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1. Introduction.

We consider differential equations of the form

dZ—sz:{uzf(z)+g(z)}w, (1.1)

dz

where u is large and z lies in a real or complex region D containing at most
one transition point z, (pole or zero of f). Many of the special functions of

mathematical physics satisfy ODEs of this form, as well as various one-

dimensional quantum mechanical problems.



Olver (1974/1997) identifies 3 main cases:

Casel: D is free from transition points (Liouville-Green/WKBJ

approximations).
Case II: z,1s a simple zero of fand g is analytic atz, .
Case III: z,1s a simple pole of fand (z -2 )2 g(z) is analytic atz, .

In the 60s and 70s Olver provided explicit error bounds for
asymptotic solutions in Cases I, II, III and gave conditions for uniform

validity when D is unbounded.

For Case I the standard expansions are of the form

w~ f1 exp{iucf}iif), (1.2)
s=0 U
where
E= [ (2)dz. (13)

A (5) =1, with the other coefficients satisfying the linear recursion relation

A (&) =-140(8&)+ 1 [y (&) A (&)aE (520). (1.4)
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In quantum mechanics alternative expansions of the form

w~ fU4 exp{iu§+ i(il)s %} (1.5)

s=0

are often more suitable in finding certain eigenvalues. Here
El(g):%jw(ﬁ)df, and the other coefficients satisfy the nonlinear

recursion relation
Eon(§)=—3E(§) -3 X[ EHEEL;(§)d (s21). (1.6)

Error bounds, using Olver’s technique, were given by Dunster (1998).

For Case II we start with the Liouville transformation

1/4
%sz:J‘Zz f”z(t)dt, W:[%j w, (1.7)
to give
2
‘Z;Z ={?C+y (0w, (1.8)

where y () is analyticat { =0 (z=z,).
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The comparison equation W”=u?(W has a solution

W (u,8)= Ai(u2/ i ) , and Olver’s expansions are of the form

Wont12 (u.8)= Ai(uzmc) i AMST(SC)

+=0 (1.9)

i u2/3 n—1
A L(t4/3 g) Z B:tgf:) + 82n+1,2 (M,é’)

s=0

+

Olver obtained explicit bounds for &,,;, (u,§) by expressing this error

term as a solution of an integral equation and then using successive

approximations. This is nicely packaged in his following theorem.
Theorem 1. Let h({) satisfy
¢
h(§)=_[aK(C,t)¢(t){J(t)+h(t)}dt. (1.10)

Assume

K(£.8)=0, [K(L.1) <R (§)Q(r) (a<r<C<p), (1.11)

where ¢(t), J (1), wo(t), By($), O(t) are continuous on (c,) . Then

7 (0) S(K/KO)PO(C)I:eXp{KO Jj|¢(t)|dt}—l}, W<, (1.12)

where

k=sup{ QO ()} Ko =sup{F (£)Q(()}- (1.13)
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In his 1950 paper T. M. Cherry (a.k.a. Professor Sir Thomas
MacFarland Cherry, Kt., Sc.D., F.A.A., F.R.S.) approached the problem of

approximating solutions to the same equation

‘ZZ ={u’C+y(O)}w . (1.14)

by defining a new independent variable

A

§=C+oet, (u.0), (1.15)

where

o%(u,g)=iasgf). (1.16)

u

Cherry then obtained a new ODE with é:’ as the independent variable. This

makes it a little harder to obtain error bounds, as well as describe regions of

validity in the complex plane in terms of {. Hence our approach, as follows.

For brevity we only consider real variables (complex variables done
similarly). We assume u is sufficiently large so that d{ /d{ >0 ,i.e.

1+§n‘1i2§)>0. (1.17)
s=1 U
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Now w = Ai, (u.¢) = {d /dc}_”2 Ai(u?) satisfies

d*w > N
d—gz= {M C"“I/n(”sg)}”’ ;

where

u

()= 3 el

We choose a,({) (s=1,2,3,---n) so that {, = l//+0(u_2”) . Thus

Vo (§)=w (), ¥, (§)=,2(8)=-+=,,.(§)=0.

This gives

1 Cylt
01(5) = 2C1/2 Io l/tjlsz)dt

and for 1<s<n-—1

1 (¢F(r)

ag.(§)= 212 JO (72 dt

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



where

ws+2

(1.23)

opA P P2
+2(1+J@’M’2 3R -
4<1+l@j§,) WS+1

N

B=2a,(0)w, K= i“3<§)wj’ etc. (1.24)

J=1

From this is it easy to show by induction that each coefficient as(C ) is

analytic at { =0, and from the subsequent error bounds that the asymptotic
expansions are uniformly valid at infinity if y/(s)(g ): 0(|§|_‘_(” 2)‘5) as

§ — Foo.

Let

W2n+1,2 (M,C) = (dé’ / dg)_l/z Ai(u2/35) + é2n+1,2 (“’C) (1.25)

be a solution of the canonical turning point equation
W” = {uz(: +y (¢ )}W . This is a useful form when studying the zeros.



_8-

Substitution of (1.25) into the ODE, then applying variation parameters,

yields
W(&)= [ K(ENO(N () + h(1)}dr (126)
where
h(E)= (dcf / dg)”2 Ernirn (.0, (1.27)
J(¢)=Ai(u?Z), (1.28)
0(¢)=(d1ag) " 81, ()~ v (@)} =0(u). (1:29)
and

K(¢ut)= mu ()" [Bi(um(f)Ai(umf ) - Ai(u? ) Bi(u?F )} . (1.30)

inwhich 7 =1+ a (1)u™.

We need |K(C,t)| <P ($)0(t) for t>¢.



Let ¢ be the largest negative root of Ai(x)=Bi(x); then Olver defines a so-

called weight function by

E(x)=l (—o<x<c), E(x)={Bi(x)/Ai(x)}"* (c<x<e), (131)

and the Airy functions are then expressed in the form

Ai(x) —E! (x)M(x)sin{O(x)}, Bi(x) = E(x)M(x)cos{Q(x)} . (1.32)

As x = oo

E(x)~x/§exp{%x3/2}, M(x)~7r_1/2x_1/4. (1.33)

From these expressions it can be shown that

|K(§,t) <! (uz/%)M(umf)
. (1.34)
()] B )M () (120).
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E(x)

/ Bi(x)
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Using Theorem 1 we arrive at our desired bound

(dé ]1/2 g (u2/35)M (u2/35)

dc )

Exns1n (“C)| <

),_[;|¢n (u,t)|dt

X| exp -1,
u

uniformly for ¢ < { < B, where
0 (u.r)= (@€ 1dg) " £ g, (§)-w(©)} = 0fu™).

and
A= sup {zld"> M (x)}=104--.

—ooL x < oo

This shows

A

é2n+1,2 (U,C) _ gl (uz/SC)M(u2/35)0(u_2”_l) ’

uniformly for o <{ < B (which can be unbounded with
conditions on ¥ ({)).

(1.35)

(1.36)

(1.37)

(1.38)

appropriate
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Now let’s consider the derivative of a solution of an ODE having a
turning point (c.f. Wong and Lang (1990)). We assume the parent equation
is of the form

dz* dz ’ '
where as before f has a simple zero at z,. Dividing by f(z) and
differentiating yields a linear 2" order ODE for y’ = dy/dz . We obtain an

ODE without the first derivative by defining

W(Z)=f_1/2 (Z)exp{%Jh(z)dz}y’(z), (1.40)
to arrive at
d* | de® ={u” f(z)+ §(2) }v. (1.41)
where
(237 F@hE) =) 1y 1
g(z)= () + 21 + 4h (2) 2h (2). (1.42)
Note that as z — z,
3 1
o(z)=————+0 : (1.43)
8 4(z—zo)2 [Z_Zo]
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Again we use

%4«3/2 _ JZ f1/2(t)

%

and

W)= (£(2)/0)" #(2) = (CF@) " exp{d [n(2)de}v'(2)

to obtain

+

dg £

where 7({) is analytic at { =0 .

The comparison equation

dZW_{z 3

= 4+ —
dé? 4¢*

has a solution W = C_]/zAi'(uzBC) :

dt ,

W = {MZC+4L M}W ,

4

f,

(1.44)

(1.45)

(1.46)

(1.47)
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We need a companion solution to (1.47) which is recessive at { =0,

and for brevity we consider 0 < { < 3 here. Using

A¥(2) = AP'(0)+ L Ai(0)2? +0(2?). (1.48)
Bi'(z)=Bi'(0)+1Bi(0)z* +0(2’). (1.49)

we define
Di(z) = BY"(0) Ai(z) - AT(0)Bi(2) _ fAi(z)+%Bi(z) : (1.50)

JBi>(0)+ Ai’* (0)
with the desired property

Di’(z) = : 7 +0(z5). (1.51)

2(3")r(3)

Thus ¢ 2Di’(u2/ 3¢ ) is the solution we seek. Let

W, (u1,8) = §—1/2Ai'(u2/3§)+ &, (u.0), (1.52)

be a solution of

‘F_W:{u2;+%+%4)}w. (1.53)
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We find
4,3j ﬁ{Al(u2/3t)+n2(u,t)}dt, (154)
where
iy (u.8) =28, (u.0), (1.55)
with
K(&.0)| < (407272 i (w2 )| Dir(u?) (r2€). (156)

The artificial factor (u_l +17 2) is a balancing function, introduced to

sharpen the error bound. Using Theorem 1 we get

2(,0) < 2E‘Ai’(u2/3é’)‘|:exp{M} - 1} : (1.57)

u

where

~

A= sup { (14+x72)| Al (x)| DI (x )}:0.1059---, (1.58)

O<x<oo
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and

O(u.l)= JﬁMdt. (1.59)

c1>(1/¢,§)3j13|l/’([)| dt=0(1). (1.60)

dt (1.61)

where M = sup |1/7(t)|
0<t<é
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In summary there is a solution y, (say) whose derivative satisfies

V5 <Z):(%J exp{—%Jh(z)dz}{Ai’(,/ﬂ&g)+ﬁz (M,C)}, (1.62)

where

) A (u?¢)o(u?)  (0<¢<0)
Monsr 2 (u,8) = {Ai’(uz/?’C)O(ul) 0<5<0<p) (1.63)

Application to Bessel functions. The equation

AW | ,1-x* 3x"+10x* -1

e ’ x? 4x2(1—x2)2

W, (1.64)

has a solution

w(x)=x""2(1- x2)_”2 T, (vx). (1.65)
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Let

2\
%§3/2:1n 1+(1 xx ) _(1_x2)1/2, (1.66)

with 0 < x <1 mapped to 0 <{ < oo. Then with
y 1/4
W=x12 (1—x2) CV4N we get

dW
a {§+

m}w : (1.67)

where 7({) is analytic at { =0 . We arrive at

J.,(vx)=-

(1/6) —v 5 \1/4
N:rv(vﬂ) [ gx] AR (v.O)). )

where 7, (V,C ) is bounded as above, uniformly for 0 <{ < oo. The interval

—co < { <0 is similarly treated.
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Less sharp and more complicated error bounds can also be computed by

differentiating the original uniform approximations of Olver

2\/;Vv+(1/6)€_v Z_: 1/4 e
‘]v (VX)Z F(V+1) (l_xzj {AI(V C)+£Olver (V,é’)} ’ (1'69)
giving
) 2y 0 (1- 2" (213
T (vx)=— oD [ : ] {AV (VP2 + e (v.0)} (170)
where
1 1 2x261/2 2/3
n ver(v’g)z — -5 [1Al C e Ver(v C)
ol 4?3 ¢ (1—x2)3/2 { ( ) ol } -
8, ver v’g
o)

Comparisons of relative error bounds vs. exact values (v =100 ):

17, (100.¢ )/ A¥'(1007°¢

Mower (100.) / AY'(1007°¢

lexact(100,¢)/ Ai’ (10023

0.1 0.0005169 0.0060655 0.0004601
0.5 0.0014428 0.0048714 0.0011554
0.9 0.0045035 0.0067972 0.0034557
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If we try a Cherry-type expansion:

-1/2 A

W= (dé / dcj) z;—“zAi'(umzf) :

we find it satisfies

40

We need { to vanish at { =0, so we must choose

dCz - 45,2

Thus

d2 r A 3A/2 3A//2 _2A/A/// .
w {M2C,2C+ C g gg }W

(1.72)

(1.73)

(1.74)

(1.75)

As before, we seek a,({) so that v, ($)=w({)+ 0(1[2”) . This implies

1
()= 2032 J.lgg/g) dg,

with similar problems for subsequent coefficients.

(1.76)
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Next consider case 111

dzw_{u2 vl W(C)}W.

=1—+ +
dg® |46 4 ¢

Olver’s expansions are of the form

2 A Q) Sla(u”) &

W(u,§)~Cl/21v(u§1/2)z X 2

B(0)

2s

s=0 U u s=0 U

Instead we try a Cherry-type expansion

W (u.g)~(d 1) &1, ().

where

We find that

2 syt
al(C)=é;1T 0 /172 dt ,

with the other coefficients also being analytic at { =0 .

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)
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