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CONFIDENCE INTERVALS FOR INEQUALITY-CONSTRAINED
LEAST SQUARES PROBLEMS, WITH APPLICATIONS TO

ILL-POSED PROBLEMS*

DIANNE P. O’LEARY" AND BERT W. RUST

Abstract. Computing confidence intervals for functions b(x) wT"x, where Kx y + e and e is a normally
distributed error vector, is a standard problem in multivariate statistics. In this work, we develop an algorithm
for solving this problem if additional information, x-> 0, is given. Applications to estimating solutions to
integral equations of the first kind are given.
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1. Introduction. Consider the linear model

(1.1) Kx=y+e

where K is a known m n matrix, y is an m 1 vector of observations, x is the
unknown solution vector, and e is an unknown m 1 error vector. The usual case is
that rn >= n. In this paper, we develop techniques for obtaining confidence interval
estimates on functions w T"x when extra information such as x _>-0 is known.

When the model above arises from discretization of ill-posed problems, such as
integral equations of the first kind, the matrix K is highly ill-conditioned, and small
changes in the right-hand side can make large changes in the solution x. Many
approaches have been made to finding realistic solutions to this problem. Implicitly
or explicitly, all of them make use of some extra information or side conditions, not
included in (1.1), in order to eliminate unreasonable solutions. We summarize some
of these methods below. Varah [20] gives a more extensive survey of some of the
methods and the effects of ill-conditioning.

(a) Regularization techniques [8], [12], [17], [18] favor solutions that are smooth
in the sense of having a small value of IILxll, where L is a given matrix. Choosing L
as a kth difference operator matrix forces the solution to have a small kth derivative.
The solution is obtained by solving

min {11 gx- y = / n Lx I1=}

where r/ is a given parameter. Large values of r/ force increasing smoothness; small
values allow better fidelity to equation (1.1).

(b) Projection techniques [2], [16] restrict x to lie in some subspace"

x= Bu

where B is an n x p matrix of basis vectors, p < n. The objective is then to solve

min KBu y .
The columns of B are chosen to admit only those solutions which are smooth or have
some other desirable property. The truncated singular value decomposition is one way
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to choose B in a data-dependent way in order to force the solution vector to be of
small norm.

(c) Side conditions [1], [7], [9], [13] may be used explicitly in order to eliminate
undesirable solutions. For instance, in many physical applications the solution is known
to be nonnegative, and may be estimated by

min Kx y .
x>__O

Confidence interval methods use statistical information on the distribution of e
in order to estimate the solution. In contrast to the methods above, these procedures
give not only an estimate of the true solution x*, but also a region which contains x*
with a given probability. That is, if a probability a is given and the experiment is
repeated many times, then the region will contain the true result 100c% of the time.
The vector e is assumed to be normally distributed with mean 0 and nonsingular
variance matrix S where S is symmetric. Then the best linear unbiased estimate of
the true solution is that vector which solves

min Kx y s,

where z z rS-z. For any linear function 4 wrx, the best linear unbiased estimate
w r)? is normally distributed about the true value 4*=wrx* with variance
wr(KrS-K)-w. For any given probability a, if is chosen so that

a= n(x; O, 1) dx,

where n(x; 0, 1) is the probability density function for the standard normal distribution,
then the interval 4LO, bUP] is a 100ce % confidence interval for b* when bLO and buP

are given by

wTy. + KwT(KTS-:ZK)-’W.
We can write 4LO and 4uP in another way, similar to the forms we will be using in
the next section. Using the technique of Lagrange multipliers, it can be shown that

tbLO min {wrx: IIK(x-)ll =},

4uP= max {wrx" IIg(x-)ll =t.

Note that a confidence interval can be given for any component x* of the solution
vector by choosing w equal to the ith unit vector.

In this paper we combine the techniques of confidence interval estimation and
the use ofinequality constraints as side conditions to develop a mathematical framework
and some numerical techniques for computing bLO and 4uP satisfying:

Prob {(LO < I) * < I) UP} O

when it is known a priori that

x*=>0.

This work can be considered an extension of the work of Cope and Rust [7] on
confidence interval estimation with inequality constraints. The case of linear equality
constraints has been rather well-studied; see, for example, Rao [13]. In this paper,
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some statistical background is discussed in 2, algorithms are presented in 3, and
computational results are given in 4.

2. Statistical framework. Throughout this work we make the following assump-
tions"

(a) Kx=y+e.
(b) e---N(0, $2), where S is nonsingular symmetric.
(c) It is known a priori that x is nonnegative.

See Bard [3, p. 180] for a discussion of the implication of (c) on the form of the
distribution.

In this section we present the results that define the computational task of
computing a confidence interval for b w Tx.

THEOREM 1. Under the assumptions above, the probability that qb is contained in
the interval [bLo, btJP] is greater than or equal to a, where

btP
max Tx: < > 0},LO=
min

{w IIKx-Ylls =, x-

rank (K) q,

foY2 Xq(p) dp ot,
2

r0 min II/(x y ,
2 2

/x =r0+7
2and Xq is the probability density function for the chi-squared distribution with q degrees

offreedom.
Proof. If /x

2 is chosen as stated above, then {x" IlKx-ylls_<-} is a 100a%
confidence region (ellipsoidal) for the true x* [15, 6.4]. (Note that this makes no
use of the information that x is nonnegative.) At the same time, the region {x" x->_ 0}
is a 100% confidence region. Intersecting the two, we find that {x" [[Kx-y[[s <- tz, x >- 0}
is a 100a% confidence region for x*. Thus, for b w x, a 100a% confidence interval
is given by [bLO, btP], where bLO and btP are, respectively, the maximum and
minimum of b over this set.

In some cases the procedure outlined by this theorem could fail to give useful
information. The set over which the maximum and minimum are taken could be null,
although a nonnull set always exists for y large enough. Further, unless w is orthogonal
to the null space of K (i.e., unless w satisfies an estimability condition), the interval
could be infinite for all a; however, the interval could have one or two finite endpoints
even if w does not satisfy this orthogonality condition, and this technique could give
information on b even in these cases where, without the side conditions, a minimum
variance unbiased estimator fails to exist.

Note that if several vectors w, v 1,. ., N are given, the procedure above gives
Tsimultaneous confidence intervals for all b wx,.since the region over which the

maximum and minimum are taken is a 100a% confidence region for x*; i.e., the
probability that all rwx are in the computed intervals is 100a%.

LEMMA 1. Let

L(b) min {llKx-ylls: x->0, w’x-4}.

Then L(qb is unimodal, piecewise quadratic, differentiable, and convex.
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Proof. L(dp) is the objective function value for a convex parametric quadratic
programming problem. This is the essence of the argument proving the lemma. A more
detailed discussion follows, since this argument forms the basis for algorithms in the
next section.

Let I be a set of indices, let I be its complement in the set {1, 2,..., n}, and
hold xi at zero for i/. We partition the x vector as (x, x), and partition K and w
to conform to it. Then, using Lagrange multipliers, the solution to the problem

(2.1) L(b, I)=min (llgx-ylls: xr-O, wx
is determined by

If K is not full column rank, then the solution may be nonunique, but we will take
the solution x xf +x with the smallest null space component x needed to keep
x _-> 0. For a given index set I, xf is a linear function of 4, and L(4, I) is convex and
quadratic in 4. Furthermore, it is clear that

L(b nan {L(b, I)" x, >= 0}.

The vector x for which this minimum is achieved is a continuous function of 4, and
therefore L(b) is a continuous and differentiable function of b. Let minx
YlI: x >_-0) be attained at . (If the minimum is achieved at a set of points, let be
any,one for which w7 is minimal.) Let w’. Then L(b) has a global minimum
at th. A sketch of L() is given in Figs 1. In the following discussion we assume that
a designated point b is greater than b. The argument for < is analogous.

FIG. 1. The L( dp curve, showing various quadratic segments. The points LO and <buP

the dp axis.

are indicated on
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Let > be the first point where an index j needs to be dropped from the index
set I (because x has been driven to zero and would go negative if it were kept in the
set), or a variable needs to be added to the index set (because using it produces a
smaller function value without violating any constraint). Then the set of equations
defining x as a function of $ has one fewer or one extra degree of freedom, but L($)
over the next interval (i.e., until the index set changes again) is still convex^ and

quadratic. Let I denote the previous index set, and ! the index set for $ => $. Since
dL(ck, I)/dck dL(, I)/ dck and dL(, I)/dck >-_ O, then L(b, f) must be monotone
nondecreasing for b >- b.

This argument can be repeated on all intervals beyond this one,’thus establishing
the result.

THEOREM 2. The values UPLo are defined by the two extreme roots ofL(b [d,
2 O,

where L(b) minx {11Kx y : x >_- 0, wrx bt.
Proof. We sketch the proof for &LO; the discussion for buP is analogous.
Let 6LO minx {w TX" II/ y <-, x >_- 0t and let XLO be an x vector for which

the minimum is attained. Similarly, let bLO and LO be the corresponding minimal
root and x values for L(b)-/x2= 0. Then

L((LO) K:LO y 2, )LO > 0, and wTLO (LO-
Therefore,

tDLO min {w TX" Kx y =, x >- 0} - tLO,

since LO is one of the candidate points in the minimization.
On the other hand,

L(bLO =min {llKx-yll" x->0, wx o} <- II/o-yll--< =,
since XLO is one of the candidates in the minimization. Thus L(bLO) -<- /x 2, and, since
by Lemma 1, L(b) is unimodal and convex, this implies that bLO => bLO. Thus bLO
tLO-

3. Algorithms for constrained interval estimation. Two approaches to solving
L(&) =/z

2 are discussed in this section. Methods for finding &LO are discussed; methods
for computing &uP are analogous. The algorithms are written under the assumption
that K has full column rank. Modifications for the rank deficient case are possible but
tedious.

3.1. Tracing the L() curve. Conceptually, the simplest approach for finding LO
is to start from a known lower bound bo (or some other convenient point) and follow
the L(b) curve until it crosses/2. This is a parametric quadratic programming problem
as b varies:

(3.1) min {[[Kx-yl[: x_-> 0, wrx=}.

The optimal values of the objective function form a piecewise quadratic function of
b; the nodes occur where variables x change from zero to positive or vice versa. The
algorithm is as follows"

ALGORITHM TRACE
1. Solve (3.1) for b bo and set bNODE bNEW bo.

22. Until L(bNEW) </z
Let tNODE INEW.
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Find the next node, the minimum value )NEW> I)NODE such that a variable
xj changes from zero to positive or vice versa.

3. The value bLO is now known to satisfy (NODE tLO ( (NEW" It can be deter-
mined by solving a quadratic equation.

We now provide more details on each step.
Step 1. The problem (3.1) can be solved, for example, by the code WNNLS of

Haskell and Hanson 10], but Step 2 is done more efficiently using an algorithm from
which matrix factorizations are accessible. We will present such an algorithm in 3.2.

Step 2. By equation (2.2), the value of x over a particular quadratic segment can
be determined by

where

Thus

XI(NODEd-A)] [Xl(NODE)] q_AA-I [0]/ NODE -" At) ’ (NODE) 1

and it is easy to find the minimum positive Ab which drives a variable in xt to zero.
Similarly, the minimum positive A for which a variable in xr becomes positive can
also be determined. Note that the optimality conditions for (3.1) are

x 0, e I,

xf 0, xf 0,

0.

Thus a variable in I is released from zero when the corresponding value is driven
to zero, and the first equation block above can be used to calculate as a function
of .

Step 3. To find o, note that

(4 (( ylS-((-yl

and, from Step 2,

x( Xo+d
where d is a computable column vector. Thus,

g() g(o)+agS-(Kxo-y)+()gS-ga,

and solving L() just involves finding the root of the quadratic equation in the
inteal [o, w].
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Algorithm Trace is appealing in its simplicity, and is quite efficient and adequate
for well-conditioned problems. In practice, however, it does not work well on the
ill-conditioned problems of interest to us. Degeneracies are often encountered in which
the index set I makes several changes with no appreciable change in b. Computa-
tionally, this can cause an infinite loop, with variables entering and leaving the set I
without changing L or NODE" A more robust although somewhat more expensive
approach is given in the next section.

3.2. Rootfinding for L()=/.t. This approach amounts to applying a nonlinear
equation solver to L(b)=/2, solving a quadratic programming problem whenever a
function evaluation is needed. The simplest example is:

ALGORITHM BRENT-WNNLS
Brent’s program ZEROIN [5] is used as the rootfinder, and Haskell and
Hanson’s WNNLS [10] is used to evaluate L(b).

This algorithm has the advantage of being easy to program, but loses efficiency
in two ways: ZEROIN does not take advantage of the piecewise quadratic nature of
the function, and WNNLS solves each problem starting with the guess x 0, taking
no advantage of previous information. Efficiency can be gained by tailoring the
rootfinder and the quadratic program solver to this application. We discuss these two
alternate algorithms in turn.

Hanson and Haskell’s WNNLS, based on Lawson and Hanson’s NNLS [11],
solves the problem

by converting it to

min Kx Y , x >- O,

S_IK x- S_ly

where a is a large weight, related to the wordlength of the machine, so that the equation
wTx b is satisfied to within a very small tolerance. We modify the algorithm NNLS
to

1) Start from the solution to the previous problem rather than from x 0.
2) Compute and save the orthogonal factorization of the least squares matrix in

a form usable for side calculations in the rootfinder.
A description of the algorithm follows. The numbering of the steps parallels

Lawson and Hanson’s description in [11, p. 161].

ALGORITHM LS.
Saved from previous solution: the index set I of nonzero x variables and a
factorization

S-1K .]
QR,

1. Compute x from

such that QTQ I, and R upper triangular

XT=0.S-ly

If any xj < 0, drop such indices j from I and such columns j from the QR
factors and repeat this step.
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2. Compute the residual r and negative half gradient g:

r=
S_ly S_IK x, g=[aw, KrS-1]r.

3. If gr =< 0 or if I is null, then the optimal solution has been found.
4. Let gt maxj r gj.
5. I I U {t}. Add column to the QR factors.
6. Compute z from

Re, 07"[ z/=O.S-ly
7. If Z 0 then let x z and go to Step 2.

8-9. Otherwise, a variable needs to be dropped Find an index q I such that

,Xq min x
Xq Zq =o x- z

jl

10. Let x=x+(z-x).
11. Let I I\{j’x 0}. Drop column q (and any others for which the x com-

ponent is zero) from the QR factors. Go to 6.

The QR updating and downdating in LS can be performed using a modified Gram-
Schmidt algorithm.

Tailoring the rootfinder to the piecewise quadratic nature of the L(qb) curve also
enhances efficiency. We present an algorithm which keeps the root bracketed but bases
its new prediction on a quadratic extrapolation of the function.

ALGORITHM BRACKET
Given" an initial interval ba, bb] containing a single root, and two convergence
tolerances el and e2. Let A4 0 and let qb- (b if looking for bLO and 4)= ba if
looking for tk ta. Until I(b -bb)/tkl < el or I(L(tk)-/xE)//z21 < e2, perform steps
1 through 5.
1. Let ArnOLD A
2. Make a prediction of the root, b / A4, based on the current quadratic segment:

Find AckT- such that L(tk + AbT) =/x
2 assuming that no basis changes occur. This

involves solving a quadratic equation for AbT. Set Ark Ab.
3. If Abr is too small, increase it"

If IAthT-] < .9ellq] then

4. Reject the quadratic prediction if
a) convergence is linear (i.e., AboLD/Ab is close to 1), or
b) the new prediction 4 + A4r does not fall within the current interval, or
c) the change in 4) is small and both the new and the old b values are on

the same side of the root (i.e., AbAb and (L(b)-tz)
((+A)-)> 0).

In these cases, use the bisection algorithm (i.e., set b (b, + bb)/2). Otherwise,
b is set equal to the quadratic prediction b b + AbT.

5. Evaluate L(b). Shorten the interval known to contain the root: if
(L(dpa)-1,2)(L(dp)-tz2)>O then )a t; otherwise, bb b.

Algorithm Bracket-LS has been successful on many ill-conditioned test problems.
Examples are given in the next section.
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4. Numerical results. We present the results of numerical experiments on two
problems. The first is a standard test problem, and we use it to compare the performance
of several algorithms. The second is a problem in radiation physics, presented to
demonstrate the practical utility of the Bracket-LS algorithm.

Example 1. The Phillips equation [12] is as follows:

6

K(t, s)x(s) as y(t), Itl <_-6,
-6

where

and

1 +cos (Tr(s t)/3),
K(t, s)=

O, Is-tl>=3,

(6- Itl)[1 +.5 cos (rt/3)]+9/(27r) sin (Trlt[/3),
y(t)

0,

The solution is

1 + cos 7rs/ 3), =< 3,
x(s)- o, Isl>3.

We approximate this problem by

Kx=y+e

where yi y(h) and the t are midpoints of 78 intervals of equal length in the interval
[-6, 6], and the quadrature is performed by the trapezoidal rule with 48 intervals of
equal length on [-3, 3]. Then K is a matrix of dimension 78 x49 and ro=0. The
diagonal elements of the matrix S were taken to be s, 10.4 yi and /x was taken to
be 9.792, corresponding to a .9999. The a priori information is that the x vector is
nonnegative, and the vectors w are chosen to give nonoverlapping three point averages
of the x function using weights (1/4, 1/2, 1/4) for each triplet of adjacent components
of the x vector.

The initial interval was determined in two ways"
(1) The "naive interval" is

0<-xj <- min j=l,...,n.
<-i<-m

For matrices with nonnegative components, this defines a box containing the intersec-
tion of the ellipsoid {x: IIKx-ylls_<-z} with the positive orthant [7].

(2) The "FERDIT interval" is the interval determined by one iteration of the
algorithm described in [7]. This is a method for determining suboptimal confidence
intervals by minimizing or maximizing wrx for x-in an ellipsoidal region containing
the intersection of {x: [IKx-y[[s<= Ix} and the naive interval above.

We show the results of several experiments. Figure 2 shows the confidence intervals
obtained by standard methods, without the inequality constraints. The lengths are of
order 104, reflecting the 105 condition number of the rank 42 matrix K, although the
true solution is of order 1. Figure 3 shows confidence intervals obtained by requiring
that the solution be symmetric in its variable. This corresponds to adding equality
constraints and reduces the condition number to 10 The confidence intervals now
are of order 10 Even the naive bounds give more information than this: the solution
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I"

FIG. 2. Standard confidence intervals for the 78 49 Phillips problem. The dotted line plots sample values
of the true solution to the continuous problem.

FIG. 3. Standard confidence intervalsfor the 78 49 Phillipsproblem, using the constraint that x is symmetric
around the point s O. The true solution is represented by the dotted line.

is bounded by 0 and 35. Figure 4 gives the estimated 99.99% confidence bounds using
the inequality constraints. The intervals now have a maximum length of less than 2.
Figure 5 presents the bounds obtained using the inequality constraints and the symmetry
condition.
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,’b ,q, ,,," ",," q, ’b

FIG. 4. Confidence intervals for the 78 x 49 Phillips problem, using the constraint that x is nonnegative.
The true solution is represented by the dotted line.

FIG. 5. Confidence intervals for the 78 x 49 Phillips problem, using the constraints that x is nonnegative
and symmetric around the point O. The true solution is represented by the dotted line.

Table 1 gives the performance statistics for various algorithms used to compute
the results shown in Fig. 4. The runs were performed in FORTRAN single precision
on a UNIVAC 1100/82. The table indicates the number of digits accuracy requested
in the b bounds, the run time (including FERDIT, if used), and the "basis changes",
i.e., the number of changes of the index set I in Algorithm LS. The FERDIT iteration
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TABLE
Algorithm performance on example 1.

Algorithm Digits accuracy Time (min.) Basis changes

Brent-NNLS
naive interval 4 25.0 53,314

Brent-LS
naive interval 4 22.9 18,704
naive interval 3 13.9 10,993

Bracket-LS
naive interval 4 8.9 6,220
naive interval 3 8.8 6,194
FERDIT interval 4 4.8 2,081
FERDIT interval 3 4.6 1,982

took approximately .6 minutes on this problem and gave upper bounds within a factor
of 3.2 ofthe true three point averages, but most lower bounds were 0. The best algorithm,
Bracket-LS with FERDIT, was 5 times faster than Brent-NNLS. Most of the improve-
ment comes from the use of Bracket rather than Brent, and the use of initial interval
information from FERDIT.

On other test problems, FERDIT continued to prove useful. If the initial bounds
were close to optimal, FERDIT sometimes increased the cost of the algorithm, but on
problems where the initial bounds were crude, it often led to large savings.

Example 2. We now consider the spectrum unfolding problem which arises in
radiation physics. The integral equation is

Zup
K,(E)x(E) dE =y,+ e,, i= 1, 2," ", m,

ELO

where x(E) is an unknown energy spectrum, Yi is the number of particles or photons
counted in channel of a multi-channel analyzer, and Ki(E) is the spectrometer’s
energy response for channel i, (i.e. K(E) dE is the probability that a particle or photon
in the energy range E +1/2 dE will produce a pulse which gives a count in channel i).
Figures 6a and 6b show two views of the response function for an NE-213 neutron
spectrometer which has been described in detail by Verbinski et al. [21] and by Burrus
and Verbinski [6]. The figures show a piecewise linear discretization Ko to be used
with the finite approximation equations

Kjxj y + , 1, 2, , m,
j=l

where xj is the total number of neutrons in the jth energy interval (Ej + dE). The
values of m and n were taken to be 113 and 77 respectively, but in the interest of
graphical clarity, the figure shows only every 3rd ordinate in each of the two abscissa
directions. In order to show the structure for the higher energies, we have plotted the
base 10 logarithm of (1 + K) rather than the response function K itself. The mesh
spacings for both energy and pulse height vary over their entire ranges, with narrower
meshes being used for lower energies and pulse heights.

Ideally a response function should be a narrow, symmetric, sharply-peaked ridge
centered along some linear relation between energy and pulse height. It is clear from
the figures that the NE-213 spectrometer response function has none of these properties
and that the measured pulse height spectrum will be a poor representation of the actual
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Ca)

FIG. 6. The instrument response function which protides data for the matrix K for the second example.

energy spectrum. Figure 7 shows the plus and minus one standard deviation bounds
for the measured spectrum of monoenergetic neutrons produced by the nuclear reaction
T(d, n)4He, (i.e. tritium nuclei bombarded with deuterons to produce helium nuclei
and the neutrons whose spectrum was measured). It is assumed that there are no
correlations between the numbers counted in separate channels and that the number
in each channel is normally distributed. The variance matrix S is then an m x m
diagonal matrix whose diagonal elements are one-half the widths shown in the figure.
It is assumed that the standard deviations are known exactly so that chi-square statistics
can be used rather than F-distribution statistics. In reality the standard deviations are
not really known exactly but the estimates for most channels are very accurate because
they are based on large numbers of counts in each channel. The standard deviation
estimate for the number counted in each channel was the square root of the number
counted (see Trumpler and Weaver 19, pp. 166-169] except that in channels containing
only a few counts the estimates were chosen to be larger than this in order to assure
that they were conservative. Figure 7 shows not the actual raw counts but rather a
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OBSF__,RVgD COUNTS

PULSE HEISHT
FIG. 7. The instrument output, which provides data for the standard deviation matrix and the right-hand

side function y for the second example.

normalization which was required to correct for instrument gain effects that need not
concern us here.

Since it is hopeless to try to estimate x(E) at each energy E we seek instead to
estimate averages of x(E) over various energy ranges. A common practice is to estimate
weighted averages with Gaussian weighting functions. Accordingly we seek estimates
of the quantities

Cbk(E)=I;Wk(E)x(E)dE k=l,2,. -,p,

where

Wk E
I

crkv/- [ 1 ]
with the peak energies Ek chosen to cover the same energy range as the response
functions and each peak width rk chosen to give the energy resolution desired in the
neighborhood of Ek. The weighting functions wk(E) are called window functions and
are tabulated at the same energy mesh points as the instrument response functions.
The result is a set of window vectors

Wk=(Wkl, Wk2," Wk,)T, k= l,2, ,p,

and the "unfolded spectrum" is the set of p points (Ek, k) where

qbk WkjX WX, k: 1,2," ",p.
j=l

Note that this procedure, in effect, replaces the real instrument response functions
with the window functions so that the unfolded spectrum represents the measurements
that would have been obtained using an instrument whose response functions were
the latter rather than the former. The set of window vectors actually used is shown in
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Fig. 8. The total number of window vectors was 105, with each vector being tabulated
at n 77 points. The windows widths irk were all chosen much smaller than the total
energy range (0-20 Mev) so that most of the 77 elements in each vector were negligible
and therefore set to zero. Note that the higher energy windows are wider than those
at lower energies. The widths chosen reflect the experimentalist’s estimate of the degree
of energy resolution obtainable at each energy. All of the windows are normalized so
that

dE 1.0, k= 1,2," ",p.

Note that we have again plotted loglo (1 + Wkj) rather than the Wkj themselves.
To obtain an estimate ofthe "unfolded spectrum" we first computed the confidence

intervals by the standard method. The results are shown in Fig. 9, which is a plot of

FIG. 8. The window vectors w for the second example.

F:.STIMRTED SPE:CTRU
:3.0

2.0

1.0

0.0

-I .0

-2.0

FIG. 9. Standard confidence intervals for the second example.

wlO’
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the bounds b and bJP as a function of Ek, k 1, 2,"., 105. The value of/x 2 was
chosen so that each of the intervals b, bP] was an a 99.99% confidence interval.
The value of ro minx I[Kx-ylls was 38.048, and we calculated 3,2 from the asymptotic
formula

3,2= 1/2[K +v/2S 1]2

where N is the number of degrees of freedom and K is the percentage point of the
cumulative normal distribution corresponding to confidence level a [4, p. 293]. For
the present problem, the value of N should ideally be the rank of the response matrix
but this is difficult to determine reliably, so we used the most conservative estimate
N= n =77. We used =4.0 which gives t =0.9999. The value of /x

2 was then
computed by tx2=ro+ 3,2. In Fig. 9 the computed bounds b and bkUP were joined
by straight line segments to form an estimated uncertainty band.

An experimentalist would expect a peak in the spectrum between 13 and 14 Mev,
but there is no evidence of this in the standard confidence interval estimates. We
applied Algorithm Bracket-LS to each of the window vectors, yielding the results
shown in Fig. 10. The spectrum in Fig. 10 is dominated by a single peak centered at
about 13.8 Mev and with a full width at half maximum of about 1.5 Mev. Part of this
width (about 0.6 Mev) can be attributed to the inherent resolution limit of the instru-
ment, but the remainder arises from the choice of the window function widths rk for
the windows centered in the neighborhood of 14 Mev. The width of the peak can be
reduced by choosing smaller window widths crk, but this procedure also produces wider
confidence intervals b, bJP]. Thus, in choosing window widths, it is necessary to
balance statistical uncertainty against energy resolution. If the windows are too wide,
details in the spectrum are smeared out and lost. If they are too small the widths of
the confidence intervals become excessively large. Three or four digit accuracy can be
achieved in 22.1 minutes using FERDIT and Bracket-LS, or in 26.7 minutes without
FERDIT.

Acknowledgments. We are grateful to Claire Wolfe for preparing the three
dimensional plots and to G. W. Stewart for providing Gram-Schmidt software.
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