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1. Introduction (Olver’s method, Case I)

Second order linear differential equation:
W — [A%f(2) + h(t)]w = 0, A large.
Double change of variable:

{ f—x o — ' = [Az <itc>2f(x) +g(x)

w—y=x 4

t(x) fixed by the conditions:

@ tand x are analytic functions of each other at the transition point (if any),

@ For g(x) = 0, solutions which are functions of a single variable.

2 t
Case L. <:llt> f(x)=1, whichmeans x= / 1172 (s)ds.
x
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1. Introduction (Olver’s method, Case I)

In case I the DE reduces to

Y = [A% + g(x)]y.

When A — oo we seek for a formal solution of the form
o
An(x)
yi(x) ~ M Z HAT
n=0

@ Ap(x) = constant (we may take Ag(x) = 1 without loss of generality).

1 1 [
Apg1(x) = —EA;(X) + 2/ g(t)A,(t)dt, n=0,1,2,..,
A second formal solution:
o0
An(x)
1)~ e 3l
n=0
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In general, these expansions are divergent. Olver’s theory:

@ Proof of the asymptotic character of these expansions.

@ Error bounds for the remainders of the expansions:

n—1 n—1
Rua(e) = ()= A0, gy oo Sl
k=0 k=0

@ Behavior of the coefficients Ag(x) at the singularities of the DE (if any),
o Uniformity properties.

@ Discussions about the regions of validity of the expansions.
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2. An initial value problem. Linear case

Consider the following initial value problem:
{ Y' =A%y —g(x)y=0 in [0,X],
y(0) =»°  ¥(0) =",
X>0, y,y%AeC, ®RA>0, g:[0,X]— C continuous.

Consider the auxiliary initial value problem

{ ¢’ —A’¢=0 in [0,X],
¥(0) =), ' (0) =",

Unique solution:
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2. An initial value problem. Linear case

Change of unknown y(x) — u(x) = y(x) — ¢(x) = homogeneous IC:

W'~ Nu=(u+)g in [0,X],

We seek for solutions of L[u] := u” — A®u — (u+ ¢)g = 0in

By = {u:[0,X] — C,u" € C[0,X];u(0) = «/(0) = 0}

equipped with the norm

||l [ oo = Supeox|u(x)]-
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2. An initial value problem. Linear case

Key point, write:
L{u] = u”" — A’u— (u+ ¢)g
—

Mu]
For large A:

(u+ ¢)g isnegligible = L[u] ~ M[u].

Then solve the equation L[u] = 0 in the form

u=M"[(u+0)gl,

where

=l = * X, 1)y
M () = /0 G(x, (o),
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2. An initial value problem. Linear case

G(x, ) is the Green function of the problem M[u| = 0:
Gu(x, 1) — A2G(x,t) = 6(x —¢) in [0,X],
G(0,1) = G,(0,1) =0, t € 0,X],

Glx, 1) = % sinh[A(x — A]xpo. (7).

Then, any solution u(x) of the IVP is a solution of the integral equation

u(x) = M [(u+ 9)g] = 1 /0 " sinh{A(x — 1]g(1) u(r) + o(1)d.
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2. An initial value problem. Linear case

Equivalently, defining
i(x) := e Mu(x) and P(x) = e M (x),
any solution u(x) = ¢™ii(x) of the IVP is a solution of

i(x) = [Tu(x),

i) 1= 55 [ [1= 0] o)) + o)

From the fixed point theorem, if T” is contractive in By =

@ u(x) = [Tu](x) has a unique solution z#(x) and

@ iy = T(iy), g = 0, converges to i(x).
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2. An initial value problem. Linear case

We show this by using the bound

1 — @2A(—x)

<x—t for t < x.
2A - ’ -

in
UV TR Al PRy Yo _
() = 5 [ [1= ] s + b0l
By means of induction over n, forn = 1,2,3, ...,

18] la.X>"
(2n)!

Therefore T” is contractive for large enough n = the sequence

V(%) = eMita (x) + $()]

1Tz = T'W||oo < |z = wlloo-

converges uniformly in x € [0, X] to the unique solution of the IVP.
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2. An initial value problem. Linear case

Moreover:
_ _ |lgl A2
|i(x) — @i (x)] < WH ] o
Using y(x) = eMi(x) + ¢(x)
and yn(x) = Mty (x) + p(x)
we find

llgllgex™

[Ra(x)] < o

e = )lloo-
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2. An initial value problem. Linear case

Theorem 1. Let g : [0, X] — C be continuous. Then,

{ Y' = Ay —g(x)y=0 in [0,X],
y(0) =y, y(0) =y,

has a unique solution y(x). Moreover, forn =0,1,2, ...,

Vi1 (x) = o(x) + jlx/ox sinh[A(x — 1)]g(7)yn(7)dt,

/0
Yo(x) = d(x) := y° cosh(Ax) + yX sinh(Ax)
converges to y(x) uniformly in x € [0, X].
The remainder R, (x) := e [y(x) — y,(x)] is bounded by

n 2n
Ry(x)] < L8l ey gy

()
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2. An initial value problem. Linear case

Observations:

@ Jand uniqueness — direct consequence of the Picard-Lindelof’s Th.

o Different election of the “main operator” M{u]:
M[u] = u” in the standard Picard-Lindel6f’s theorem.
Here M[u] = u” + A%u.

e For large A, M[u] = u"" + A%u "closer” to L[u] than M[u] = u":
Similar error bound in the Picard-Lindelof’s iteration, but replacing

HgHoo — HgHOO'i‘AZ-

When A >> ||g||~0, We have a faster convergence.

@ Moreover, the recurrence y,(x) is an asymptotic expansion of y(x) for

large A. .
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Asymptotic property of the expansion
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Asymptotic property of the expansion

We have
y(x) = lim y,(x) uniformly in [0, X].

n—0o0

In other words, y(x) admits the series expansion

)+ et (1) — yie(x)] = Z By 1(x) — (%)),
k=0 0

with
iy (x) := e My (x) — d(x)], n=0,1,2,...

We define the remainder of this expansion in the form

Ru(x) := e M[y(x) — ya(x)], n=0,1,2,..
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Asymptotic property of the expansion

Then we may write the series expansion in the form

To show the convergence of the recurrence y,(x) we used the bound

1 — e2A(tfx)
A <x-—t, for t < x.
Bad bound for large A.
To show the asymptotic character we need: .
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Asymptotic property of the expansion

1— eZA(tfx) - 1 S0 -
A | A =R =
in _r
~ — 2N (1—x) ~ 7
O M FOCORE )2
We obtain:

|[tnt1 — tnloo < m”gHmH”n — ttp—1|oo-
We also have:

~ ~ ann
wamms”&;

and &t = limy, o0 ity = Y peglitkr1 — ] = > pog O(A* 1) = O(A7Y).

|2l oo
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Asymptotic property of the expansion

Theorem 2. Let g : [0, X] — C be continuous in [0, X]. Then,

n—1

> it (x) = ie(x)] + Ra(x) | -

k=0

is an asymptotic expansion for large A of the unique solution of

{ Y' =Ny —g(x)y=0 in [0,X],
y(0) =y, y(0) =",

uniformly in x € [0, X]. More precisely, forn =1,2,3, ...,

Un(x) — tp—1(x) = O(A™") and R,(x) = O(A™"1)

uniformly for x € [0, X].
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Asymptotic property of the expansion

Observations:

o This expansion is not of Poincaré type.

@ Compare the construction of Olver’s and this expansion:

)~ e = 3w [ ewanod,

i) = 55 [ [1 =) g0 ) + 0k

The integrand in the RHS of Olver’s recursion is independent of A
The integrand in the RHS of the recurrence i, (x):

O(1) as A — oo,

contains an exponentially small dependence on A.
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Asymptotic property of the expansion

Example. For any A € C and X > 0, the unique solution of the IVP

{ V' — <A2 n %)y —0 in [0,X],
¥(0) = Up2(0),  ¥'(0) = U}»(0),

is the Parabolic Cylinder function U2 (x). For this problem

NZs

cosh[Ax] /2 sinh[Ax]
P(x) = 2A2/2+1/4

[(A2/2+3/4)  AT(A2/2+1/4)

yo(x) = ¢(x) and, forn =0, 1,2, ...,

Y () = 62) + 7 /0 " 2 sinh[A(x — 0)]yn(1)dr

yn(x) converges absolutely and uniformly in [0, X] to U2 (x).
The sequence y,(x) is also an asymptotic expansion of U2 (x).

9

Olver’s theory, Green’s functions and fixed poi SF21. Washington DC, 2011 04/06/11

23/40



Asymptotic property of the expansion

Numerical experiments:

n 3 5 7 10
Olver’s method 0.029931 0.711066 2.397264 | 34.189849
Y1 = ¢ + Ty, | 2.9242086E-7 | 2.117221E-13 OE-19 OE-11

Table: Parameter values: x =1, A = 0.5.
n 3 S 7 10
Olver’s method | 0.035784 1.046597 1.215351 | 20.55906
Ynt1 = ¢ + Ty, | 2.401301E-7 | 1.701563E-13 OE-19 OE-12

Table: Parameter values: x =1, A = 0.5i.
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Asymptotic property of the expansion

n 3 5 7 10
Olver’s method | 0.103680 0.025607 0.626 1.015444
Yot1 = ¢+ Ty, | 0.117456 | 0.00313190E-2 | 0.229839E-4 | 2.373983E-9

Table: Parameter values: x = —4, A = 1.

n 3 5 7 10
Olver’s method | 0.178926E-3 | 1.888427E-6 | 4.157060E-9 | 1.105044E-10
Yn+1 = ¢+ Ty, | 0.203539E-2 | 4.885380E-6 | 4.823895E-9 | 4.315667E-14

Table: Parameter values: x = —4, A = 10.

L
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Asymptotic property of the expansion

n 3 5 7 10
Olver’s method | 2.386986E-5 | 1.437328E-6 | 4.800630E-8 | 6.697113E-10
Yn+1 = ¢+ Ty, | 9.812156E-3 | 2.960339E-4 | 2.435708E-8 | 9.491949E-13

Table: Parameter values: x = —4, A = 10i.

n 3 5 7 10
Olver’s method | 2.975095E-8 | 3.729794E-12 | 1.568155E-16 | 1.023331E-20
Ynt1 = ¢+ Ty, 1.49924E-5 | 5.268923E-10 | 8.74661E-15 | 1.108888E-22

Table: Parameter values: x = 4, A = 100i.
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The nonlinear case

Consider
{ Y' = ANy —f(x,y) =0 in [0,X],
y(0) =)0, ¥(0) =",

where f : [0,X] x C — C is continuous in its two variables.
Linear case: f(x,y) = g(x)y, g(x) continuous.

Nonlinear case,  we require the Lipschitz condition:
V(xay) —f(x,Z)|§K|y—Z| Vy,zE(C andxe[O,X], K > 0.

This condition replaces

8] [y(x) = 2(x) < [lglloo [y = zlloo

used in the linear case. .
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The nonlinear case

Repeating the arguments of the linear case, but replacing the bound

8@ |y(x) = 2(x)] < [lglloo |y = 2lloo
by the bound

V(an) —f(x,Z)’SKb’_Z‘ Vy,ZE(C ande[O,X], K>07
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The nonlinear case

Theorem 3. Let f : [0, X] x C — C continuous and satisfy the Lipschitz
condition. Then, the problem

{ Y'= Ay —flx,y) =0 in [0,X],
y(0) =»°,  ¥(0) =",
has a unique solution y(x). Moreover:

@ Forn=0,1,2,...and yyo(x) = ¢(x), the sequence

mia(n) = 9(0) + [ sinhlAGe = DI,

/0

d(x) := y° cosh(Ax) + )’X sinh(Ax)

converges to y(x) uniformly in x € [0, X].

o The remainder R, (x) := e~ ™[y(x) — y,(x)] is bounded by
KnXZn A
R,(x)| < Ay — ) lao.
R9)] < e = )]
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Observations:

o Existence and uniqueness of the solution well known from the
Picard-Lindelof’s theorem.

@ Similar error bound for the standard Picard-Lindelof’s iteration replacing
Kby K + A%in

K" 2n
arlle 0= Dl

[Ra(x)] <

@ When A is large compared with K, we have that y,(x) converges faster
than the standard Picard-Lindelof’s iteration.

@ Moreover, y(x) is also an asymptotic expansion of y(x) for large A:

Olver’s theory, Green’s functions and fixed poi SF21. Washington DC, 2011 04/06/11 31/40



The nonlinear case

Theorem 4. Let f : [0, X] x C — C be continuous and Lipschitz’s continuous.
Then, the expansion

n—1

Y(x) = 6x) + D Dir1 (6) = ()] + €M Ry(x) =

k=0

n—1

$x) + ™ | D litg1 (x) — @ (x)] + Ra()

k=0

is an asymptotic expansion for large A of y(x), uniformly in x € [0,X]. More
precisely, forn =1,2,3, ...,

Un(x) — tp—1(x) = O(A™") and R,(x) = O(A™"1)

uniformly for x € [0, X|.
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Example. Consider, for b, c € C, RA > 0, the Mathieu-Duffing equation
y" — (A* + bcosx)y — ¢y’ =0,
and the corresponding initial value problem

{ — A%y = f(x,y) —by cosx+cy> in [0,X],
¥(0) =0, ¥(0)=
(2, 9) = £ (x,2)] < [1B] + [l [y* +yz+ 2 []ly — 2.

Lipschitz’s continuous for y,z € D C C, D compact.
When all the y,(x) are uniformly bounded in x € [0, X],

Ynt1(x) = smhngx) + [lx/ox sinh[A(x — 1)][by, (1) cost + cy’(1)]dt.
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The nonlinear case

Exact solution (red), y; (x) (blue), y>(x) (pink) and y3(x) (gold).

Olver’s theory, Green’s functions and fixed poi SF21. Washington DC, 2011 04/06/11 34/40




Contents

© Cases Il and III

Olver’s theory, Green’s functions and fixed poi SF21. Washington DC, 2011 04/06/11 35/40



Cases II and III

{ Y= Axy — g(x in [0, X],

y=0
¥(0) =%, ¥(0) =",
Forn =0,1,2,... and yo(x) = 0, the sequence
T, v
() = 000) + 7 |BilA) [ Ai(Ag (-

Ai(Ax) /0 xBi(Ang(t)yn(z)dr] ,

P(x) == { [yOBi’(O) - yj;OBi(O)] Ai(Ax) — [yoAi’(O) - yAAi(O)] Bi(Ax)} :

converges to y(x) uniformly in [0, X].
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For negative X, the expansion

n—1

Y(®) = ¢(0) + Y D1 (x) = ye(®)] + Ra()

k=0

is an asymptotic expansion for large A of y(x), uniformly in x € [0, X].
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Cases II and III

xy" — A’y —xg(x)y=0 in [0,X],
y’(O) _ y/07

Forn =0,1,2,... and yo(x) = 0, the sequence
() = 00) + 73 [1128VE) [ ViR @AVIS Oy 0~

H2AVE) /0 Vi, <2Aﬁ>g<r>yn<r>dz] ,

o) = 20 20v5)

converges to y(x) uniformly in [0, X].
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For positive X, the expansion

n—1

Y(®) = ¢(0) + Y D1 (x) = ye(®)] + Ra()

k=0

is an asymptotic expansion for large A of y(x), uniformly for x € [0, X].
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