
Tensor Product Grid Generation for
Complex Surface Visualizations in a
Digital Library of Mathematical Functions

Bonita Saunders
Qiming Wang

National Institute of Standards and Technology
100 Bureau Drive, Stop 8910
Gaithersburg, MD 20899-8910, USA
bonita.saunders@nist.gov, qiming.wang@nist.gov

Abstract

We have used tensor product B-spline grids to develop accurate plots that
enhance the understanding of high level mathematical functions described
in the National Institute of Standards and Technology Digital Library of
Mathematical Functions. The graph data is placed in a web based format
such as VRML (Virtual Reality Modeling Language) or X3D (Extensible
3D) to provide an environment where users can interactively manipulate
complex function surfaces. The effectiveness of the grid generation mapping
in producing visualizations that accurately capture key function features
such as zeros, poles, and branch cuts is examined.

1. Introduction

The National Institute of Standards and Technology (NIST) is developing
the NIST Digital Library of Mathematical Functions (DLMF) to replace the
Handbook of Mathematical Functions with Formulas, Graphs and Mathe-
matical Tables, a popular resource in the mathematical and physical sci-
ences, first published in 1964 [1]. The NIST DLMF will be available both
in hardcopy and in a freely available web-based format. It will contain
formulas, methods of computation, reference and software information for
close to forty high level mathematical functions. Website users will be able
to conduct an advanced mathematical equation search using the DLMF
search engine, obtain instant information about mathematical terms, or
interactively manipulate 3D visualizations of complex function surfaces.

This paper discusses our use of numerical grid generation techniques to
facilitate the design of accurate visualizations for the NIST DLMF. By
modifying an algebraic tensor product spline mesh generation algorithm
that we originally designed for problems in aerodynamics and solidification

theory [2], [3], [4], we have been able to create boundary/contour fitted
grids that capture significant function attributes such as poles, zeros, branch
cuts and other singularities.

The DLMF visualization features are not designed to compete with the
on-line computational and plotting capabilities of many commercial com-
puter algebra packages, but the motivation for our work stems from some
of the inadequacies of such packages.The complicated nature of many high
level mathematical functions means that their computational domains are
often irregular, discontinuous, or multiply connected. Although commer-
cial packages may have some of these functions built-in, their 3D plots are
generally, by default, over a rectangular Cartesian mesh, leading to poor
and misleading graphs. Also, the packages often have trouble properly
clipping a surface when values lie outside the range of interest to the user.
Other packages may properly clip the function, but provide no reasonable
way to export the clipped data for use outside the package. This is par-
ticularly important if the data needs to be transformed to a web-based
format such as X3D (Extensible 3D) or VRML (Virtual Reality Modeling
Language) [5], [6], [7].

We have discovered that many problems can be eliminated by designing a
computational domain for the function whose boundary coincides with a
particular contour of the surface. This not only produces an appropriate
clipping of the surface, but also improves the smoothness of the color map-
ping. Either structured or unstructured techniques could be used to create
the computational grids, but structured techniques make it easier to write
efficient code to drive the interactive features of the visualizations. We will
examine the problems that can arise when trying to display visualizations
on the web, discuss the effectiveness of our grid generation technique, and
look at some possibilities for improvements.

2. Constructing 3D Graphs for Interactive Visualizations
in a Digital Library

The first release of the NIST DLMF will consist of thirty six chapters with
content authored by experts in the field of special functions throughout the
U.S. and abroad. The number, location and type of visualizations for each
chapter have been determined by consulting with the authors and DLMF
editors. To ensure data accuracy we are computing each function by at
least two different methods, using commercial packages, publicly available
software, or the author’s personal codes. In many cases plot accuracy, that
is, how well a displayed plot accurately represents the graph of a function,
can be somewhat more difficult to achieve.

Most commercial packages do very well with 2D plots. They handle discon-
tinuities automatically or with easy to use special options. They properly
clip the function when the user asks for values within a specified range.
This may not be the case with 3D plots. Figure 1 shows the plot of the
incomplete gamma function, γ∗(a, x), rendered using a popular commer-
cial package and restricted to lie between −10 and 20. The shelf-like area
might be confusing to students and others unfamiliar with the behavior of
the function.

-4

-2

0

2

4

x

-6

-4

-2

0

2

4

a

-10

0

10

20

-4

-2

0

2

4

x

Figure 1. Plot of Incomplete gamma function γ∗(a, x) illustrating bad
clipping and poor resolution of poles.

Also, although experienced users can use special commands that will result
in a properly clipped display, we found that this was still not sufficient
for our requirements. Since the function is computed over a rectangular
Cartesian mesh, the figure might look fine inside the package, but produce
an irregular color map when the data is transformed to other formats such
as VRML (Virtual Reality Modeling Language) or X3D (Extensible 3D),
standard 3D file formats for interactive web-based visualizations [5], [6], [7].
The figure could also be improved by using a much larger number of data
points, but large data files degrade the performance of our visualizations.
We have found that the rendering problems can be eliminated or reduced in
severity by computing the function over a boundary/contour fitted mesh.
In the next section we discuss the grid generation algorithm we have used.

3. Grid Generation Mapping

The grid generation problem can be quite challenging, depending not only
on the shape of the computational domain, but also on the behavior of

the function. For example, function domains can range from rectangles to
complicated multipy connected domains with poles and branch cuts, but
large function gradients can produce an irregular color map even when the
domain is simple. Our grid generation technique is based on an algorithm
we developed to solve partial differential equations(pdes) related to aero-
dynamics and solidification theory [2], [4], [8], [9]. We define a curvilinear
coordinate system by a mapping T from the unit square I2 to a physical
domain of arbitrary shape. We let

T(ξ, η) =

(

x(ξ, η)
y(ξ, η)

)

=

(∑m
i=1

∑n
j=1 αijBij(ξ, η)

∑m
i=1

∑n
j=1 βijBij(ξ, η)

)

, (1)

where 0 ≤ ξ, η ≤ 1 and each Bij is the tensor product of cubic B-splines.
Therefore, Bij(ξ, η) = Bi(ξ)Bj(η) where Bi and Bj are elements of cubic
B-spline sequences associated with finite nondecreasing knot sequences, say,
{si}

m+4
1 and {tj}

n+4
1 , respectively. To obtain the initial αij and βij coeffi-

cients for T, we first construct the transfinite blending function interpolant
that matches the boundary of the complex function domain. The interior
coefficients are obtained by evaluating the interpolant at knot averages as
described in [10] to produce a variation diminishing spline approximation,
a shape preserving approximation that reproduces straight lines and pre-
serves convexity. We use the same technique for the boundary coefficients
if the boundary side is a straight line, or use DeBoor’s SPLINT routine [10]
to find coefficients that produce a cubic spline interpolant of the boundary.
For simple boundaries, the initial grid is often sufficient, but for more com-
plicated or highly nonconvex boundaries we can improve the grid by using
a variational technique to find coefficients that minimize the functional

F =

∫

I2

(

w1

{

(

∂J

∂ξ

)2

+

(

∂J

∂η

)2
}

+ w2

{

∂T

∂ξ
·
∂T

∂η

}2

+ w3{uJ2}

)

dA

(2)
where T denotes the grid generation mapping, J is the Jacobian of the map-
ping, w1, w2 and w3 are weight constants, and u represents external criteria
for adapting the grid. The integral controls mesh smoothness, orthogonal-
ity, and depending on the definition of u, the adaptive concentration of
the grid lines. When solving pdes, u might be the gradient of the evolving
solution or an approximation of truncation error. Ideally, for our problem,
we want u to be based on curvature and gradient information related to
the function surface. We have made a slight modification of the integral
we used in [9]. The adaptive term w3{Ju} has been replaced by w3{uJ2}.
The new term produces a better concentration of grid lines, and also can
be shown to be equivalent to the adaptive term used in the variational
technique of Brackbill and Saltzman [11],[12].

To avoid solving the Euler equations for the variational problem, F is
approximated in the computer code by the sum

G =
∑

i,j

w1

[

(

Ji+1,j − Jij

△ξ

)2

+

(

Ji,j+1 − Jij

△η

)2
]

△ξ△η

(3)

+
∑

i,j

w2Dot2ij△ξ△η

+
∑

i,j

w3uijJ
2
ij△ξ△η

where Jij is the Jacobian value, uij is the value of u, and Dotij is the dot
product of ∂T/∂ξ and ∂T/∂η at mesh point (ξi, ηj) on the unit square.
When w3 = 0, G is actually a fourth degree polynomial in each spline co-
efficient so the minimum can be found by using a cyclic coordinate descent
technique which sequentially finds the minimum with respect to each coef-
ficient. This technique allows the minimization routine to take advantage
of the small support of B-splines when evaluating the sums that comprise
G.

-4

-2

 0

 2

 4

 6

 8

 10

 12

-2 0 2 4 6 8 10 12
-4

-2

 0

 2

 4

 6

 8

 10

 12

-2 0 2 4 6 8 10 12

Figure 2. Initial and optimized puzzle grids.

In Figure 2 we applied the algorithm to a puzzle shaped domain. The
initial grid, constructed using linear Lagrange polynomials for the transfi-
nite blending functions, is shown on the left. Note the extreme amount of
folding in the interior and the overlap of boundary lines. The grid on the
right shows the mesh obtained after the spline coefficients are modified to
minimize G with weights w1 = 2, w2 = 5, and w3 = 0. The overlapping

grid lines have been pulled into the interior. When a grid line folds over
a boundary or over another grid line in the interior, the Jacobian value
changes sign. The Jacobian terms of G try to minimize the changes in
the Jacobian between adjacent grid cells. Consequently, lines outside the
boundary are pulled into the interior and interior grid folding is eliminated.
In the original code[4], this effect was obtained by computing the interval
for each coefficient that would guarantee that the Jacobian remained posi-
tive, but experimenting showed this to be a time consuming procedure that
was not needed in most cases. Gonsor and Grandine use the same idea to
obtain similar results in [13].

4. Results

We have used boundary/contour grid generation to facilitate the develop-
ment of over two hundred visualizations for the NIST DLMF. To create a
visualization, we first compute the contours for the upper and lower ranges
of the function we want to graph. We then connect the contour curves with
the parts of a rectangle to create a closed boundary for the grid generation
algorithm. If the boundary is very complicated, the computational domain
is divided into several sections. The function is then computed over the
computational grid to produce data points that are placed into a VRML
or X3D file format to produce an interactive display on the web. Figure 3
shows the computational domain grid and a snapshot of the DLMF display
of Struve function Hν(x). To create the grid we used the contour, or level,
curves where Hν(x) = 4, the maximum height we want to display, and
Hν(x) = −3, the minimum height. The dark horizontal bar on the grid is
a concentration of grid lines designed to ensure the accurate representation
of a pole.

In Figure 4 we revisit the incomplete gamma function γ∗(a, x) that was
shown in Figure 1. One of the features that will be available to users
of the DLMF is the ability to scale down the surface in each coordinate
direction. Scaling the surface representation of γ∗(a, x) down to near zero
in the vertical direction produces the density plot shown on the left in
Figure 4. The density plot also shows the outline of the computational
domain grid used to produce the surface on the right. Note the accurate
clipping of the surface and the smooth color map.

All the visualizations in the NIST DLMF represent either real-valued or
complex-valued functions of the form, w = f(x, y). For complex-valued
functions, the user has the option of using a height based color mapping
where height = |w|, or a mapping based on the phase, or argument, of w.

Figure 5 shows a plot of the modulus of the Hankel function H
(1)
5 (z) with

1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

4

Figure 3. Grid and plot of Struve Function Hν(x)

Figure 4. Density plot and plot of Incomplete gamma function γ∗(a, x).

a phase based color map. On the left is a phase density plot obtained by
scaling the figure down in the vertical direction. A branch cut, zeros and
pole are visible in the figures.

In Figure 6 we attracted grid points in an equally spaced square grid to a
circle and a sine curve, respectively. To obtain the attraction to the circle
we defined the u in the adaptive term of our functional approximation G
by

u(x, y) = e−20[(x−2)2+(y−2)2−2.25]2 (4)

Figure 5. Plot of Hankel function H
(1)
5 with phase colormap.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 6. Grids adapted to circular and sinusoidal shapes.

and for attraction to the sine curve we defined

u(x, y) = e−30[1.4 sin(πx/2)+2−y]2 (5)

where x = x(ξ, η) and y = y(ξ, η) are the coordinates defined by the
tensor product spline mapping in equation (1). For both grids we chose
the smoothness weight, w1 = .2, the orthogonality weight, w2 = 1.0, and
the adaptive weight, w3 = 10. In earlier work [9] we defined u strictly
in terms of the curvilinear coordinates ξ and η, and chose the parameters
of u so that the curves would lie completely within the unit square. This
definition guaranteed that the grid lines were attracted to a circle (or sine
curve) in the unit square I2 but not in the xy plane. Choosing u in this
manner allowed us to quickly test the affect of u with few modifications to
our code since the functional approximation G remained a fourth degree
polynomial in each spline coefficient. To show the effect of u we simply
mapped the unit square to a larger square.

However, defining u in terms of x and y means that a more general mini-
mization code must be used to deal with the possible nonlinear dependence
of u on the spline coefficients. This was necessary in order to get closer
to our goal of adapting our grids to function curvature data. Preliminary
progress was made by using Nash’s truncated Newton algorithm [14], but
we eventually settled on a more simple nonlinear solver, L-BFGS-B [15],
which converges much slower, but is very robust.

We know that the minimization of G must also include the adjustment of
the boundary coefficients, but this must be done carefully so that we obtain
a reparameterization of the boundary curves without altering the shape. We
can then concentrate on defining a u that captures the necessary function
gradient information, but we realize that the specialized nature of some
high level mathematical functions may make it challenging to access and
link the codes needed to compute the data.

5. Conclusions

We have used boundary/contour fitted grid generation to complete over
two hundred interactive 3D visualizations for the NIST Digital Library of
Mathematical Functions. Our tensor product B-spline technique has helped
us address many problems that appear in commercial packages including
the inaccurate resolution of poles, bad clipping, and poor color mappings.
Although the clarity of the surface color map is still an issue in areas
where the gradient is large, we believe this can be improved by using an
adaptive technique based on function gradient and curvature information.
The adaptive method should also result in smaller data file sizes, which can
improve the efficiency of some of our interactive features.

As primary developers of the graphs and visualizations for the NIST DLMF
project we must tackle several issues simultaneously, including the produc-
tion of the visualizations, data validation, the availability of VRML/X3D
plugins, and accessibility on major platforms, but we have made steady
progress toward the development of the adaptive code. We have success-
fully adapted our grids to curves using adaptive criteria having a nonlinear
dependence on the spline coefficients.

We are currently incorporating the adjustment of the boundary coefficients
into the minimization functional. Once that work is completed, we will
focus on describing suitable adaption criteria to capture gradient and cur-
vature information, and integrating the computation of this function infor-
mation with the grid generation code.

.

Disclaimer

All references to commercial products are provided only for clarification of
the results presented. Their identification does not imply recommendation
or endorsement by NIST.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables. National
Bureau of Standards Applied Mathematics Series 55, U.S. Government
Printing Office, Washington, D.C., 1964.

[2] B. V. Saunders. A boundary conforming grid generation system for
interface tracking. J. Computers Math Applic., 29:1–17, 1995.

[3] B. V. Saunders. The application of numerical grid generation to prob-
lems in computational fluid dynamics. Council for African Ameri-

can Researchers in the Mathematical Sciences: Volume III, Contem-

porary Mathematical Series, American Mathematical Society, 275:95–
106, 2001.

[4] B. V. Saunders. Algebraic grid generation using tensor product b-
splines. NASA CR-177968, 1985.

[5] VRML. The Virtual Reality Modeling Language. International Stan-
dard ISO/IEC 14772-1:1997.

[6] R. Carey and G. Bell. The Annotated VRML 2.0 Reference Manual.
Addison-Wesley, Boston, 1997.

[7] D. Brutzman and L. Daly. Extensible 3D Graphics for WEB Authors.
Morgan Kaufmann (Elsevier), San Francisco, CA, 2007.

[8] B. V. Saunders and Q. Wang. From 2d to 3d: numerical grid generation
and the visualization of complex surfaces. In B. K. Soni, J. F. Thomp-
son, J. Haeuser, and P. R. Eiseman, editors, Proceedings of the 7th

International Conference on Numerical Grid Generation in Computa-

tional Field Simulations, Whistler, British Columbia, Canada, Septem-
ber 2000.

[9] B. V. Saunders and Q. Wang. From b-spline mesh generation to effec-
tive visualizations for the nist digital library of mathematical functions.
In P. Chenin, T. Lyche, and L. Schumaker, editors, Curve and Surface

Design: Avignon 2006, Nashboro Press, Brentwood, 2007.

[10] C. de Boor. A Practical Guide to Splines, Revised Edition. Springer-
Verlag, New York, 2001.

[11] J. U. Brackbill and J. S. Saltzman. Adaptive zoning for singular prob-
lems in two dimensions. J. Comput. Phys., 46:342–368, 1982.

[12] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid

Generation: Foundations and Applications. North Holland, New York,
1985.

[13] D. Gonsor and T. Grandine. A curve blending algorithm suitable for
grid generation. In M. L. Lucian and M. Neamtu, editors, Geometric

Modeling and Computing: Seattle 2003, Nashboro Press, Brentwood,
2004.

[14] S. G. Nash. Newton-type minimization via the lanczos method. SIAM

Journal on Numerical Analysis, 21(4):770–788, 1984.

[15] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific and

Statistical Computing, 16(5):1190–1208, 1995.

