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The Painleve Equations
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Order and Chaos
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* Py-Pvi have special solutions for certain

parameter values (= rational or
hypergeometric-type solutions).



Linear problems

® Each Painleve equation is a compatibility
condition for pairs of linear problems:

oy
an = ANYY };x 9A OB

o "o TABI=0

o =BAY

called Lax pairs or iso-monodromy problems.

® These provide information about the
solutions of Painleve equations.
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Pi Lax pair

® From Flaschka-Newell cvir 76 (1980) by reduction of MKdv)
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Information near 0, ¢

® The Stokes multipliers near o
® The monodromy matrix around 0

® The connection matrix between 0 & o
remain unchanged as t varies.When A>»1

Y = ay eXp—i(4>\3/3+)\ t) Y] + ao eXpi(4>\3/3+)\ t) Y,

provides global information for t>1, through a
WKB approach.



Riemann-Hilbert

Approach

® This inverts monodromy data characterising
solutions Y (A, t) of the linear system to describe

solutions ¥(t) of Painleve equations.

Most
effective in
limits such
as t— o0

ap—

h—ﬁ\\

and for
special solns,
e.g., y(t) =0
for a=0
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Another P Lax pair

® From Jimbo-Miwa rhysica b 2 (1981)
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Relating Lax pairs

® Recently, we found that the Lax pairs for PII
can be mapped invertibly to each other

JKT,  dJKT3

Laplace

Fabri

Go J Mo HTW F'N

Laplace

dJKT, dIKTs

J, Kitaev and Treharne JPhysA 42 (2009) 055208



Water VWaves

® Dubrovin, Grava and Klein J. Nonlin. Sci (2009) analysed
critical behaviour of non-linear water waves under

Hamiltonian perturbations

Figure 8: The blue line is the function u of the solution to the focusing NLS equation for
the initial data u(xz,0) = 2sechx and € = 0.04 at the critical time, and the red line is
the corresponding semiclassical solution given by formulas (2.4). The green line gives the
multiscales solution via the tritronquée solution of the Painlevé I equation.
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Tritronquee Solutions

® These are asymptotic to an algebraic expansion
yr in sectors of width 411 /5 in C.

o e ~ From Dubrovin et al arXiv:0704.050] B

Figure 5: Real part of the tritronquée solution in the sector r < 20 and |¢| < 47/5 — 0.05.  Figure 6: Imaginary part of the fritronquée solution in the sector r < 20 and |¢| < 47/5 —
0.05.
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® These are asymptotic to an algebraic expansion
yr in sectors of width 411 /5 in C.
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Figure 5: Real part of the tritronquée solution in the sector r < 20 and |¢| < 47/5 — 0.05.  Figure 6: Imaginary part of the fritronquée solution in the sector r < 20 and |¢| < 47/5 —
0.05.

——_~ Dubrovin’s conjecture in|arg(z)| < 47 /5



In the Finite Plane

While asymptotic behaviours of solutions are now
well known, finite behaviours remain open.

WVe started a study of Painleve transcendents by
starting with initial value problems at the origin.

This approach provided us with the first proof that
the real tritronquée solution has no poles on the
positive real line, for

y”:6y2—x



Real Solutions

® Consider P, v’ =6y -z for y(x),xeR




The Real Tritronquee

® Theorem: 3 unique solution Y(x) of Pl
which has asymptotic expansion

X = % .
T —\/gz 21725 in |arg(x)| < 4n/5
k=0

and
® Y(x) is real for real x

® Its interval of existence | contains R

® Y(x) lies below I1.
® It is monotonically decaying in |.

From J.& Kitaev Studies in Appl Math (2001).



Poles & Zeroes

® From the proof, we found
Y(O) — —0.18755430... Y’(O) = —0.3049055. ..

® et x, be its first real pole, T be its first zero,
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y(x) = T _1xp)2 | ng (z — )% + %(aj —x,)? telr—x,) + ..
® Then

¢ =—0.49991255... Y'({) = —0.46886551...
r, = —2.3841687... ¢ = —0.06213573



Poles & Zeroes

® From the proof, we found
Y(O) — —0.18755430... Y’(O) = —0.3049055. ..
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® How does Y(x) behave in C ?
® How can we describe solutions in finite plane!?



Near o0

® Consider (Duistermaat & J: arXiv 1010:5563)
y ’=6y”’+x in Boutroux’s coordinates

4 5/4
y(z) = 2% u(z), z= x5
U 4 u
“ wr 2z 2522
2u1
Up = u2
~ > 3 U
’UQ:6U%—|—1 2



The Space of Initial Values

® Okamoto showed how to compactify and
regularizing the space of initial values (aopan J Math
5(1979) ).

® Jo compactify, we first embed into the
projective plane

Af fine coordinates :
1 Homogeneous coordinates

#ﬁ
1: ugi(l) : ﬁ] < |uo1o0 : Uo11 : Uo12]

up10 = 0 < Lo
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The Projective Plane CP;

First chart: [ 1wy . UQ] = [U021 1 UOQQ]
Up21 = —U021UE22 T 2(52)_1%21

2 —1
u022 = Up21 + 6U021 Ugoo — (52) U292

Second chart; [ - D Uq u2 . : 1] — [Uogl . Up39 - 1]
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: —1
Up32 = —UE31U032 —@)31%32 + 1+ (52) "uo32

— - Dbase pt bp: up31 = 0,up32 =0



Blowing up at a base pt
p—

\4

e

From || Duistermaat, QRT Maps and Elliptic Surfaces, Springer Verlag, 2010
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Exceptional Lines
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The Phase Plane
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Main results

® The union of exceptional lines is a repellor
for the flow.

® The limit set is non-empty, connected and
compact subset of Okamoto’s space.

® 37 unique solutions near equilibria of the

flow. They are bounded sufficiently far from
0.



Approachlng Y




Discrete Integrable
Systems

The surprising properties of the Painleve equations also
extend to certain discrete (or difference) equations.

These are of three types:

O Tptl T Tp—1 = F(xna TL)
® Tnt1 Tn—1 = F(Tn,q")
O, Lnt+l1l Ln—1 — F(Zl?n, 9(”))

where 6(n) is a theta function.



Discrete Elliptic Equations

Addition formula for elliptic functions provide iterations.



Recurrence Relations

® Backlund transformations of the Painleve
equations give rise to discrete Painleve equations.
E.g., solutions wy(?) of Piv(n) corresponding to

an=—15 +co+er(=1)", Bn=n—2c+ 3 (-1)"

transform with
2 Wy, Wht1 = — Wy, — wi — 2tw,, + B,

/ 2
2Wp, Wp—1 = Wy — W, — 2t wy + Bn,

eliminating w (7)) gives the discrete P;:

W, (wn—l—l + Wy, + wn—l) — 6n — 2t wy,



Geometric Origin of

Discrete Painleve Equations

® Sakai CMP 2001 classified all possible equations
whose initial value space is regularized by a 9-

point blow-up of P1 x P1.
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Solutions?

Very little is known about their transcendental solutions.



Summary

® The solutions of the Painleve equations are
non-linear special functions of fundamental
importance in modern science.

® Very little is known about the
transcendental solutions in finite regions.
Major conjectures remain open.

® Even less is known about the solutions of
discrete Painleve equations.



