cosh(\Lambda x) + \frac{y'^0}{\Lambda} \sinh(\Lambda x)$$

converges to y(x) uniformly in $x \in [0, X]$.

• The remainder $R_n(x) := e^{-\Lambda x}[y(x) - y_n(x)]$ is bounded by

$$|R_n(x)| \le \frac{K^n x^{2n}}{(2n)!} ||e^{-\Lambda x} (y - \phi)||_{\infty}.$$

Observations:

- Existence and uniqueness of the solution well known from the Picard-Lindelöf's theorem.
- Similar error bound for the standard Picard-Lindelöf's iteration replacing K by $K+\Lambda^2$ in

$$|R_n(x)| \le \frac{K^n x^{2n}}{(2n)!} ||e^{-\Lambda x} (y - \phi)||_{\infty}.$$

- When Λ is large compared with K, we have that $y_n(x)$ converges faster than the standard Picard-Lindelöf's iteration.
- Moreover, y(x) is also an asymptotic expansion of y(x) for large Λ :

Theorem 4. Let $f:[0,X]\times\mathbb{C}\to\mathbb{C}$ be continuous and Lipschitz's continuous. Then, the expansion

$$y(x) = \phi(x) + \sum_{k=0}^{n-1} [y_{k+1}(x) - y_k(x)] + e^{\Lambda x} R_n(x) =$$

$$\begin{bmatrix} x \\ -1 \end{bmatrix}$$

$$\phi(x) + e^{\Lambda x} \left[\sum_{k=0}^{n-1} [\tilde{u}_{k+1}(x) - \tilde{u}_k(x)] + R_n(x) \right].$$

is an asymptotic expansion for large Λ of y(x), uniformly in $x \in [0, X]$. More precisely, for n = 1, 2, 3, ...,

$$\tilde{u}_n(x) - \tilde{u}_{n-1}(x) = \mathcal{O}(\Lambda^{-n})$$
 and $R_n(x) = \mathcal{O}(\Lambda^{-n-1})$

uniformly for $x \in [0, X]$.

Example. Consider, for $b, c \in \mathbb{C}$, $\Re \Lambda \geq 0$, the Mathieu-Duffing equation

$$y'' - (\Lambda^2 + b\cos x)y - cy^3 = 0,$$

and the corresponding initial value problem

$$\begin{cases} y'' - \Lambda^2 y = f(x, y) := b y \cos x + c y^3 & \text{in } [0, X], \\ y(0) = 0, \quad y'(0) = 1, \end{cases}$$

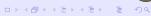
$$|f(x,y) - f(x,z)| \le [|b| + |c| |y^2 + yz + z^2|]|y - z|.$$

Lipschitz's continuous for $y, z \in D \subset \mathbb{C}$, D compact.

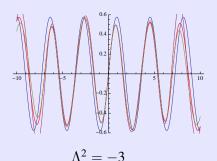
When all the $y_n(x)$ are uniformly bounded in $x \in [0, X]$,

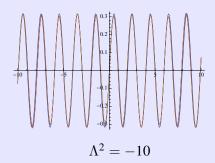
$$y_{n+1}(x) = \frac{\sinh(\Lambda x)}{\Lambda} + \frac{1}{\Lambda} \int_0^x \sinh[\Lambda(x-t)][b y_n(t) \cos t + c y_n^3(t)] dt.$$

33 / 40



$$b = c = -1$$





Exact solution (red), $y_1(x)$ (blue), $y_2(x)$ (pink) and $y_3(x)$ (gold).

- Introduction (Olver's method, Case I
- 2 An initial value problem. Linear case
- 3 Asymptotic property of the expansion
- 4 The nonlinear case
- Cases II and III

$$\begin{cases} y'' - \Lambda^3 xy - g(x)y = 0 & \text{in } [0, X], \\ y(0) = y^0, \quad y'(0) = y'^0, \end{cases}$$

For n = 0, 1, 2, ... and $y_0(x) = 0$, the sequence

$$y_{n+1}(x) = \phi(x) + \frac{\pi}{\Lambda} \left[Bi(\Lambda x) \int_0^x Ai(\Lambda t)g(t)y_n(t)dt - Ai(\Lambda x) \int_0^x Bi(\Lambda t)g(t)y_n(t)dt \right],$$

$$\phi(x):=\pi\left\{\left[y^0Bi'(0)-\frac{y'^0}{\Lambda}Bi(0)\right]Ai(\Lambda x)-\left[y^0Ai'(0)-\frac{y'^0}{\Lambda}Ai(0)\right]Bi(\Lambda x)\right\}.$$

converges to y(x) uniformly in [0, X].

For negative X, the expansion

$$y(x) = \phi(x) + \sum_{k=0}^{n-1} [y_{k+1}(x) - y_k(x)] + R_n(x)$$

is an asymptotic expansion for large Λ of y(x), uniformly in $x \in [0, X]$.

$$\left\{ \begin{array}{ll} & xy^{\prime\prime}-\Lambda^2y-xg(x)y=0 & \text{ in } [0,X], \\ & y^{\prime}(0)=y^{\prime0}, \end{array} \right.$$

For n = 0, 1, 2, ... and $y_0(x) = 0$, the sequence

$$y_{n+1}(x) = \phi(x) + \pi \sqrt{x} \left[Y_1(2\Lambda\sqrt{x}) \int_0^x \sqrt{t} J_1(2\Lambda\sqrt{t}) g(t) y_n(t) dt - J_1(2\Lambda\sqrt{x}) \int_0^x \sqrt{t} Y_1(2\Lambda\sqrt{t}) g(t) y_n(t) dt \right],$$

$$\phi(x) := \frac{y_0'}{\Lambda} \sqrt{x} J_1(2\Lambda\sqrt{x})$$

converges to y(x) uniformly in [0, X].

For positive X, the expansion

$$y(x) = \phi(x) + \sum_{k=0}^{n-1} [y_{k+1}(x) - y_k(x)] + R_n(x)$$

is an asymptotic expansion for large Λ of y(x), uniformly for $x \in [0, X]$.

39 / 40

