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Abstract

This paper examines errors in the estimated solution vec-
tor X to the linear regression problem

y=Kx'+¢, €& =o, g(eaT):sz ,

when the dominant uncertainties are the measuring er-
rors €. Backward error analysis gives the hopelessly pes-
simistic bound
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by assuming the worst possible combination of random
errors, an extremely unlikely occurence for nontrivial
problems. A statistical treatment yields a more realistic
bound on the expected uncertainty in a single element
2; which does not depend on cond(S~!K). Classical
regression theory provides easily computable confidence
intervals for the individual Z; separately.

Notation and Test Problem

Statisticians write the m X n linear regression model as
Y:X,B—i—e,é’(e):o,é’(eeT):Ez, (1)

where Y is a measured m-vector containing measuring
errors €, X is a known m X n matrix with m > n =
rank(X), and 3 is the vector to be estimated. Numerical
analysts write the linear least squares problem as

2 . 2
= m b— A 2
PLs a:E}l?I}” I zll3, (2)

where b is the measured m-vector, A4 is the m xn matrix,
z is the vector to be estimated, ||b— Az||2 is the squared
two-norm of the residual vector, and p%g is the mini-
mum sum of squared residuals. They usually assume
(but seldom state) the linear regression model

b= Az* +6b, £(6b)=0, £(6b6b7) =0L,, (3)

where I,,, is the mth order identity matrix, and the scalar
o is unknown.

Since choosing either of the above notations would
deeply offend one of the two schools, consider

§=Kx*+&, (&) =o, 5(&&T):s2, (4)

where y is the measured m-vector, and K is the known
m x n matrix with rank(K) = n. This notation is ap-
propriate when linear regression is applied to systems of
integral equations of the form

b
gi:/ Ki(€)z(€)de + &, i=1,2...,m, (5

where the §; are measured values, the K;({) are known
functions, and z(€) is the function to be estimated. Such
equations are widely used to model the effects of a mea-
suring instrument on the thing being measured. One
way to approximate z(£) is to replace the integrals with
quadrature sums, i.e.,
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where the w; are prescribed quadrature coefficients and
the #(¢;) form a discrete approximation to z(¢). It is im-
portant to choose n large enough so that the quadrature
errors are small relative to the €;. If the sums are substi-
tuted for the integrals in (5) and the products w; K;(€;)
collected into a matrix K, the result is the model (4).

A test problem capturing many of the salient features
of real instrument correction problems is obtained by
discretizing the Phillips [5] equation

y(t) = / K(t&e(@)d, 6<t<o, (1)
with

1+cos[@] , |€—t|<3

K(t,¢) = |t]<6 (8)

0, otherwise,



(6—1t])[1+ %COS (%t)]
yt) =9  + Zsin (),
0, otherwise .

[t]<6  (9)

The kernel K(t,€) is non-negative, with maximum value
2, attained on the line ¢ = £. The solution is

$(5)2{1+cos(%) , 1El<3 (10)

0 , otherwise

The functions y(t) and z(£) are plotted in Figure 1.
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Discretizing replaces continuous variables ¢ and £ with
meshes ¢;,7 = 1,...,m and &,j = 1,...,n. Choosing
m = 150 equi-spaced £; on —5.925 < ¢ < 5.925 and using
an n = 121 point trapezoidal rule on —3.0 < £ < 3.0 gave

vy =Kx*, (11)

where x* is a 121-vector of z(€;) computed by (10), and
yv* was computed by (11) rather than (9) to assure that
the € were the only errors in the model. The € were

obtained by random sampling from N (o, S?) with
S = diag(s1, 82, ---; Sm), s = (107%)y’, (12)

which means that the errors in the §; were in the 6th
digit. The discretized model can thus be written

y=Kx*, y=Kx*+¢é, é~N(o0,S?), (13)
and the least squares estimate
% = (KTS™?K) ' KTs %, (14)

computed by LINPACK subroutines DQRDC and
DQRSL [2], is shown in Figure 2. The dashed curve

L INPACK Method

x(£)
® > 2o r o ok r o @ o

|
[
o

-2.0 -1.0 0.0 1.0 2.0 3.0

£

Figure 2:

is z(t) and the jagged curve is the estimate. The large
oscillations are induced by errors in the 6th digit of the
9! Such ill-conditioning is typical of regression models
arising from discretized first kind integral equations.

Classical Perturbation Theory

To simplify the discussion in this section, let
b=S"'y, A=S"'K, sb=S"t¢, (15
and rewrite (13) as
b* = Ax*, b=Ax"+6éb, éb~N(o0,L,). (16)

The problem of interest is to find bounds for the errors
in the least squares solution X = (ATA)_lATB.

The traditional approach ignores x* and the statistical
assumptions about éb, seeking instead to bound the dif-
ference between estimates corresponding to two different
b vectors. One of these, b, corresponds to the problem

[|[Ax — bl|z = min = prs , (17)

and the other, b+ Ab, corresponds to a perturbed prob-
lem

(A + AA)% — (b + Ab)||2 = min, (18)

where Ab and AA represent the uncertainties in b and
A. The regression model assumes that A is known ex-
actly, or at least to much higher precision than b, but
numerical analysts argue that truncation errors arising
when A is read into a finite-accuracy computer should
be taken into account. A long and intricate argument
[3] leads to the following error bound:

Ei;ﬂh<5{24Ambm+wwﬂ“A”2}+o@%,

1112 VIbIZ - pis

(19)



where

_ { IAA]2
€ = Imax

1Al
||A||2 ? ? (20)

[Ibll2

and (A)

Omax o1
—_— = 21

Umin(A) On ( )

is the condition number which is just the ratio of the
largest to the smallest singular value of A.

While numerical analysts are fascinated by the trunca-
tion AA, people who actually make measurements usu-
ally insist on a computer arithmetic with enough preci-
sion to render such perturbations negligible in compar-
ision to the measurement errors. When the Computer
Acquisition Committee at the National Bureau of Stan-
dards was writing specifications for a new computer in
1984, some members insisted on a machine with 64-bit
single precision because 32-bit machines give only 6 to 7
digits of precision, and they routinely measured things
better than that. Accordingly, let AA = 0. This leads
to the more easily obtained [6] bound

k(A) = cond(A) =

1% — x|

1112

< cond(A)

which also depends strongly on cond(A).

Assessing the Classical Bound

The bound (22) is computable, but it does not relate a
computed estimate to x*. To obtain such a result, let

b=b"=Ax", Ab=46b~ N(o,1,), (23)
and replace problems (17) and (18) with

|Ax* —b*|l; = min=0, ||[A% — (b* + &b)|| = min .

(24)
The bound (22) then becomes
_ox* b
&= opg(ay EPI2 (25)
[Ix*]2 || Ax*||2

which is not practicable because it depends on x*. But
x* is known for the test problem, and this provides a
means for evaluating the perturbation bound. To restore

the original notation, substitute (15) into (25) to obtain

|I% — x| Cigey STl
BEZ2IR < cond(S™1K) o2 (26)
[I%* |2 IS~ Kx*||2
where
max S_lK
cond(s—1K) = Tmex(5TK) o1 o0

Omin(S71K) On

Multiplying (26) by ||x*||2 and squaring both sides gives

[cond(S~1K)]* ||x" |12
IS—1Kx*||3

1% —x"l2 < ISHellz . (28)

Since both sides are non-negative functions of the ran-
dom vector &, it follows that

cond(S~1K)]” [|x*[|3
E“—*2<[ £ (lIs—112) .
(HX X ||2) —= ||S_1KX*||% (H 6||2)
(29)
It follows from (1 ) that S—1le ~ ( o,L, ) which im-
plies [|ST¢||Z ~ x%(m), so € ( el %) = Therefore
2
m[cond(S_lK)] ||x*||2
g(lIIxk—xl3) < " o (30)
(I =<7l 5K |

which relates X to x*, but with the elements of |x — x*|
muddled together. To clarify, define |Az|pms b

Aaf,, =€

(1% =x="13)
(31)

1 e 1
~ I -] = ¢
j:l

so by (30),

m - ||X*||2
AZ|rms < — nd(S 1K —_— . 32
| | - (\/ n )CO ( )||S—1Kx*||2 ( )

The quantity |Az|mms is the expected root mean
squared absolute error for the components of X. The test
problem has ||x*||; = 13.82, o1(S7!K) = 3.3950 x 10°,

and 0121(S7!K) = 1.1610. Thus cond(S™!K) = 2.924 x
10°%, and by (12),
STIKx" = S~ 1y* = (105,105,...,10%7 ,  (33)

so ||ST1Kx*||; = 1.225 x 107. Substituting these values
into (32) gives |Az|pms < 3.67 x 103, a wildly pessimistic
bound. Figure 3 gives a componentwise plot of the actual
errors X —x* with the true values of +|Az|p.ms = £0.302
plotted as dashed lines.

The classical bound is hopelessly pessimistic because
it does not take the random nature of the errors into
Starting with a measured b and correspond-
ing solution x, it considers all measured vectors b 4 éb
with ||6b||2 < ||Ab||2. These vectors define correspond-
ing solutions x = x + éx, and to make the bound hold
with certainty for all b 4 éb, it assumes the worst pos-
sible combination of the 121 perturbations éb. When
the errors are drawn randomly, the probability of such a
combination is negligibly small.

account.



Errors in Estimated Solution Vector
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Figure 3:

Statistical Perturbation Bounds

A more reasonable bound can be obtained by considering
the statistical properties of the errors. By (13),

(x—x*)~N [0, (KTS""K)_l] , (34)
(x —x")TKTS2K(x — x*) ~ x*(n) (35)

whence
E{x-x")TKTS?K(x - x")}=n.  (36)

Now consider the singular value decomposition

S"IK=U f): )VT, ¥ =diag(o1,02,..-,0n) ,

UTU:Im: VTVZITL: 012032 :+20n.

(37)
Substituting into (36) and simplifying gives
” 2
£ ZU; [VT(&_X*)]]' =n, (38)
ji=1
and, since o, is the minimum singular value,
” 2
o€ [VIE—x")] p <n. (39)

ji=1

Dividing through by o2 gives

s w2 S n
£ V(% —x )]] =e{|IVT(x —x")|}3} < prl

J

n

(40)

The two-norm is invariant with orthogonal rotations, so

. n
e{llk-x"3} < —, (41)
U’n
whence, by (31),
1
|A$|rms <—. (42)
O
This bound is computable without knowing x*, and
does not depend on cond(S™'K). For the test problem,
|Az|rms < 0.861, which exceeds the true value by a fac-
tor of only 2.85.

Confidence Intervals

Both the classical and statistical perturbation analyses
are rendered moot by confidence interval calculations. If
% is the least squares solution for the model (13), then

£~ N [x", (KTS?K) '] (43)
so the variances of the invidual #; are given by

~ _ -1 .
V(&) = e;‘-r' (KTS 2K) e;‘-r' , 1=12,...,n, (44)
where e; is the unit vector with 1 as the jth element.
For any probability @ ( 0 < a < 1), if & is chosen to

satisfy s ,
1 K
—/ exp (_77_) dn =« (45)
V2T J_g 2

Pr { [f:j - m/V(f:j)] <z < [f:j + m/V(f:j)] } —a.

(46)
The k-value for & = .95 is k = 1.96. Figure 4 shows the
95% confidence bounds for the test problem. The dashed
line is the true solution and the jagged lines connect the
upper and lower bounds for the individual ;.

If 82 = §?I,,, with s unknown, then the estimate
§2 = (m — n)"1p2s can be used to construct confi-
dence intervals, though the relation between x and «
will be different from (45). If the é-distribution is un-
known, confidence intervals can be constructed from the
Chebeyshev inequality. Though wider than those for
normally distributed errors, these intervals are often or-
ders of magnitude smaller than the +|Az|.,s bounds
from classical perturbation theory.

The keynote speaker [7] pointed out that the variance
matrix for £; was known to Gauss, and that modern
least squares algorithms could easily compute it by in-
verting an upper triangular matrix formed in solving
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for x. Unfortunately, the least squares subroutines in
the widely used LINPACK [2] and LAPACK [1] collec-
tions do not return confidence intervals, or even the vari-
ance matrix. The LINPACK manual describes how to
compute variances from a reduced matrix returned by
subroutine SQRDC, but the LAPACK manual is silent
on the subject, and neither mentions confidence inter-
vals, concentrating instead on the classical perturbation
bounds. Secondary sources, which use these collections,
have continued this preoccupation with what are essen-
tially useless bounds. They also continue to propagate
misinformation about the condition number. For exam-
ple, the textbook of Kahaner, et. al [4] states that:

One useful interpretation of the condition num-
ber is that its logarithm approximates the num-
ber of digits which will be lost while solving
Az = b. Thus if cond(A) = 10° and if machine
epsilon is 1078, then the best we can expect
is that the solution will be accurate to about
three digits.

The estimate in Figure 2 was calculated in double
precision with €, = 2.22 X 10716, and since
cond(S~1K) = 2.92 x 10%, the above reasoning would in-
dicate that the computed x is accurate to 6 digits. But
consider the same calculation in single precision with
€mach = 1-19 x 1077 and cond(S™'K) = 2.93 x 10°.
According to the conventional wisdom, a computed es-
timate should not contain any digits of accuracy. The
actual single precision estimate is shown in Figure 5.
The slight differences from the double precision estimate
are difficult to see by comparing the two plots. The rms
average difference between the two estimates is 0.0033
which is almost 100 time smaller than the |Az|m;s for ei-
ther estimate, so in practice, either estimate would serve
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equally well. Clearly the condition number is not always
a good indicator of the accuracy of the estimate.
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