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The generalized inverse of a matrix is important in analysis
because it provides an extension of the concept of an inverse
which applies to all matrices. It also has many applications in
numerical analysis, but it is not widely used because the exist-
ing algorithms are fairly complicated and require consider-
able storage space. A simple extension has been found to
the conventional orthogonalization method for inverting non-
singular matrices, which gives the generalized inverse with
little extra effort and with no additional storage requirements.
The algorithm gives the generalized inverse for any m by n
matrix A, including the special case when m = n and A is
nonsingular and the case when m > n and rank (A) = n.
In the first case the algorithm gives the ordinary inverse of A.
In the second case the algorithm yields the ordinary least
squares transformation matrix (ATA)'A” and has the ad-
vantage of avoiding the loss of significance which results
in forming the product A"A explicitly.

The generalized inverse is an important concept in
matrix theory because it provdes an extension of the con-
cept of an inverse which applies to all matrices. Penrose
[1] showed that for any m X n complex matrix A there
exists a unique n X m matrix X which satisfies the follow-
ing relations:

AXA = A (1)

XAX = X (2)
(AX)" = AX (3)
(XA = XA. (4)

These four relations are often called Penrose’s Lemmas,
and the matrix X is said to be the generalized inverse of A
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and is often denoted by A’. In the special case where
m = n and A is nonsingular, this generalized inverse is
simply the ordinary inverse of A. Also, in the special case

where m > n and the columns of A are linearly independ-
ent, we can write

A = (4"4)7'4", (5)

It is an easy matter to see that this matrix satisfies all of
Penrose’s Lemmas. It is important in numerical analysis
because it solves the problem of minimizing the distance

P(x>= lb—A.’tl,

where b is a given vector in m-space and A is a givenm X n
matrix with m > 7 and linearly independent columns.
More generally, if A is any m X n matrix and b is any
vector in m-space, there may exist many vectors x which
minimize the distance p(x), but the vector defined by

z = A'b (6)

is the shortest of all such vectors. The problem of finding
the vector z of shortest length | x| which minimizes the
distance p(x) may be referred to as the generalized least
squares problem. It is solved by the generalized inverse.

Suppose that the matrix A can be partitioned in the fol-
lowing manner:

A = (R, S) (7)
where R is an (m X k)-matrix (k < n) with linearly inde-
pendent columns and S is an (m X (n — k))-matrix

whose columns are linear combinations of the columns
of R.

Tueorem I. R'R = I. ®)

Proor. The columns of R are linearly independent.
Therefore, by (5), R’ (R R)T'R". Hence R'R =
(R"R)'RR = 1.

Taeorem II. The matriz S has a untque factorizalion
in the form

8 = RU (9)
and the matriz U s given by
U = R'S. (10)
Proof that the factorization exists. Suppose
S = (Skt1, Sz, **° 5 Sn)

Each column of S is a linear combination of the columns
of R. Therefore s; = Ru,; from some vector u;, 2 = k<41,
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-, n. Hence

S = (Ruk—!-l; Ruk+2 3y " Run)

= R(uk+1 y Ukqgy =0, un)a

ie, 8 = RU where U = (g1, Uq2, *** , Un).

Proof that the factorization is unique. It has just been
shown that § = RU for some U. Therefore R’'S = R'RU
= U since by (8), R'R = I. Thus U = R’'S.

We now show that the problem of computing the gen-
eralized inverse of any matrix A can be reduced to the
problem of computing the generalized inverse of a matrix
of the form A" = (R, S), where R and S are matrices of
the same form as the R and S of eq. (7).

TaroreM III. If P;; is any nth order elementary per-
mutation matriz then (AP;;)" = PjA”.

The truth of this theorem can easily be demonstrated
by showing that the matrix P;;A” does actually satisfy
Penrose’s Lemmas. Furthermore it is easy to see that if
Py, Py, ---, P,is any finite set of elementary permuta-
tion matrices, then

(AP1P2"'P1>I=P7"'P2P1AI.

Thus if A is any m X 7 matrix it can be reduced to the
form A" = AP\P,--- P, = (R, 8) with all the linearly
dependent columns (if any) occurring last. Then by eq.
(11), P, - -- P,PLA" = (R, S)” and hence

AI=P1P2"'P,«(R,S>I.

(11)

(12)

Thus it is now necessary only to consider the problem
of computing the generalized inverse of matrices of the
form A = (R, S).

To obtain an expression for the generalized inverse in
terms of the matrices B and U, we appeal to the least
squares property of A’. Let us confine ourselves for the
time being to real matrices A. The results which we shall
obtain can easily be generalized to the complex case.
Consider the system

As = b, (13)

where b is any vector in the column space of 4; i.e., the
system will have exact solutions. In this case all the least
squares solutions will have the property p(s) = |b — As/|
= 0, and the shortest such s is given by s = A’b.
Consider for a moment the problem of minimizing the
length s with the restriction As = b. This is equivalent to
minimizing |s|® = s"s with the restriction As = b. As-
sume that A has a partitioning (R, S) with all the linearly
dependent columns last and partition S as follows:

-G

where z is a vector of order & and y is a vector of order
n—k. Then the problem is to minimize the quantity

(=", y") <z> =2z + ¢y,
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with the restriction that
( ) y H

Rz + Sy — b =0.

or simply

Let us apply the method of Lagrange multipliers. Set
L = 2"z + y"y + 2"[Rx + Sy — b],

where z is the vector of parameters to be eliminated. Since
by egs. (9) and (10), S = RU where U = R’S, we can
write

L =2"z+ y"y + 2"[Rx + RUy — b).

Differentiating L with respect to each element of the
vectors z and y and setting these derivatives equal to zero
gives

%=2x+RTz=O (14)
ox
oL _ 2y + U'R"z = 0 (15)
ey

where @L/dx is the vector whose elements are the deriva-
tives of L with respect to the corresponding elements of =
and 8L/dy has a similar interpretation. Adding the re-

striction
Rz + RUy — b =0, (16)

enables us to eliminate the vector z and solve for z and y.
Premultiplying eq. (14) by U’ gives
20"z + U'R"z = 0.
Combining this result with eq. (15) gives 2y = 2U"z or
y = U'x. (17)

If we now substitute the expression for y into eq. (16),
we have

Rx + RUU"z = b,

R(I 4+ UUMz =b.
Now, by Theorem I, R'R = I. Therefore

(I + UU"z = R'.

The matrix (I + UUT) is a symmetric positive definite
matrix and hence is nonsingular. Therefore

x= (I + UU"'R'. (18)
Substituting this value for 2 into eq. (17) gives
y = U™(I + UUDY'RD. (19)

Now eqgs. (18) and (19) lead to the conjecture that of
all the vectors s satisfying the restriction

p(S) = IAS—bl =0,
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the s of minimal length is given by
s = (%) = (I + UU"TR
T \y/  \U"U + UU"H'RD
_ (I +UUNT'R’ b
“\UI+UUTR)™
Furthermore, since the required s is given by
s = A'b,

it can be conjectured that the generalized inverse is given
by

I+ UUT>“R’>_ (20)

Al =
U'(I + UU")7R’

It is a simple matter to verify that this matrix actually
satisfies Penrose’s Lemmas and is actually the generalized
inverse of A. In fact, if 4 is any complex matrix with a
partitioning of the form (R, S) then A’ is given by

: (I + UUH"R!
A = <UH(I + UUH)—1R1> . (21>

Thus we have an expression for A’ in terms of R’ and
U. The remaining problem is to compute R’ and U. For
this purpose, let us briefly review the Gramm-Schmidt
orthogonalization process.

If {ai, @2, ---, ay} is any set of linearly independent
vectors in m-space (m > n), then this set can be replaced
by an orthonormal set {qi, g2, - -+, g=} in the following

manner:
. a;
(i) @ = o
(i) e =a— (a"@)a
Co
T el
(iii) s = a5 — (@@ — (6" @)ge
C3

qs:rcﬂ

Continue in this manner, at each step (1) forming ¢, from

a; and the previous ¢’s and then normalizing c¢; to length

1 to get ¢:. After n such steps the result is a set ¢, ¢,
+, gn of orthonormal vectors. i.e.,

Ho_ 0, ’1'75].,
L=, =g

In particular, if the vectors a; are the columns of an
m X n matrix A, then the above process replaces A with
a matrix @ satisfying

Q"Q = I.

Since each ¢; depends only on a; and the previous ¢, , the
columns of A can be replaced one column at a time as il-

(22)
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lustrated in the following schematic diagram:

A= {(a,a,05, "+ ,a)
(_lz)(quaQ,as, ""an)
(—2)*((11,%,0«3, "',an)
(—7@(‘11,92,93, Q)

~ Furthermore, in this scheme each new column ¢; is ob-
tained from a linear combination of the vector a; and the
previous ¢’s. Hence the columns of A are orthogonalized
by a series of elementary column operations. If when
carrying out this process on the columns of A we begin
with the nth order identity matrix and perform the same
elementary column operations on i, a matrix Z is ob-
tained such that

AZ = Q. (23)

If m = n, then the matrix 4 is nonsingular and this process
provides a method for computing the inverse of 4. Be-
ginning with 4 and the nth order identity, we apply the
Gramm-Schmidt process to obtain the matrices Z and Q.
This process is illustrated schematically by the diagram:

(§)=)

Now by eq. (22) QQ = I or ' = Q" and by eq. (23)
Z is a matrix satisfying AZ = . Hence

A7 = ZQ". (24)

Thus if A is nonsingular its inverse can be computed by
the Gramm-Schmidt orthogonalization process.

We now extend this method to compute the generalized
inverse of an arbitrary complex matrix A.

In general, the columns of A will not be linearly inde-
pendent, and the Gramm-Schmidt orthogonalization proc-
ess will not work for a linearly dependent set of vectors.
If we try to apply it to such a linearly dependent set in
which the first & vectors are linearly independent but the
(k + 1)-th vector is a linear combination of the previous
k, it will successfully orthogonalize the first k vectors, but
upon calculating ¢4y, we will find

k
Ch1 = QAp+1 — zl(afﬂqi)qi = 0.

Thus the process breaks down upon encountering a
linearly dependent vector. Although the columns of A
will in general be linearly dependent, we have seen that it
can just as well be assumed that A has a partitioning in
the form A = (R, 8) with all the linearly dependent
columns last.

Therefore, let us carry out a modified Gramm-Schmidt
process in the following manner: apply the normal ortho-
gonalization process to the columns of R and continue
over the columns of S in the same manner except that as
each vector becomes zero no normalization step is per-
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formed. If we carry out this process and, beginning with
the nth order identity matrix, carry out exactly the same
elementary column operations on it, we have

R 8 Q 0 )
I. 0 | 5517 X
0 In—]c O In—lc
where
Z X
@9 (5 7)=@o (25)

and @ is a matrix with the property Q“Q = I.

Note that the (n — k)-order identity matrix in the
lower righthand corner of the bookkeeping matrix remains
unchanged by the process. This is because all the columns
of S become zero when the process is applied to them, thus
essentially zeroing any terms that might change the I,
when the same elementary column operations are applied
to the bookkeeping matrix.

From eq. (25) it can be seen that

RZ = Q (26)
and
RX+8=0.
Rearranging the latter equation gives RX = —§, and by
eq. (8), X = —R'S. Since by eq. (10) U = R'S we have
X =-U. 27)

Thus the matrix U comes out of the bookkeeping matrix;
1.e.,

RS Q0
I, 0 £S5, 1Z —-U
0 I 0 Iy
Also it is easy to see that R is given by
R" = ZQ". (28)

To verify this one need only note that by eq. (26) R
= QZ, and if this expression is used for R, then the
matrix ZQ” does actually satisfy Penrose’s Lemmas and
hence must be R’.

Recall that the expression for A’ was by eq. (21),

A o ( (I + UU”)"R’)
T \U(I + UU)T'R!
and now we have a method for obtaining U and R". The
only remaining problem is the evaluation of the expressions
(I + UU")"and U'(I + UU")™
For this purpose, note that the former term can be re-
written

I+ 00"t =1-U0U0"+DU"
and the latter term,
UN(I + UUH™ = (UPU + 1)U

These two expressions are easily verified matrix identities
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and making these substitutions in the expression for the
generalized inverse gives

4 = (U= U@ +1)7U"R!
(U"U + 1'U"R')
Now recall that upon completion of the orthogonalization
process, the matrix
—-U
I

appeared as the last (n — %) columns of the bookkeeping
matrix. Obviously this matrix has linearly independent
columns; so its columns can be orthogonalized by the
Gramm-Schmidt process. If we carry along a bookkeeping

matrix, then
-U Y
L | S5 W
I, % P
U Y
(i) 7= ()

Clearly, by the above relationship W =
Y = —UP.

Thus there is no need to carry along a bookkeeping
matrix since the matrix W of the result contains the same
information that the bookkeeping matrix would. So

(D=(F)

where the columns of the result are orthogonal; i.e.,
—UP\* (—UP\ _ 7
P P -

(— PAy™ P™y <_gP> - I

(29)

where

P and

or

Carrying out the indicated multiplications gives
PU"UP 4 PP =1,

and factoring out the P” and the P gives
PYU"U + )P = I.

Now, P is a matrix which could be obtained from an
identity matrix by elementary column operations and
therefore must be nonsingular. Hence

(U'U + 1) = (PP,
whence

(U"U + I)™* = PP".

I

(30)
Also,
I -U0(U"U + 7' =1 — UPP*U",
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or

I — UWU"U 4+ D7'U" =1 — (UP)(UP)". (31)

Thus we can substitute the expressions on the right of
eqgs. (30) and (31) into eq. (29) to obtain

T I — (UP)(UP)"IR'
A =< PPUMR > (32)

And substituting the value for R’ given by eq. (28) and

SUBROUTINE GINV2 (AsUs AFLAGIATEMP 9MRsNRSNC)

THIS ROUTINE CALCULATES THF GENERALIZED INVFRSE OF A
AND STORES THE TRANSPOSE OF IT IN A,
MR¥FIRST DIMENSION NN, OF A,
NR # NO, OF POWS IN A
NC # NO, NF COLUMNS TH A
U 1S5 THE BANDKKESPING MATRIX.
AFRAG AND ATFMP ARF T=MPARARY WORKING STORAGF.

[aXakakaNaiakaNakal

DIMENSION A{MRNC) sUINCyNC)sAFLAGINC) s ATFMP (NC)
PO 10 1 # 1,4NC
DO 5 J # I4NC

5 UllsJd) # 0.0

10 UCTIs1)#1,0
FAC # DOT(MRsNRsAy1s1)
FAC#1 o 0/SORTIFAC)
DO 15 1 # 1,4NR

15 ACLs 1 IHALT, |} *FAC
PO 20 1 # 14NC

20 UL 1) #U(Ts 1) %FAC
AFLAG(11#1,0

DEPENDENT COL TOLFRANCE FOR N BIT FLOATING POINT FRACTION

[aNals]

N ¥ 27
TOL # ([0, % O ,5%%N)*%)
DO 100 J # 24NC
DOT! # DOTI{MRINRsAsJsJ)
IMI#FI=1
PO 50 L#1,?
DO 30 K&, JIM)
30 ATEMP(K} # DOT(MRINRyA,.15K)
DO 45 K#| M1
DO 35 1 # IsNR
35 ACIsJI#ALT ) -ATEMP(KI#A(TsK)*AFLAG(K)
DO 40 T # 1,4NC
40 UCTe ) gULT s JI-ATEMPIKI®U{],4K)
45 CONTINUE
52 CONTINUE
DOT2 # DOT(MRsNRyAsJsJ)
IFL(DOT2/PNTHY - TOL)
55 DO 60 I¥IsJM!
ATEMP(1)#7.N
DO 6N K#l,1
60 ATEMPUIIH#ATEMP(T)+UlKs 1Y *U(Ks )
DO 65 I # IsNR
AlL+J)¥0.0
DO 65 K#1yJIM]
65 AlIsJI#A(T s J)=ALTKI*ATEMP(KI*AFLAGIK)
AFLAG(J)Y#0.0
FAC # DOT(NCaNCsUsJs )
FAC#1,0/SQRT(FAC)
GO TO 75
70 AFLAGLUI# N
FAC#140/SQRTIDOT?)
75 DO 80 I # I'4NR
80 A(TsJ)HALT,J)*FAC
DO 85 I # 14NC
85 UlIsJI#U(TsJIRFAC
100 CONTINUF
DO 130 J#1,4NC
DO 120 I#I,4NR
FAC#N T
DO 120 K¥JWNC
120 FACHFACHA (T sKYy*ULJsK)
130 AULsJI#FAC
RETURN
FND

B5455,70

FUNCTION DATIMPR,NRA,JC,KCO)

COMPUTES THFE INNFR PRONUCT OF COLUMNS JC AND KC
OF MATRIX A,

lakaNakal

DIMENSION A{MR, 1)
DOT#N.N
PO 5 1 # 15NR
5 DOT # DOT + A(I,JCI*ALTI.KCY
RETURN
END

Fia. 1.
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rearranging the bottom submatrix gives

A - ([I - (UP)(UP)”]ZQ”)'

1)( l]l))H}ZGQH (353)

We now have a simple scheme for computing the gen-
eralized inverse.

Beginning with the matrix (R, 8) and an identity
matrix, we can illustrate the scheme as follows:

R 8 Q o e 0]
I. 0 | 68|z —U| «s(77) |z —UupP|.
0 I 0 I] 0 P |

We would then have all the information necessary to
compute the generalized inverse of A from eq. (33).

Thus we have a simple extension of the Gramm-Schmidt
method for computing the generalized inverse.

In carrying out this algorithm on a computer, all the
calculations could be performed in the space of the matrix
A itself plus the space required for an n X n bookkeeping
mafrix. It is clear that all the orthogonalization required
to reduce these matrices to the form

(Q 0
7 —UP
0 P |

can be done in this space. We could then form the product
(UP)?Z in the space of the zero submatrix in the lower
lefthand corner of the bookkeeping matrix to get

[ Q 0
Z —TUP

(UP)*Z r|

We could then form the product [(UP)?ZQ"]" in the 0—
submatrix of (@, 0) and then restore the 0-submatrix in
the lower lefthand part of the bookkeeping matrix to get

(Q [(UP)"zQ™"
VA —-UP

0 P J
We then would only need to perform the product

C 7 Wewsdemar) - (¢ Sz

= AT

The transpose of this product can be formed in the space
originally occupied by (Q, (UP)”"ZQ"). Thus the net
result of carrying out the algorithm is to replace the matrix
A by the transpose of A”.

A ForTrRAN subroutine for carrying out the algorithm
is given in Figure 1. The program does not carry out the
algorithm explicitly in that it avoids permuting the
columns to obtain the form (R, S), and as each linearly
dependent column becomes zero in the orthogonalization
process, it is immediately replaced by a corrected column.
The net result, however, is the same as would be obtained

(Continued on page 387)
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Option C  The longitudinal center line of the feed holes shall be located
within 0.300 inch maximum from the two-track edge and 0.395 inch maxi-
mum from the three-track edge of the tape. The distance from this center
line to either edge shall not vary by more than .006 inch (total variation)
within any 6 inch length of tape.

To help clarify the above options, a sketch is submitted indicating the
tolerance from the feed hole to the guided edge (Figure 2).

GUIDED EDGE

8y {
S 1 [/ - I
N o] o} 8 o z%
o o o o A o 53
°— 3 ©— T L3 N o
o) ~ e} b3 e} © ®
+ o Zln o LR
o 0 P ,
0] @ o © @] i
* 77 77 * /
OPTION A OPTION "B opTIONC”
COMMUNICATIONS OFFICE PROPOSED
MACHINES ALTERNATE

Fig. 2
Pertinent factors relating to the three options are as follows:

Option A

1. This type of dimensioning of paper tape punches has been standard
in the communications industry for the past 75 years. To change the
guiding of these machines would be economically impractical.

2. 'This type of dimensioning permits variation in feed hole location of
0.006 inch from the two hole edge and 0012 inch from the three hole edge
of the tape.

3. Tapes punched according to this standard are sensed equally well by
communication and business machine readers which guide on the sprocket
holes only.

4. Tapes punched according to this standard are sensed well by readers
which guide only on the two hole edge of the tape. There may be some
loss of sensing margin (due to Item 2 above) when such tapes are passed
through a reader which guides only in the three hole edge.

5. 'This method of dimensioning differs from that used in ETA RS-227
for one inch paper tape but conforms to that used in thousands of
domestic and foreign machines in use and manufacture today.

Option B

1. 'This type of dimensioning of paper tape punches has been standard
in the business machine industry for two decades. To change the guiding
edge of these machines would be economically impractical.

2. This type of dimensioning permits a variation in feed hole location of
0.012 inch from the two hole edge and 0.006 inch from the three hole edge
of the tape.

8. Tapes punched according to this standard are sensed equally well by
communications and business machine readers which guide on the
sprocket holes only.

4. Tapes punched according to this standard are sensed well by readers
which guide only on the three hole edge of the tape. There may be some
loss of sensing margin (due to Item 2 above) when such tapes are passed
through a reader which guides only on the two hole edge.

6. This method of dimensioning is the same as used in EIA RS-227 for
one inch paper tape and would permit a reader which guides on only the
three hole edge of the tape to read both 11{g inch and 1 inch tape with
equal margins.

Option C

1. This type of dimensioning offers a compromise between Option A and
B. It recognizes the present and continuing existence of tape perforators
producing tape in accordance with both Option A and Option B conven-
tions.

2. This type of dimensioning permits a variation in feed hole location of
up to 0.012 inch from either the two hole or the three hole edge of the
tape.

8. Tapes punched according to this standard are sensed equally well by
communications and business machine readers which guide on the
sprocket holes only.

4. This method of dimensioning requires that readers which guide only
on one edge of the tape be designed to accommodate tapes guided on
either edge during preparation. The number of readers which guide only
on one edge is small and the design problems encountered in such a reader
to allow for the possible maximum 0.012 inch variation (Item 2 above) are
considered minimal.
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5. A purpose of option “C” is to prevent interference between the tape
and the tape guide in readers containing both a feed wheel and a narrow
tape guide. However, preferred practice in the design of readers with feed
wheels is to make the tape guide wide enough to assure locating the tape
by the feed wheel only, at the sensing pins. The purpose of the guide, then,
is to facilitate insertion of the tape into the reader and to prevent exces-
sive skew.

RUST et al.—cont’'d from page 385

in carrying out the algorithm in the manner described
above. In the interest of accuracy the program reortho-
gonalizes each column after it is first orthogonalized. This
is a standard technique in carrying out the Gramm-
Schmidt orthogonalization.

A pumber of publications have appeared in the past
few years which are also concerned with methods for
computing the generalized inverse. Pyle (2] discusses a
method for finding the generalized inverse of an arbitrary
m X n complex matrix A with m < n in which the Gramm-
Schmidt process is applied to the columns of A" and then
to the columns of A if rank (A4) < m. Ben Israel and
Wersan [3] describe elimination methods in which the
elimination process is applied to the symmetric product
A"A or the symmetric product of some submatrix of A.
It is important to note that all these methods, including
that of the authors, depend upon the correct determina-
tion of the rank of the matrix. In [4] Golub discusses the
strategy of using the generalized inverse to solve least
squares problems when the matrix is deficient in rank or
poorly conditioned.
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