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Abstract. Rust and Thijsse [9, 11] have shown that global annual avetagperature anoma-
liesT'(t;) vary linearly with atmospheric COconcentrationg(¢;). Thec(¢;) can be related to
man-made C@Qemissiong’(¢;) by a linear regression model whose solution vector gives the
unknown retention fractiong(¢;) of the F'(¢;) in the atmosphere. Gaps in th&;) record make
the system underdetermined, but the constrdints~(¢;) < 1 make estimation tractable. The
~(t;) are estimated by two methods: (1) assuming a finite harmomiaresion fory(t), and (2)
using a constrained least squares algorithrm [8] to computerage values of(t) on suitably
chosen time subintervals. The two methods give consigeults and show that(t) declined
non-monotonically fromz 0.6 in 1850 to~ 0.4 in 2000.

1 Atmospheric CO, and Global Temperatures

The upper plot in Figurél1l shows an optimal regression sliig fit ¢(¢) to the record
of atmospheric C® concentrations obtained by combining atmospheric measemes at the
South Pole[]b] with reconstructions from Antarctic ice co[#,[{]. Although the latter display
larger random variations than the former, the two recorédscansistent in the years where they
overlap. The spline(t) was used to model the Climatic Research Unit’s recbrd [4]rofual
average global surface temperature anomalies shown irother Iplot. The solid curve was
obtained by fitting the model

T(t) =To+nlc(t) — 277.04] + Asin [Q?W(t + qb)} ,

with free parameterg;, n, A, 7, and¢. The constan277.04 ppmv is the preindustrial CO
concentration estimated by averaging ice-core measursn@nl647-1764. The correspond-
ing temperature anomaly, estimated by the fit, Was= (—0.507 4 .016)°C. The sinusoid,
with 7 = (71.5 + 2.2) yrand A = (0.099 + .012)°C, represents the oscillation discovered by
Schlesinger and Ramankutty [10]. It accounts#0§ % of the variance in the record. The base-
line Ty + n [c(t) — 277.04], with 7 = (0.01039 £ .00042) °C/ppmv, accounts for 77 % of the
variance. It indicatea linear relationship between global warming and incregsatmospheric
CQO,. The total warming since 1856 has beer).9°C, andthat warming is accelerating
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Figure 1: The relationship between atmospheric carbonidéand global temperatures.

2 Man-made Emissions and Atmospheric CO, Concentrations

Annual total man-made CQemissionsF'(t;), for the years 1850-2000, are shown in the
lower plot of FigurdR. These totals are the sums of annuailfésel emissions([6] and emis-
sions due to changes in land usk [3]. Taking- 1850.0 gives, for any later time;,

t;
c(t;) =co + / ~y(T)F(T)dT + 0S(t;)
to
wherecy, = ¢(ty), v(7) is the fraction remaining in the atmosphere, &fd) is a ramp func-
tion representing the Mt. Pinatubo eruption on June 15, 1991) is 0 on[1850.0, 1991.54],
increases linearly to 1 0jf1991.54, 1993.54], and remains 1 thereafter. The amplitude constant
0 turns out to be negativel[2].
One way to estimate(r) is to assume a harmonic expansion of the form
nh
v(t) = Ao + Bot + Z [A, cos (2mkt /150) + By sin (2wkt/150)] , 1850 < ¢ < 2000,
k=1
with n, chosen so thatn, + 4 is less than the number of observed;). Substituting the
expansion into the above integral leads to linear leastregusstimates fot,, J, and theA,,
and B,. Choosingn,, too large produces implausibly oscillating estimates Wwhilate the
constraint$) < ~(¢) < 1. The estimate fon;, = 2 is plotted as a smooth curve in Figlile 3. The
corresponding estimate fo(t) is shown as a dashed curve in the upper plot of Fifglre 2.
Another approach, which seeks a vector approximatiomn), is to approximate the integral
using a rectangular quadrature rule with = 1 year. This gives a linear regression model

c(t;)=[1, F(t;,7j), s] '7(5@-) +et;), €t;)~N(0,%%),
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Figure 2: Man-made COemissions and C&concentration in the atmosphere.

whereF(¢;, 7;) is a matrix of columns formed from zeroes and the valli¢s;), s is a vector
representation of(¢;), ande(t;) is a vector of measurement errors. The covariance matrix
>? was estimated by assuming constant variance for the icereoceds and a different con-
stant variance for the atmospheric measurements. Thesedmsiants were estimated from
deviations of the measurements from optimal regressianesfits [11] to the two sets of data.

Because of gaps in th€t;) record, the matrix1, F(¢;, 7;), s| has more columns than rows,
but estimation is possible becausec ~(7;) < 1. Even so, the estimatég ;) oscillate wildly
between those bounds, so it was necessary to estimate awstags ofy(7) on various time
subintervals 0f1850, 2000]. O’Leary’s BRAKET-LS algorithm([8] was used to compite %
confidence intervals for 6 nonoverlappi2gryear subintervals shown in Figurke 3. The pre-1925
uncertainties are large, but the bounds give good agreewiémthe 7(¢) estimated from the
harmonic expansion. Combining the fit of the correspondingto the measurements in Figure
[2 with the results in FigurEl 1 suggests thaan-made C@emissions are a major contributor
to global warming
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Figure 3: Fraction of C@emissions remaining in the atmosphere.
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