RFC: DLMF Content Dictionaries Work in Progress

Appendix A Macros sorted by Content Dictionary

CD:Name Notation Signature Declared Proper Name
DLMF_AI.ocd Airy and Related Functions
AiryAi ( ?airy:Ai)
Ai(z) §9.2(i) the Airy function Ai
AiryBi ( ?airy:Bi)
Bi(z) " " the Airy function Bi
ScorerGi
Gi(z) " (9.12.4) the Scorer (or inhomogeneous Airy) function Gi
ScorerHi
Hi(z) " (9.12.5) the Scorer (or inhomogeneous Airy) function Hi
DLMF_AI_gen.ocd Airy and Related Functions – Generalizations
genAiryODEA
An(z) +× §9.13(i) the generalized Airy function (ODE) An
genAiryODEB
Bn(z) " " the generalized Airy function (ODE) Bn
genAiryintA
Ak(z,p) +×× §9.13(ii) the generalized Airy function (integral) Ak
genAiryintB
Bk(z,p) " " the generalized Airy function (integral) Bk
DLMF_AI_mag.ocd Airy and Related Functions – Magnitudes, Phases
AirymodM
M(x) (9.8.3) the modulus of Airy functions
AirymodderivN
N(x) " (9.8.7) the modulus of derivatives of Airy functions
Airyphasederivphi
ϕ(x) " (9.8.8) the phase of derivatives of Airy functions
Airyphasetheta
θ(x) " (9.8.4) the phase of Airy functions
envAiryAi
envAi(x) " §2.8(iii) the envelope of the Airy function Ai
envAiryBi
envBi(x) " " the envelope of the Airy function Bi
DLMF_AI_z.ocd Airy and Related Functions – Zeros
zAirya ak + §9.9(i) the kth zero of Airy Ai
zAiryb bk " " the kth zero of Airy Bi
zAirybeta
βk + §9.9(i) the kth complex zero of Airy Bi
zderivAirya
ak + §9.9(i) the kth zero of Airy Ai
zderivAiryb
bk " " the kth zero of Airy Bi
zderivAirybeta
βk + §9.9(i) the kth complex zero of Airy Bi
DLMF_BP.ocd Bernoulli and Euler Polynomials
BernoullinumberB
Bn * §24.2(i) the Bernoulli number
BernoullipolyB
Bn(x) *× " the Bernoulli polynomial
EulernumberE
En * §24.2(ii) the Euler number
EulerpolyE
En(x) *× " the Euler polynomial
DLMF_BP_gen.ocd Bernoulli and Euler Polynomials – Generalizations
genBernoullipolyB
Bn()(x) ×*× §24.16 the generalized Bernoulli polynomial
genEulerpolyE
En()(x) " " the generalized Euler polynomial
DLMF_BP_per.ocd Bernoulli and Euler Polynomials – Periodic
perBernoulliB
B~n(x) *× §24.2(iii) the periodic Bernoulli function
perEulerE
E~n(x) " " the periodic Euler function
DLMF_BP_q.ocd Bernoulli and Euler Polynomials – q-analogues
qBernoullipolybeta
βn(x,q) *××𝔻 (17.3.7) the q-Bernoulli polynomial
qEulernumberA
Am,s(q) *×*×𝔻 (17.3.8) the q-Euler number
DLMF_BS.ocd Bessel Functions
BesselJ Jν(z) × (10.2.2) the Bessel function of the first kind
BesselY Yν(z) " (10.2.3) the Bessel function of the second kind
HankelH1
Hν(1)(z) " (10.2.5) the Hankel function of the first kind(or Bessel function of the third kind)
HankelH2
Hν(2)(z) " (10.2.6) the Hankel function of the second kind(or Bessel function of the third kind)
DLMF_BS_Kelvin.ocd Bessel Functions – Kelvin
Kelvinbei
beiν(x) × (10.61.1) the Kelvin function beiν
Kelvinber
berν(x) " " the Kelvin function berν
Kelvinkei
keiν(x) " (10.61.2) the Kelvin function keiν
Kelvinker
kerν(x) " " the Kelvin function kerν
DLMF_BS_aux.ocd Bessel Functions – Auxiliary
BesselJimag
J~ν(x) × §10.24 the Bessel function of the first kind of imaginary order
BesselYimag
Y~ν(x) " §10.24 the Bessel function of the second kind of imaginary order
BickleyKi
Kiα(x) × (10.43.11) the Bickley function
NeumannpolyQ
On(x) +× (10.23.12) Neumann’s polynomial
Rayleighsigma
σn(ν) " (10.21.55) the Rayleigh function
modBesselIimag
I~ν(x) × (10.45.2) the modified Bessel function of the first kind of imaginary order
modBesselKimag
K~ν(x) " " the modified Bessel function of the second kind of imaginary order
DLMF_BS_gen.ocd Bessel Functions – Generalizations
MittagLefflerE
Ea,b(z) ×× (10.46.3) the Mittag-Leffler function
genBesselphi
ϕ(ρ,β;z) " (10.46.1) the generalized Bessel function
DLMF_BS_mag.ocd Bessel Functions – Magnitudes, Phases
BesselC 𝒞ν(z) × §10.2 the Bessel cylinder function
HankelmodM
Mν(x) × (10.18.1) the modulus of the Hankel function of the first kind
HankelmodderivN
Nν(x) " (10.18.2) the modulus of derivatives of the Hankel function of the first kind
Hankelphasederivphi
ϕν(x) " (10.18.3) the phase of derivatives of the Hankel function of the first kind
Hankelphasetheta
θν(x) " " the phase of the Hankel function of the first kind
envBesselJ
envJν(x) " §2.8(iv) the envelope of the Bessel function Jν
envBesselY
envYν(x) " " the envelope of the Bessel function Yν
DLMF_BS_mat.ocd Bessel Functions – Matrix arguments
BesselAmat
Aν(𝐓) ×× §35.5(i) the Bessel function of matrix argument (first kind)
BesselBmat
Bν(𝐓) " (35.5.3) the Bessel function of matrix argument (second kind)
DLMF_BS_mod.ocd Bessel Functions – Modified
modBesselI
Iν(z) × (10.25.2) the modified Bessel function of the first kind
modBesselK
Kν(z) " (10.25.3) the modified Bessel function of the second kind
modcylinder
𝒵ν(z) " §10.25 the modified cylinder function
DLMF_BS_modsph.ocd Bessel Functions – Modified Spherical
modsphBesselK
𝗄n(z) *× (10.47.9) the modified spherical Bessel function 𝗄n
modsphBesseli1
𝗂n(1)(z) " (10.47.7) the modified spherical Bessel function 𝗂n(1)
modsphBesseli2
𝗂n(2)(z) " (10.47.8) the modified spherical Bessel function 𝗂n(2)
DLMF_BS_sph.ocd Bessel Functions – Spherical
sphBesselJ
𝗃n(z) *× (10.47.3) the spherical Bessel function of the first kind
sphBesselY
𝗒n(z) " (10.47.4) the spherical Bessel function of the second kind
sphHankel2
𝗁n(2)(z) " (10.47.6) the spherical Hankel function of the second kind
sphHankelh1
𝗁n(1)(z) " (10.47.5) the spherical Hankel function of the first kind
DLMF_BS_z.ocd Bessel Functions – Zeros
zBesselj
jν,m ×+ §10.21(i) the mth zero of the Bessel function of the first kind Jν
zBessely
yν,m " " the mth zero of the Bessel function of the second kind Yν
zderivBesselj
jν,m " " the mth zero of the derivative of the Bessel function of the first kind Jν
zderivBessely
yν,m " " the mth zero of the derivative of the Bessel function of the second kind Yν
DLMF_CH.ocd Confluent Hypergeometric Functions
KummerconfhyperM ( ?hypergeo1:hypergeometric1F1)
M(a,b,z) ×× (13.2.2) the Kummer confluent hypergeometric function M
KummerconfhyperU
U(a,b,z) " (13.2.6) the Kummer confluent hypergeometric function U
OlverconfhyperM
𝐌(a,b,z) " (13.2.3) Olver’s confluent hypergeometric function
WhittakerconfhyperM
Mκ,μ(z) " (13.14.2) the Whittaker confluent hypergeometric function Mκ,μ
WhittakerconfhyperW
Wκ,μ(z) " (13.14.3) the Whittaker confluent hypergeometric function Wκ,μ
DLMF_CH_mat.ocd Confluent Hypergeometric Functions – Matrix arguments
genhyperPsimat
Ψ(a;b;𝐓) ××× (35.6.2) the confluent hypergeometric function of matrix argument (second kind)
DLMF_CH_q.ocd Confluent Hypergeometric Functions – q-analogues
qPochhammer
(a;q)n ×𝔻×* §17.2(i) the q-Pochhammer symbol (or q-shifted factorial)
qmultiPochhammersym
(a1,a2,,ak;q)n
×𝔻×* " the q-multiple Pochhammer symbol
DLMF_CM.ocd Combinatorial Analysis
Bellnumber ( ?combinat1:Bell)
B(n) §26.7(i) the Bell number
Catalannumber
C(n) " (26.5.1) the Catalan number
Euleriannumber
nk × §26.14(i) the Eulerian number
LeviCivitasym
ϵijk ××{0,±1}
(1.6.14) the Levi-Civita symbol
Pochhammersym ( ?hypergeo0:pochhammer)
(a)n ×* §5.2(iii) the Pochhammer symbol (or shifted factorial)
StirlingnumberS ( ?combinat1:Stirling_S)
S(n,k) × §26.8(i) the Stirling number of the second kind
Stirlingnumbers ( ?combinat1:Stirling_s)
s(n,k) " §26.8(i) the Stirling number of the first kind
binom ( ?combinat1:binomial)
(zm) × §1.2(i) the binomial coefficient
multinomial ( ?combinat1:multinomial)
(nn1,n2,,nk) × §26.4(i) the multinomial coefficient
ncompositions
c(n) §26.11 the number of compositions of n
cm(n) × the number of compositions of n into exactly m parts
npartitions
p(n) §26.2 the total number of partitions of n
pm(n) × §26.9(i) the total number of partitions of n into at most m parts
npermutations
𝔖n §26.13 the number of permutations of n
nplanepartitions
pp(n) " §26.12(i) the number of plane partitions of n
nrestcompositions
c(condition,n)
C where C is a condition, see text
§26.11 the restricted number of compositions of n into exactly m parts
nrestpartitions
p(condition,n)
" §26.10(i) the restricted number of partitions of n
pm(condition,n)
×C where C is a condition, see text
§26.9(i) the restricted number of partitions of n into at most m parts
DLMF_CM_q.ocd Combinatorial Analysis – q-analogues
idem idem(χ1;χ2χn)
§17.1 the idem function
qStirlingnumbera
am,s(q) *×*×𝔻 (17.3.9) the q-Stirling number
qbinom [nm]q " (17.2.27) the q-binomial coefficient
qfactorial
n!q *×𝔻 (5.18.2) the q-factorial
qmultinomial
[nn1,n2,,nk]q *×*×𝔻 §26.16 the q-multinomial coefficient
DLMF_CW.ocd Coulomb Functions
irregCoulombG
G(η,ρ) *×× (33.2.11) the irregular Coulomb (radial) function (for repulsive interactions) G
irregCoulombH
H±(η,ρ) {±}×*×× (33.2.7) the irregular Coulomb (radial) function (for repulsive interactions) H±
irregCoulombc
c(ϵ,;r) ×*× (33.14.9) the irregular Coulomb (radial) function (for attractive interactions) c
irregCoulombh
h(ϵ,;r) " (33.14.7) the irregular Coulomb (radial) function (for attractive interactions) h
regCoulombF
F(η,ρ) *×× (33.2.3) the regular Coulomb (radial) function (for repulsive interactions) F
regCoulombf
f(ϵ,;r) ×*× (33.14.4) the regular Coulomb (radial) function (for attractive interactions) f
regCoulombs
s(ϵ,;r) " (33.14.9) the regular Coulomb (radial) function (for attractive interactions) s
DLMF_CW_mag.ocd Coulomb Functions – Magnitudes, Phases
Coulombphasesigma
σ(η) *× (33.2.10) the phase shift of the irregular Coulomb function H±
Coulombphasetheta
θ(η,ρ) *×× (33.2.9) the phase of the irregular Coulomb function H±
Coulombturnr
rtp(ϵ,) ×* (33.14.3) the outer turning point for Coulomb (radial) functions (for repulsive interactions)
Coulombturnrho
ρtp(η,) " (33.2.2) the outer turning point for Coulomb (radial) functions (for attractive interactions)
envCoulombM
M(η,ρ) *×× (33.3.1) the envelope of the Coulomb functions (for repulsive interactions)
normCoulombC
C(η) *× (33.2.5) the normalizing constant for Coulomb (radial) function
DLMF_EF.ocd Elementary Functions
Gudermannian
gd(z) (4.23.39) the Gudermannian function
aGudermannian
gd-1(z) " (4.23.41) the inverse of the Gudermannian function
acos ( ?transc1:arccos)
arccos(z) " §4.23(ii) the inverse of the cosine function
acosh ( ?transc1:arccosh)
arccosh(z) " §4.37(ii) the inverse of the hyperbolic cosine function
acot ( ?transc1:arccot)
arccot(z) " (4.23.9) the inverse of the cotangent function
acoth ( ?transc1:arccoth)
arccoth(z) " (4.37.9) the inverse of the hyperbolic cotangent function
acsc ( ?transc1:arccsc)
arccsc(z) " (4.23.7) the inverse of the cosecant function
acsch ( ?transc1:arcsch)
arccsch(z) " (4.37.7) the inverse of the hyperbolic cosecant function
asec ( ?transc1:arcsec)
arcsec(z) " (4.23.8) the inverse of the secant function
asech ( ?transc1:arcsech)
arcsech(z) " (4.37.8) the inverse of the hyperbolic secant function
asin ( ?transc1:arcsin)
arcsin(z) " §4.23(ii) the inverse of the sine function
asinh ( ?transc1:arcsinh)
arcsinh(z) " §4.37(ii) the inverse of the hyperbolic sine function
atan ( ?transc1:arctan)
arctan(z) " §4.23(ii) the inverse of the tangent function
atanh ( ?transc1:arctanh)
arctanh(z) " §4.37(ii) the inverse of the hyperbolic tangent function
DLMF_EF_lambert.ocd Elementary Functions – lambert
LambertW
W(x) (4.13.1) the Lambert W-function
LambertWm
Wm(x) " §4.13 the non-principal branch of the Lambert W-function
LambertWp
Wp(x) " " the principal branch of the Lambert W-function
DLMF_EF_mv.ocd Elementary Functions – mv
Acos ( ?transc3:arccos)
Arccos(z) (4.23.2) the multivalued inverse of the cosine function
Acosh ( ?transc3:arccosh)
Arccosh(z) " (4.37.2) the multivalued inverse of the hyperbolic cosine function
Acot ( ?transc3:arccot)
Arccot(z) " (4.23.6) the multivalued inverse of the cotangent function
Acoth ( ?transc3:arccoth)
Arccoth(z) " (4.37.6) the multivalued inverse of the hyperbolic cotangent function
Acsc ( ?transc3:arccsc)
Arccsc(z) " (4.23.4) the multivalued inverse of the cosecant function
Acsch ( ?transc3:arccsch)
Arccsch(z) " (4.37.4) the multivalued inverse of the hyperbolic cosecant function
Asec ( ?transc3:arccsc)
Arcsec(z) " (4.23.5) the multivalued inverse of the secant function
Asech ( ?transc3:arcsech)
Arcsech(z) " (4.37.5) the multivalued inverse of the hyperbolic secant function
Asin ( ?transc3:arcsin)
Arcsin(z) " (4.23.1) the multivalued inverse of the sine function
Asinh ( ?transc3:arcsinh)
Arcsinh(z) " (4.37.1) the multivalued inverse of the hyperbolic sine function
Atan ( ?transc3:arctan)
Arctan(z) " (4.23.3) the multivalued inverse of the tangent function
Atanh ( ?transc3:arctanh)
Arctanh(z) " (4.37.3) the multivalued inverse of the hyperbolic tangent function
Ln ( ?transc3:ln)
Ln(z) " (4.2.1) the multivalued logarithm function
DLMF_EF_q.ocd Elementary Functions – q-analogues
qCos Cosq(x) 𝔻× (17.3.6) the q-cosine function Cosq
qExp Eq(x) " (17.3.2) the q-exponential function Eq
qSin Sinq(x) " (17.3.4) the q-sine function Sinq
qcos cosq(x) " (17.3.5) the q-cosine function cosq
qexp eq(x) " (17.3.1) the q-exponential function eq
qsin sinq(x) " (17.3.3) the q-sine function sinq
DLMF_EL.ocd Elliptic Integrals
ccompellintEk
E(k) (19.2.9) (Legendre’s) complementary complete elliptic integral of the second kind (of modulus k)
ccompellintKk
K(k) " " (Legendre’s) complementary complete elliptic integral of the first kind (of modulus k)
compellintDk
D(k) " (19.2.8) the complete elliptic integral of Janke (of modulus k)
compellintEk
E(k) " " (Legendre’s) complete elliptic integral of the second kind (of modulus k)
compellintKk
K(k) " " (Legendre’s) complete elliptic integral of the first kind (of modulus k)
compellintPik
Π(α2,k) × " (Legendre’s) complete elliptic integral of the third kind (of modulus k)
incellintDk
D(ϕ,k) " (19.2.6) the incomplete elliptic integral of Janke (of modulus k)
incellintEk
E(ϕ,k) " (19.2.5) (Legendre’s) incomplete elliptic integral of the second kind (of modulus k)
incellintFk
F(ϕ,k) " (19.2.4) (Legendre’s) incomplete elliptic integral of the first kind (of modulus k)
incellintPik
Π(ϕ,α2,k) ×× (19.2.7) (Legendre’s) incomplete elliptic integral of the third kind (of modulus k)
DLMF_EL_Bulirsch.ocd Elliptic Integrals – Bulirsch
Bulirschcompellintcel
cel(kc,p,a,b)
(19.2.11) Bulirsch’s complete elliptic integral
Bulirschincellintel1
el1(x,kc) × (19.2.15) Bulirsch’s incomplete elliptic integral of the first kind
Bulirschincellintel2
el2(x,kc,a,b)
××× (19.2.12) Bulirsch’s incomplete elliptic integral of the second kind
Bulirschincellintel3
el3(x,kc,p) ×× (19.2.16) Bulirsch’s incomplete elliptic integral of the third kind
DLMF_EL_Carlson.ocd Elliptic Integrals – Carlson
CarsonellintRC
RC(x,y) × (19.2.17) Carlson’s elliptic integral combining inverse circular and hyperbolic functions
Carsonmultivarhyper
R-a(b1,,bn;z1,,zn)
×n×n (19.16.9) Carlson’s multivariate hypergeometric function
CarsonsymellintRD
RD(x,y,z) ×× (19.16.5) Carlson’s elliptic integral symmetric in only two variables
CarsonsymellintRF
RF(x,y,z) " (19.16.1) Carlson’s symmetric elliptic integral of first kind
CarsonsymellintRG
RG(x,y,z) " (19.16.3) Carlson’s symmetric elliptic integral of second kind
CarsonsymellintRJ
RJ(x,y,z,p) ××× (19.16.2) Carlson’s symmetric elliptic integral of third kind
DLMF_ER.ocd Error Functions, Dawson’s and Fresnel Integrals
Faddeevaw
w(z) (7.2.3) the complementary error function w
erf erf(z) " (7.2.1) the error function
erfc erfc(z) " (7.2.2) the complementary error function erfc
inverf inverf(x) " (7.17.1) the inverse error function
inverfc inverfc(x) " " the inverse complementary error function
repinterfc
inerfc(z) *× (7.18.2) the repeated integrals of complementary error function
DLMF_ER_Fresnel.ocd Error Functions, Dawson’s and Fresnel Integrals – Fresnel
DawsonintF
F(z) (7.2.5) Dawson’s integral
Fresnelcosint
C(z) " (7.2.7) the Fresnel cosine integral
FresnelintF
(z) " (7.2.6) the Fresnel integral
Fresnelsinint
S(z) " (7.2.8) the Fresnel sine integral
GoodwinStatonint
G(z) " (7.2.12) the Goodwin–Staton integral
auxFresnelf
f(z) " ? the auxiliary function for Fresnel integrals f
auxFresnelg
g(z) " " the auxiliary function for Fresnel integrals g
DLMF_ER_Voigt.ocd Error Functions, Dawson’s and Fresnel Integrals – Voight
FischersHh
𝐻ℎn(z) *× (7.18.12) Fischer’s probability function
MillsM 𝖬(x) (7.8.1) Mill’s ratio
VoightH H(a,u) × (7.19.4) the line broadening function
VoigtU 𝖴(x,t) " (7.19.1) the Voigt function 𝖴
VoigtV 𝖵(x,t) " (7.19.2) the Voigt function 𝖵
DLMF_EX.ocd Exponential, Logarithmic, Sine, and Cosine Integrals
auxsincosintf
f(z) (6.2.17) the auxiliary function for sine and cosine integrals f
auxsincosintg
g(z) " (6.2.18) the auxiliary function for sine and cosine integrals g
coshint Chi(z) " (6.2.16) the hyperbolic cosine integral
cosint Ci(z) " (6.2.11) the cosine integral Ci
cosintCin
Cin(z) " (6.2.12) the cosine integral Cin
expintE E1(z) " (6.2.1) the exponential integral E1
expintEi ( ?expint:expintEi)
Ei(z) " §6.2(i) the exponential integral Ei
expintEin
Ein(z) " (6.2.3) the complementary exponential integral
genexpintE ( ?expint:E)
Ep(z) × (8.19.1) the generalized exponential integral
logint ( ?expint:logint)
li(z) (6.2.8) the logarithmic integral
shiftsinint
si(z) " (6.2.10) the shifted sine integral
sinhint Shi(z) " (6.2.15) the hyperbolic sine integral
sinint Si(z) " (6.2.9) the sine integral Si
DLMF_EX_inc.ocd Exponential, Logarithmic, Sine, and Cosine Integrals – Incomplete
gencosint
Ci(a,z) × (8.21.2) the generalized cosine integral
genshiftcosint
ci(a,z) " (8.21.1) the generalized shifted cosine integral
genshiftsinint
si(a,z) " " the generalized shifted sine integral
gensinint
Si(a,z) " (8.21.2) the generalized sine integral
incBeta Bx(a,b) ×× (8.17.1) the incomplete beta function
incGamma
Γ(a,z) × (8.2.2) the upper incomplete gamma function
incgamma
γ(a,z) " (8.2.1) the lower incomplete gamma function
normincBetaI
Ix(a,b) ×× (8.17.2) the normalized incomplete beta function
normincGammaP
P(a,z) × (8.2.4) the normalized incomplete gamma function P
normincGammaQ
Q(a,z) " " the normalized incomplete gamma function Q
scincgamma
γ*(a,z) " (8.2.6) the scaled incomplete gamma function
terminant
Fp(z) " (2.11.11) the terminant function
DLMF_EX_mat.ocd Exponential, Logarithmic, Sine, and Cosine Integrals – Matrix arguments
multivarEulerBeta
Bm(a,b) *×× (35.3.3) multivariate beta function
DLMF_GA.ocd Gamma Function
BarnesG G(z) (5.17.1) the Barne’s G-function (or double gamma) function
EulerBeta ( ?hypergeo0:beta)
B(a,b) × (5.12.1) the Euler beta function
EulerGamma ( ?hypergeo0:gamma)
Γ(z) (5.2.1) the Euler gamma function
digamma ψ(z) " (5.2.2) the digamma (or psi) function
polygamma
ψ(n)(z) +× §5.15 the polygamma function
DLMF_GA_mat.ocd Gamma Function – Matrix arguments
multivarEulerGamma
Γm(a) *× §35.3(i) the multivariate gamma function
DLMF_GA_q.ocd Gamma Function – q-analogues
qBeta Bq(a,b) 𝔻×× (5.18.11) the q-Beta function
qDigamma
ψq(z) 𝔻× ? the q-digamma function
qGamma Γq(z) " (5.18.4) the q-gamma function
qpolygamma
ψq(n)(z) +×𝔻× ? the q-polygamma function
DLMF_GH.ocd Generalized Hypergeometric Functions and Meijer G-Function
MeijerG Gp,qm,n(z;a1,ap;b1,,bq)
+×+×+×+××p×q
(16.17.1) the Meijer G-function
genhyper1F1 ( ?hypergeo1:hypergeometric1F1)
F11(a;b;z) ×× §16.2 Kummer confluent hypergeometric function, F11=M
genhyper2F1 ( ?hypergeo1:hypergeometric2F1)
F12(a,b;c;z)
××× " Gauss’ hypergeometric function, F12=F
genhyperF ( ?hypergeo1:hypergeometric_pFq)
Fqp(a1,,ap;b1,,bq;z)
+×+×p×q×
" the generalized hypergeometric function
genhyperH
Hqp(a1,,ap;b1,,bq;z)
" (16.4.16) the bilateral hypergeometric function
genhyperOlverF
𝐅qp(a1,,ap;b1,,bq;z)
" (16.2.5) Olver’s scaled generalized hypergeometric function
DLMF_GH_Appell.ocd Generalized Hypergeometric Functions and Meijer G-Function – Appell
AppelF1 ( ?hypergeon2:appel_F1)
F1(α;β,β;γ;x,y)
×××××
(16.13.1) the first Appell function
AppelF2 ( ?hypergeon2:appel_F2)
F2(α;β,β;γ,γ;x,y)
××××××
(16.13.2) the second Appell function
AppelF3 ( ?hypergeon2:appel_F3)
F3(α,α;β,β;γ;x,y)
" (16.13.3) the third Appell function
AppelF4 ( ?hypergeon2:appel_F4)
F4(α,β;γ,γ;x,y)
×××××
(16.13.4) the fourth Appell function
DLMF_GH_mat.ocd Generalized Hypergeometric Functions and Meijer G-Function – Matrix arguments
genhyperFmat
Fqp(a1,,ap;b1,,bq;𝐓)
*×*×p×q××
(35.8.1) the generalized hypergeometric function of matrix argument
DLMF_GH_q.ocd Generalized Hypergeometric Functions and Meijer G-Function – q-analogues
qgenhyperphi
ϕsr+1(a0,,ar;b1,,bs;q,z)
*×*×r×s×𝔻×
(17.4.1) the q-hypergeometric (or basic hypergeometric) function
qgenhyperpsi
ψsr(a0,,ar;b1,,bs;q,z)
" (17.4.3) the bilateral q-hypergeometric (or bilateral basic hypergeometric) function
DLMF_GH_qAppell.ocd Generalized Hypergeometric Functions and Meijer G-Function – q-Appell
qAppelPhi1
Φ(1)(a;b,b;c;q;x,y)
××××××
(17.4.5) the first q-Appell function
qAppelPhi2
Φ(2)(a;b,b;c,c;q;x,y)
×××××××
(17.4.6) the second q-Appell function
qAppelPhi3
Φ(3)(a,a;b,b;c;q;x,y)
" (17.4.7) the third q-Appell function
qAppelPhi4
Φ(4)(a,b;c,c;q;x,y)
××××××
(17.4.8) the fourth q-Appell function
DLMF_HE.ocd Heun Functions
HeunHf (s1,s2)𝐻𝑓m(a,qm;α,β,γ,δ;z)
×*××××××××
§31.4 the Heun function
(s1,s2)𝐻𝑓mν(a,qm;α,β,γ,δ;z)
HeunHl H(a,q;α,β,γ,δ;z)
××××××
(31.3.1) the (fundamental) Heun function
HeunpolyHp
𝐻𝑝n,m(a,qn,m;-n,β,γ,δ;z)
*×*×××*××××
(31.5.2) the Heun polynomial
DLMF_HY.ocd Hypergeometric Function
Jacobiphi
ϕλ(α,β)(t) ××× (15.9.11) the Jacobi function
RiemannsymP
P{abca1b1c1za2b2c2} 9× (15.11.3) Riemann’s P-symbol for solutions of the generalized hypergeometric differential equation
hyperF ( ?hypergeo1:hypergeometric2F1)
F(a,b;c;z) ××× (15.2.1) (Gauss’) hypergeometric function
hyperOlverF
𝐅(a,b;c;z) " (15.2.2) Olver’s scaled hypergeometric function
DLMF_IC.ocd Integrals with Coalescing Saddles
canonint
ΨK(𝐱) *×K (36.2.4) the canonical integral function
cuspcatastrophe
ΦK(t;𝐱) *××K (36.2.1) the cuspoid catastrophe of codimension K
diffrcanonint
ΨK(𝐱;k) *×K (36.2.10) the diffraction canonical integral
ellumbcanonint
Ψ(E)(𝐱) K (36.2.5) the elliptic umbilic canonical integral function
ellumbcatastrophe
Φ(E)(s,t;𝐱) ××K (36.2.2) the elliptic umbilic catastrophe
ellumbdiffrcanonint
Ψ(E)(𝐱;k) K× (36.2.11) the elliptic umbilic diffraction canonical integral function
hyperumbcanonint
Ψ(H)(𝐱) K (36.2.5) the hyperbolic umbilic canonical integral function
hyperumbcatastrophe
Φ(H)(s,t;𝐱) ××K (36.2.3) the hyperbolic umbilic catastrophe
hyperumbdiffrcanonint
Ψ(H)(𝐱;k) K× (36.2.11) the hyperbolic umbilic diffraction canonical integral function
umbcanonint
Ψ(U)(𝐱) K (36.2.5) the umbilic canonical integral function
umbcatastrophe
Φ(U)(s,t;𝐱) ××K §36.2 the umbilic catastrophe
umbdiffrcanonint
Ψ(U)(𝐱;k) K× (36.2.11) the umbilic diffraction canonical integral function
DLMF_JA.ocd Jacobian Elliptic Functions
Jacobiamk
am(x,k) × (22.16.1) the Jacobi’s amplitude function (of modulus k)
Jacobiellcdk
cd(u,k) " (22.2.8) the Jacobian elliptic function cd (of modulus k)
Jacobiellcnk
cn(u,k) " (22.2.5) the Jacobian elliptic function cn (of modulus k)
Jacobiellcsk
cs(u,k) " (22.2.9) the Jacobian elliptic function cs (of modulus k)
Jacobielldck
dc(u,k) " (22.2.8) the Jacobian elliptic function dc (of modulus k)
Jacobielldnk
dn(u,k) " (22.2.6) the Jacobian elliptic function dn (of modulus k)
Jacobielldsk
ds(u,k) " (22.2.7) the Jacobian elliptic function ds (of modulus k)
Jacobiellnck
nc(u,k) " (22.2.5) the Jacobian elliptic function nc (of modulus k)
Jacobiellndk
nd(u,k) " (22.2.6) the Jacobian elliptic function nd (of modulus k)
Jacobiellnsk
ns(u,k) " (22.2.4) the Jacobian elliptic function ns (of modulus k)
Jacobiellsck
sc(u,k) " (22.2.9) the Jacobian elliptic function sc (of modulus k)
Jacobiellsdk
sd(u,k) " (22.2.7) the Jacobian elliptic function sd (of modulus k)
Jacobiellsnk
sn(u,k) " (22.2.4) the Jacobian elliptic function sn (of modulus k)
aJacobiellcdk
arccd(x,k) " §22.15(i) the inverse of the Jacobian elliptic function cd (of modulus k)
aJacobiellck
arcdc(x,k) " " the inverse of the Jacobian elliptic function dc (of modulus k)
aJacobiellcnk
arccn(x,k) " " the inverse of the Jacobian elliptic function cn (of modulus k)
aJacobiellcsk
arccs(x,k) " " the inverse of the Jacobian elliptic function cs (of modulus k)
aJacobielldnk
arcdn(x,k) " " the inverse of the Jacobian elliptic function dn (of modulus k)
aJacobielldsk
arcds(x,k) " " the inverse of the Jacobian elliptic function ds (of modulus k)
aJacobiellnck
arcnc(x,k) " " the inverse of the Jacobian elliptic function nc (of modulus k)
aJacobiellndk
arcnd(x,k) " " the inverse of the Jacobian elliptic function nd (of modulus k)
aJacobiellnsk
arcns(x,k) " " the inverse of the Jacobian elliptic function ns (of modulus k)
aJacobiellsck
arcsc(x,k) " " the inverse of the Jacobian elliptic function sc (of modulus k)
aJacobiellsdk
arcsd(x,k) " " the inverse of the Jacobian elliptic function ds (of modulus k)
aJacobiellsnk
arcsn(x,k) " " the inverse of the Jacobian elliptic function sn (of modulus k)
DLMF_JA_aux.ocd Jacobian Elliptic Functions – Auxiliary
JacobiEpsilonk
(x,k) × (22.16.14) Jacobi’s Epsilon function (of modulus k)
JacobiZetak
Z(x|k) " (22.16.32) Jacobi’s Zeta function (of modulus k)
DLMF_JA_gen.ocd Jacobian Elliptic Functions – Generalizations
agenJacobiellk
arcpq(x,k)
{s,n,d}×{s,n,d}××
? the inverse of the generic Jacobian elliptic function pq (of modulus k)
genJacobiellk
pq(u,k) " (22.2.10) the generic Jacobian elliptic function pq (of modulus k)
DLMF_LA.ocd Lam’e Functions
LameEc 𝐸𝑐νm(z,k2) *××× §29.3(iv) the Lamé function 𝐸𝑐νm
LameEs 𝐸𝑠νm(z,k2) " " the Lamé function 𝐸𝑠νm
Lameeigvala
aνn(k2) *×× §29.3(i) the eigenvalues of Lamé’s equation aνn
Lameeigvalb
bνn(k2) " " the eigenvalues of Lamé’s equation bνn
LamepolycE
𝑐𝐸2n+1m(z,k2) *×*×× (29.12.3) the Lamé polynomial 𝑐𝐸2n+1m
LamepolycdE
𝑐𝑑𝐸2n+2m(z,k2) " (29.12.7) the Lamé polynomial 𝑐𝑑𝐸2n+2m
LamepolydE
𝑑𝐸2n+1m(z,k2) " (29.12.4) the Lamé polynomial 𝑑𝐸2n+1m
LamepolysE
𝑠𝐸2n+1m(z,k2) " (29.12.2) the Lamé polynomial 𝑠𝐸2n+1m
LamepolyscE
𝑠𝑐𝐸2n+2m(z,k2) " (29.12.5) the Lamé polynomial 𝑠𝑐𝐸2n+2m
LamepolyscdE
𝑠𝑐𝑑𝐸2n+3m(z,k2) " (29.12.8) the Lamé polynomial 𝑠𝑐𝑑𝐸2n+3m
LamepolysdE
𝑠𝑑𝐸2n+2m(z,k2) " (29.12.6) the Lamé polynomial 𝑠𝑑𝐸2n+2m
LamepolyuE
𝑢𝐸2nm(z,k2) " (29.12.1) the Lamé polynomial 𝑢𝐸2nm
DLMF_LE.ocd Legendre and Related Functions
DunsterQ
𝖰^-12+iτ-μ(x) ×× (14.20.2) Dunster’s conical function
FerrersP
𝖯ν(x) × §14.2(ii) =𝖯ν0, shorthand for the Ferrers function of the first kind
𝖯νμ(x) ×× (14.3.1) the Ferrers function of the first kind
FerrersQ
𝖰ν(x) × §14.2(ii) =𝖰ν0, shorthand for the Ferrers function of the second kind
𝖰νμ(x) ×× (14.3.2) the Ferrers function of the second kind
assLegendreOlverQ
𝑸ν(z) × §14.2(ii) =𝑸ν0, shorthand for Olver’s associated Legendre function
𝑸νμ(z) ×× §14.21(i) Olver’s associated Legendre function
assLegendreP
Pν(z) × §14.2(ii) =Pν0, shorthand for the associated Legendre function of the first kind
Pνμ(z) ×× §14.21(i) the associated Legendre function of the first kind
assLegendreQ
Qν(z) × §14.2(ii) =Qν0, shorthand for the associated Legendre function of the second kind
Qνμ(z) ×× §14.21(i) the associated Legendre function of the second kind
sphharmonicY
Yl,m(θ,ϕ) *×*×× (14.30.1) the spherical harmonic
surfharmonicY
Ylm(θ,ϕ) " (14.30.2) the surface harmonic of the first kind
DLMF_MA.ocd Mathieu Functions and Hill’s Equation
Mathieuce
cen(z,q) ×× §28.2(vi) the Mathieu function cen
Mathieueigvala
an(q) × §28.2(v) the eigenvalues of the Mathieu’s equation an
Mathieueigvalb
bn(q) " " the eigenvalues of the Mathieu’s equation bn
Mathieueigvallambda
λν+2n(q) × §28.12(i) the eigenvalues of Mathieu’s equation λν+2n
Mathieufe
fen(z,q) ×× (28.5.1) the second solution of Mathieu’s equation fen
Mathieuge
gen(z,q) " (28.5.2) the second solution of Mathieu’s equation gen
Mathieume
men(z,q) " §28.12(ii) the Mathieu function men
Mathieuse
sen(z,q) " §28.2(vi) the Mathieu function sen
DLMF_MA_cross.ocd Mathieu Functions and Hill’s Equation – Cross-Products
modMathieuD
Dj(ν,μ,z) ××× (28.28.24) the cross-products of modified Mathieu functions and their derivatives
radMathieuDc
Dcj(n,m,z) ××× (28.28.39) the cross-products of radial Mathieu functions and their derivatives Dcj
radMathieuDs
Dsj(n,m,z) " (28.28.35) the cross-products of radial Mathieu functions and their derivatives Dsj
radMathieuDsc
Dscj(n,m,z) " (28.28.40) the cross-products of radial Mathieu functions and their derivatives Dscj
DLMF_MA_mod.ocd Mathieu Functions and Hill’s Equation – Modified
modMathieuCe
Ceν(z,q) ×× (28.20.3) the modified Mathieu function Ceν
modMathieuFe
Feν(z,q) " (28.20.6) the modified Mathieu function Feν
modMathieuGe
Geν(z,q) " (28.20.7) the modified Mathieu function Geν
modMathieuIe
Ien(z,h) ×× (28.20.17) the modified Mathieu function Ien
modMathieuIo
Ion(z,h) " (28.20.18) the modified Mathieu function Ion
modMathieuKe
Ken(z,h) " (28.20.19) the modified Mathieu function Ken
modMathieuKo
Kon(z,h) " (28.20.20) the modified Mathieu function Kon
modMathieuM
Mν(j)(z,h) ××× §28.20(iii) the modified Mathieu function Mν(j)
modMathieuMe
Meν(z,q) ×× (28.20.5) the modified Mathieu function Meν
modMathieuSe
Seν(z,q) " (28.20.4) the modified Mathieu function Seν
DLMF_MA_rad.ocd Mathieu Functions and Hill’s Equation – Radial
radMathieuMc
Mcn(j)(z,h) ××× (28.20.15) the radial Mathieu function Mcn(j)
radMathieuMs
Msn(j)(z,h) " (28.20.16) the radial Mathieu function Msn(j)
DLMF_NT.ocd Functions of Number Theory
Eulertotientphi
ϕ(n) +* (27.2.7) Euler’s totient, the number of positive integers relatively prime to n, (ϕ=ϕ0)
ϕk(n) +×+* (27.2.6) the sum of kth powers of integers relatively prime to n
JordanJ Jk(n) " (27.2.11) Jordan’s function
Liouvillelambda
λ(n) +{0,±1} (27.2.13) the Liouville’s function
Mangoldtlambda
Λ(n) + (27.2.14) Mangoldt’s function
Moebiusmu
μ(n) +{0,±1} (27.2.12) the Möbius function
ndivisors
d(n) +* §27.2(i) the number of divisors of n (divisor function)
dk(n) +×+* the number of ways of expressing n as product of k factors
nprimes π(x) * (27.2.2) the number of primes not exceeding x
nprimesdiv
ν(n) +* §27.2(i) the number of distinct primes dividing n
sumdivisors
σα(n) ×+ (27.2.10) the sum of powers of divisors of n
DLMF_NT_aux.ocd Functions of Number Theory – Auxiliary
Dedikindeta
η(τ) (27.14.12) Dedekind’s eta function (or modular function)
Dirichletchar
χ(n,k) *{0,1} §27.8 the Dirichlet character
χr(n,k)
DiscriminantDelta
Δ(τ) (27.14.16) the discriminant function
Eulerphi
f(x) (27.14.2) Euler’s reciprocal function
Gausssum
G(n,χ) +×+ (27.10.9) the Gauss sum
Jacobisym
(n|p) +×+{0,±1} §27.9 the Jacobi symbol
Legendresym
(n|p) " §27.9 the Legendre symbol
Ramanujantau
τ(n) + (27.14.18) Ramanujan’s tau function
Rmanujansum
ck(n) + (27.10.4) Ramanujan’s sum
WaringG G(k) +* §27.13(iii) Waring’s function G
Waringg g(k) " " Waring’s function g
nsquares
rk(n) +×+* §27.13(iv) the number of squares
DLMF_OP.ocd Orthogonal Polynomials
ChebyshevpolyT
Tn(x) *× §18.3 the Chebyshev polynomial of the first kind
ChebyshevpolyU
Un(x) " §18.3 the Chebyshev polynomial of the second kind
ChebyshevpolyV
Vn(x) " §18.3 the Chebyshev polynomial of the third kind
ChebyshevpolyW
Wn(x) " §18.3 the Chebyshev polynomial of the fourth kind
HermitepolyH
Hn(x) " §18.3 the Hermite polynomial
JacobipolyP
Pn(α,β)(x) ××*× §18.3 the Jacobi polynomial
LaguerrepolyL
Ln(x) *× §18.1 =Ln(0), shorthand for the Laguerre polynomial
Ln(α)(x) ×*× §18.3 the (generalized or associated) Laguerre (or Sonin) polynomial
LegendrepolyP
Pn(x) *× §18.3 the Legendre (or spherical) polynomial
dilChebyshevpolyC
Cn(x) " (18.1.3) the dilated Chebyshev polynomial of first kind
dilChebyshevpolyS
Sn(x) " " the dilated Chebyshev polynomial of second kind
dilHermitepolyHe
𝐻𝑒n(x) " §18.3 the dilated Hermite polynomial
shiftChebyshevpolyT
Tn*(x) " §18.3 the shifted Chebyshev polynomial of the first kind
shiftChebyshevpolyU
Un*(x) " §18.3 the shifted Chebyshev polynomial of the second kind
shiftJacobipolyG
Gn(p,q,x) *×*×*× (18.1.2) the shifted Jacobi polynomial
shiftLegendrepolyP
Pn*(x) *× §18.3 the shifted Legendre polynomial
ultrasphpoly
Cn(λ)(x) ×*× §18.3 the ultraspherical (or Gegenbauer) polynomial
DLMF_OP_askey.ocd Orthogonal Polynomials – askey
CharlierpolyC
Cn(x;a) *×× §18.19 the Charlier polynomial
HahnpolyQ
Qn(x;α,β,N) *××××*
§18.19 the Hahn polynomial
KrawtchoukpolyK
Kn(x;p,N) *×××* §18.19 the Krawtchouk polynomial
MeixnerPollaczekpolyP
Pn(λ)(x;ϕ) ×*×× §18.19 the Meixner–Pollaczek polynomial
MeixnerpolyM
Mn(x;β,c) *××× §18.19 the Meixner polynomial
RacahpolyR
Rn(x;α,β,γ,δ)
*×××××
§18.25 the Racah polynomial
WilsonpolyW
Wn(x;a,b,c,d)
" §18.25 the Wilson polynomial
contHahnpolyp
pn(x;a,b,a¯,b¯)
*××× §18.19 the continuous Hahn polynomial
contdualHahnpolyS
Sn(x;a,b,c) *×××× §18.25 the continuous dual Hahn polynomial
dualHahnpolyR
Rn(x;γ,δ,N) *××××*
§18.25 the dual Hahn polynomial
DLMF_OP_aux.ocd Orthogonal Polynomials – Auxiliary
Besselpolyy
yn(x;a) *×× (18.34.1) the Bessel polynomial
PollaczekpolyP
Pn(λ)(x;a,b) ×*××× (18.35.4) the Pollaczek polynomial
assJacobipolyP
Pn(α,β)(x;c) ××*×× (18.30.4) the associated Jacobi polynomial
assLegendrepoly
Pn(x;c) *×× (18.30.6) the associated Legendre polynomial
diskpoly
Rm,n(α)(z) ×*×*× (18.37.1) the disk polynomial
trianglepoly
Pm,nα,β,γ(x,y) ×××*×*××
(18.37.7) the triangle polynomial
DLMF_OP_mat.ocd Orthogonal Polynomials – Matrix arguments
JacobifunPmat
Pν(γ,δ)(𝐓) ×××× (35.7.2) the Jacobi function of matrix argument
LaguerrefunLmat
Lν(𝐓) ××× (35.6.3) the Laguerre function of matrix argument
Lν(γ)(𝐓)
DLMF_OP_q.ocd Orthogonal Polynomials – q-analogues
AlSalamChiharapolyQ
Qn(x;a,b|q) *×××× (18.28.7) the Al-Salam–Chihara polynomial
AskeyWilsonpolyp
pn(x;a,b,c,d|q)
*××××××
(18.28.1) the Askey–Wilson polynomial
StieltjesWigertpolyS
Sn(x;q) *×× (18.27.18) the Stieltjes–Wigert polynomial
bigqJacobipolyP
Pn(x;a,b,c;q)
*×××××
(18.27.5) the big q-Jacobi polynomial
contqHermitepolyH
Hn(x|q) *×× (18.28.16) the continuous q-Hermite polynomial
contqinvHermitepolyh
hn(x|q) " (18.28.18) the continuous q-1-Hermite polynomial
contqultrasphpoly
Cn(x;β|q) *××× (18.28.13) the continuous q-ultraspherical (or Rogers) polynomial
discqHermitepolyhI
hn(x;q) *×× (18.27.21) the discrete q-Hermite I polynomial
discqHermitepolyhII
h~n(x;q) " (18.27.23) the discrete q-Hermite II polynomial
littleqJacobipolyp
pn(x;a,b;q) *×××× (18.27.13) the little q-Jacobi polynomial
qHahnpolyQ
Qn(x;α,β,N;q)
*××××*×
(18.27.3) the q-Hahn polynomial
qLaguerrepolyL
Ln(α)(x;q) ×*×× (18.27.15) the q-Laguerre polynomial
qRacahpolyR
Rn(x;α,β,γ,δ|q)
*××××××
(18.28.19) the q-Racah polynomial
qinvAlSalamChiharapolyQ
Qn(x;a,b|q-1)
*×××× (18.28.9) the q-1-Al-Salam–Chihara polynomial
scbigqJacobipolyP
Pn(α,β)(x;c,d;q)
××*××××
(18.27.6) the scaled big q-Jacobi polynomial
DLMF_PC.ocd Parabolic Cylinder Functions
WhittakerparaD
Dν(z) × §12.1 Whittaker’s notation for the parabolic cylinder function
paraU U(a,z) " §12.2(i) the parabolic cylinder (or Weber) function U
paraV V(a,z) " " the parabolic cylinder (or Weber) function V
paraW W(a,z) " §12.14(i) the parabolic cylinder (or Weber) function W
DLMF_PC_mag.ocd Parabolic Cylinder Functions – Magnitudes, Phases
envparaU
envU(c,x) × §14.15(v) the envelope of the parabolic cylinder function U
envparaUbar
envU¯(c,x) " " the envelope of the parabolic cylinder function U¯
paraUbar
U¯(a,x) × §12.2(vi) the parabolic cylinder (or Weber) function U¯
DLMF_ST.ocd Struve and Related Functions
StruveH 𝐇ν(z) × (11.2.1) the Struve function 𝐇ν
StruveK 𝐊ν(z) " (11.2.5) the Struve function 𝐊ν
DLMF_ST_aux.ocd Struve and Related Functions – Auxiliary
AngerJ 𝐉ν(z) × (11.10.1) the Anger function
AngerWeberA
𝐀ν(z) " (11.10.4) the Anger–Weber function
WeberE 𝐄ν(z) " (11.10.2) the Weber function
DLMF_ST_lommel.ocd Struve and Related Functions – lommel
LommelS Sμ,ν(z) ×× (11.9.5) the Lommel function Sμ,ν
Lommels sμ,ν(z) " (11.9.3) the Lommel function sμ,ν
DLMF_ST_mod.ocd Struve and Related Functions – Modified
modStruveL
𝐋ν(z) × (11.2.2) the modified Struve function 𝐋ν
modStruveM
𝐌ν(z) " (11.2.6) the modified Struve function 𝐌ν
DLMF_SW.ocd Spheroidal Wave Functions
radsphwaveS
Snm(j)(z,γ) *×*×*××
(30.11.3) the radial spheroidal wave function
spheigvalLambda
λnm(γ2) §30.3(i) the eigenvalues of the spheroidal differential equation
sphwavePs
𝑃𝑠nm(z,γ2) *×*×× §30.6 the spheroidal wave function of complex argument
sphwaveQs
𝑄𝑠nm(z,γ2) " " "
DLMF_SW_real.ocd Spheroidal Wave Functions – Real
sphwavePsreal
𝖯𝗌nm(x,γ2) *×*×× §30.4(i) the spheroidal wave function of first kind
sphwaveQsreal
𝖰𝗌nm(x,γ2) " §30.5 the spheroidal wave function of second kind
DLMF_TH.ocd Theta Functions
Jacobithetacombinedq
φn,m(z,q) {1,2,3,4}×{1,2,3,4}××
§20.11(v) the combined theta function
Jacobithetaq
θj(z,q) {1,2,3,4}××
§20.2(i) the Jacobi theta function of q
Jacobithetatau
θj(z|τ) " " the Jacobi theta function of τ
DLMF_TH_Riemann.ocd Theta Functions – Riemann
Riemanntheta
θ(z|Ω) ×× (21.2.1) the Riemann theta function
Riemannthetachar
θ[αβ](z|Ω) ××××
(21.2.5) the Riemann theta function with characteristics
scRiemanntheta
θ^(z|Ω) ×× (21.2.2) the scaled Riemann theta function (or oscillatory part of the theta function)
DLMF_TJ.ocd 3 extitj, 6 extitj, 9 extitj Symbols
Wignerninejsym
{j11j12j13j21j22j23j31j32j33} (/2)9 (34.6.1) the Wigner 9j symbol
Wignersixjsym
{j1j2j3l1l2l3} (/2)6 (34.4.1) the Wigner 6j symbol
Wignerthreejsym
(j1j2j3m1m2m3) " (34.2.4) the Wigner 3j symbol
DLMF_WE.ocd Weierstrass Elliptic and Modular Functions
KleincompinvarJtau
J(τ) (23.15.7) Klein’s complete invariant
modularlambdatau
λ(τ) " (23.15.6) the elliptic modular function
DLMF_WE_invar.ocd Weierstrass Elliptic and Modular Functions – on invariants
Weierstrasspinvar
(z;g2,g3) ×× (23.3.8) the Weierstrass -function (on invariants)
Weierstrasssigmainvar
σ(z;g2,g3) " §23.3(i) the Weierstrass sigma function σ (on invariants)
Weierstrasszetainvar
ζ(z;g2,g3) " " the Weierstrass zeta function ζ (on invariants)
DLMF_WE_lattice.ocd Weierstrass Elliptic and Modular Functions – on Lattice
Weierstrasselatt
ei(L) 𝐋 §23.3(i) the Weierstrass lattice roots (on Lattice)
Weierstrassinvarlatt
gi(L) " §23.3 the Weierstrass invariants (on Lattice)
Weierstrassplatt
(z|L) ×𝐋 (23.2.4) the Weierstrass -function (on Lattice)
Weierstrasssigmalatt
σ(z|L) " (23.2.6) the Weierstrass sigma function σ (on Lattice)
Weierstrasszetalatt
ζ(z|L) " (23.2.5) the Weierstrass zeta function ζ (on Lattice)
DLMF_ZE.ocd Zeta and Related Functions
ChebyshevPsi
ψ(x) (25.16.1) the Chebyshev ψ-function
DirichletL
L(s,χ) × (25.15.1) the Dirichlet L-function
EulersumH
H(s) §25.16(ii) the Euler sum
Hurwitzzeta
ζ(s,a) × (25.11.1) the Hurwitz zeta function
Jonquierephi
ϕ(z,s) " §25.12(ii) Truesdell’s notation for polylogarithm
LerchPhi
Φ(z,s,a) ×× (25.14.1) Lerch’s transcendent
Riemannxi
ξ(s) (25.4.4) the Riemann ξ function
Riemannzeta
ζ(s) " (25.2.1) the Riemann zeta function
dilog Li2(z) " (25.12.1) the dilogarithm
genEulersumH
H(s,z) × §25.16(ii) the generalized Euler sum
perZeta F(x,s) × (25.13.1) the periodic zeta function
polylog Lis(z) × (25.12.10) the polylogarithm
DLMF_types.ocd
UnitDisc
𝔻 Intro. the set of complex numbers in the (open) unit disc
arith1.ocd (official)
abs |x| ? the absolute value of x
asymp1.ocd (experimental)
O O(x) (2.1.3) the order not exceeding
asymptotic
(2.1.1) asymptotically equal
o o(x) (2.1.2) the order less than
asymp2.ocd (DLMF speculative)
asymptotic_expansion
§2.1(iii) asymptotic expansion (the right-hand side is the asymptotic expansion of the left-hand side)
complex1.ocd (official)
argument
ph(z) (1.9.7) the phase of a complex number z
conjugate
z¯ (1.9.11) the complex conjugate of a complex number z
imaginary
(z) (1.9.2) the imaginary part of a complex number z
real (z) " the real part of a complex number z
equals.ocd
definition
Intro. equal by definition
equivalence.ocd
equivalence
Intro. modular equivalence
integer2.ocd (experimental)
divides | ? the divides operator operator
linalg1.ocd (official)
scalarproduct
? the vector dot product operator
transpose
𝐗T " the transpose of a matrix
vectorproduct
× " the vector cross product operator
nums1.ocd (official)
e e (4.2.11) the exponential base
gamma γ (5.2.3) the Euler constant
i i ? the imaginary unit
pi π (3.12.1) the ratio of the circumference of a circle to its diameter
physical_consts1.ocd (experimental)
Boltzmann_constant
k CODATA the Boltzmann constant
speed_of_light
c CODATA the speed of light
rounding1.ocd (official)
ceiling x Intro. the ceiling of a real number x
floor x " the floor of a real number x
set1.ocd (official)
size |x| §26.1 the cardinality of a set
setname1.ocd (official)
C Intro. the set of complex numbers
N " the set of ‘natural’ numbers (positive integers)
Q " the set of rational numbers
R " the set of real numbers
Z " the set of integers
transc1.ocd (official)
cos cos(z) (4.14.2) the cosine function
cosh cosh(z) " (4.28.2) the hyperbolic cosine function
cot cot(z) " (4.14.7) the cotangent function
coth coth(z) " (4.28.7) the hyperbolic cotangent function
csc csc(z) " (4.14.5) the cosecant function
csch csch(z) " (4.28.5) the hyperbolic cosecant function
exp exp(z) " (4.2.19) the exponential function
ln ln(z) " (4.2.2) the principal branch of logarithm function
log loga(z) × §4.2 the logarithm to general base a
sec sec(z) (4.14.6) the secant function
sech sech(z) " (4.28.6) the hyperbolic secant function
sin sin(z) " (4.14.1) the sine function
sinh sinh(z) " (4.28.1) the hyperbolic sine function
tan tan(z) " (4.14.4) the tangent function
tanh tanh(z) " (4.28.4) the hyperbolic tangent function
veccalc1.ocd (official)
curl curl (1.6.22) the curl operator
divergence
div (1.6.21) the divergence operator
grad grad (1.6.20) the gradient operator
Unclassified
AGM M(a,g) §19.8(i) arithmetic-geometric mean
Bohrradius
a0 CODATA the Bohr radius
Diracdelta
δ(x) §1.17(i) the Dirac delta functional (or distribution)
Diracdeltaseq
δn(x) " the Dirac delta sequence
FiniteSet
{x0,} ? elements of the finite set
Fouriercostrans
c(f) (1.14.9) the Fourier cosine transform of a function
Fouriersintrans
s(f) (1.14.10) the Fourier sine transform of a function
Fouriertrans
(f) (1.14.1) the Fourier transform of a function
Fouriertransdist
(f) (1.16.35) the Fourier transform of a distribution
HeavisideH
H(x) (1.16.13) the Heaviside function
Hilberttrans
(f) §1.14(v) the Hilbert transform of a function
Kroneckerdelta
δj,k Intro. the Kronecker delta
Laplacetrans
(f) (1.14.17) the Laplace transform of a function
Lattices
𝐋 ? the set of Lattices on the complex plane (in the sense of elliptic functions)
LauricellaFD ( ?hypergeon2:LauricellaFD)
FD(x;y;z;p) ××× §19.15 Lauricella’s (multivariate) hypergeometric function
Matrices
T×(T) ? Matrices with elements of the given type; dimensions n×m
Tn×m(T)
Mellintrans
(f) (1.14.32) the Mellin transform of a function
Pade [p/q]f(z) §3.11(iv) the Padé approximant
Rydbergconst
R CODATA the Rydberg constant
Schwarzian
{z,ζ} (1.13.20) the Schwarzian
Stieltjestrans
𝒮(f) (1.14.47) the Stieltjes transform of a function
Tuples T ? n-Tuples of elements of type T
Tn
Vectors T(T) " Vectors with elements of type T; dimension n
Tn(T)
Wronskian
𝒲{w1,w2} (1.13.4) the Wronskian
cartprod
× §23.1 the Cartesian product operator
continuous[]
C(a,b) §1.4(ii) the set of functions continuous on the interval (a,b)
continuous
Cn(a,b) §1.4 the set of continuous functions n-times differentiable on the interval (a,b)
diag diag ? the diagonal elements
diffd d " the differential operator
electricconst
ε0 CODATA the electric constant or vacuum permitivity
env envf ? the envelope of a function
exptrace
etr(𝐗) §35.1 the exponential of the trace
finestructureconst
α CODATA the fine-structure constant
intinnerprod
Λ,ϕ §1.16(i) the inner-product (by integration)
log log(z) §4.2 the logarithm to base 10
nonnegIntegers
* ? the set of non-negative integers
pgcd (a1,,an) §27.1 the greatest common divisor
posIntegers
+ ? the set of positive integers
setmod / §21.1 the set modulus operator
shiftfactorial
[a]k (35.4.1) the partitional shifted factorial
sign sign(x) Intro. the sign of a number x
trace tr " the trace of a matrix
variation[]
𝒱(f) (1.4.33) the total variation of a function
variation
𝒱a,b(f) the total variation of a function on an interval
zonalpolyZ
Zκ(𝐓) §35.4(i) the zonal polynomial