DLMF_AI.ocd Airy and Related Functions
|
|
AiryAi ( airy:Ai)
|
|
|
|
|
§9.2(i) |
the Airy function
|
|
AiryBi ( airy:Bi)
|
|
|
|
" |
" |
the Airy function
|
|
ScorerGi |
|
|
|
" |
(9.12.4) |
the Scorer (or inhomogeneous Airy) function
|
|
ScorerHi |
|
|
|
" |
(9.12.5) |
the Scorer (or inhomogeneous Airy) function
|
DLMF_AI_gen.ocd Airy and Related Functions – Generalizations |
|
genAiryODEA |
|
|
|
|
§9.13(i) |
the generalized Airy function (ODE)
|
|
genAiryODEB |
|
|
|
" |
" |
the generalized Airy function (ODE)
|
|
genAiryintA |
|
|
|
|
§9.13(ii) |
the generalized Airy function (integral)
|
|
genAiryintB |
|
|
|
" |
" |
the generalized Airy function (integral)
|
DLMF_AI_mag.ocd Airy and Related Functions – Magnitudes, Phases |
|
AirymodM |
|
|
|
|
(9.8.3) |
the modulus of Airy functions |
|
AirymodderivN |
|
|
|
" |
(9.8.7) |
the modulus of derivatives of Airy functions |
|
Airyphasederivphi |
|
|
|
" |
(9.8.8) |
the phase of derivatives of Airy functions |
|
Airyphasetheta |
|
|
|
" |
(9.8.4) |
the phase of Airy functions |
|
envAiryAi |
|
|
|
" |
§2.8(iii) |
the envelope of the Airy function
|
|
envAiryBi |
|
|
|
" |
" |
the envelope of the Airy function
|
DLMF_AI_z.ocd Airy and Related Functions – Zeros |
|
zAirya |
|
|
§9.9(i) |
the th zero of Airy
|
|
zAiryb |
|
" |
" |
the th zero of Airy
|
|
zAirybeta |
|
|
|
|
§9.9(i) |
the th complex zero of Airy
|
|
zderivAirya |
|
|
|
|
§9.9(i) |
the th zero of Airy
|
|
zderivAiryb |
|
|
|
" |
" |
the th zero of Airy
|
|
zderivAirybeta |
|
|
|
|
§9.9(i) |
the th complex zero of Airy
|
DLMF_BP.ocd Bernoulli and Euler Polynomials |
|
BernoullinumberB |
|
|
|
|
§24.2(i) |
the Bernoulli number |
|
BernoullipolyB |
|
|
|
|
" |
the Bernoulli polynomial |
|
EulernumberE |
|
|
|
|
§24.2(ii) |
the Euler number |
|
EulerpolyE |
|
|
|
|
" |
the Euler polynomial |
DLMF_BP_gen.ocd Bernoulli and Euler Polynomials – Generalizations |
|
genBernoullipolyB |
|
|
|
|
§24.16 |
the generalized Bernoulli polynomial |
|
genEulerpolyE |
|
|
|
" |
" |
the generalized Euler polynomial |
DLMF_BP_per.ocd Bernoulli and Euler Polynomials – Periodic |
|
perBernoulliB |
|
|
|
|
§24.2(iii) |
the periodic Bernoulli function |
|
perEulerE |
|
|
|
" |
" |
the periodic Euler function |
DLMF_BP_q.ocd Bernoulli and Euler Polynomials – -analogues |
|
qBernoullipolybeta |
|
|
|
|
(17.3.7) |
the -Bernoulli polynomial
|
|
qEulernumberA |
|
|
|
|
(17.3.8) |
the -Euler number
|
DLMF_BS.ocd Bessel Functions |
|
BesselJ |
|
|
(10.2.2) |
the Bessel function of the first kind |
|
BesselY |
|
" |
(10.2.3) |
the Bessel function of the second kind |
|
HankelH1 |
|
|
|
" |
(10.2.5) |
the Hankel function of the first kind(or Bessel function of the third kind) |
|
HankelH2 |
|
|
|
" |
(10.2.6) |
the Hankel function of the second kind(or Bessel function of the third kind) |
DLMF_BS_Kelvin.ocd Bessel Functions – Kelvin |
|
Kelvinbei |
|
|
|
|
(10.61.1) |
the Kelvin function
|
|
Kelvinber |
|
|
|
" |
" |
the Kelvin function
|
|
Kelvinkei |
|
|
|
" |
(10.61.2) |
the Kelvin function
|
|
Kelvinker |
|
|
|
" |
" |
the Kelvin function
|
DLMF_BS_aux.ocd Bessel Functions – Auxiliary |
|
BesselJimag |
|
|
|
|
§10.24 |
the Bessel function of the first kind of imaginary order |
|
BesselYimag |
|
|
|
" |
§10.24 |
the Bessel function of the second kind of imaginary order |
|
BickleyKi |
|
|
|
|
(10.43.11) |
the Bickley function |
|
NeumannpolyQ |
|
|
|
|
(10.23.12) |
Neumann’s polynomial |
|
Rayleighsigma |
|
|
|
" |
(10.21.55) |
the Rayleigh function |
|
modBesselIimag |
|
|
|
|
(10.45.2) |
the modified Bessel function of the first kind of imaginary order |
|
modBesselKimag |
|
|
|
" |
" |
the modified Bessel function of the second kind of imaginary order |
DLMF_BS_gen.ocd Bessel Functions – Generalizations |
|
MittagLefflerE |
|
|
|
|
(10.46.3) |
the Mittag-Leffler function |
|
genBesselphi |
|
|
|
" |
(10.46.1) |
the generalized Bessel function |
DLMF_BS_mag.ocd Bessel Functions – Magnitudes, Phases |
|
BesselC |
|
|
§10.2 |
the Bessel cylinder function |
|
HankelmodM |
|
|
|
|
(10.18.1) |
the modulus of the Hankel function of the first kind |
|
HankelmodderivN |
|
|
|
" |
(10.18.2) |
the modulus of derivatives of the Hankel function of the first kind |
|
Hankelphasederivphi |
|
|
|
" |
(10.18.3) |
the phase of derivatives of the Hankel function of the first kind |
|
Hankelphasetheta |
|
|
|
" |
" |
the phase of the Hankel function of the first kind |
|
envBesselJ |
|
|
|
" |
§2.8(iv) |
the envelope of the Bessel function
|
|
envBesselY |
|
|
|
" |
" |
the envelope of the Bessel function
|
DLMF_BS_mat.ocd Bessel Functions – Matrix arguments |
|
BesselAmat |
|
|
|
|
§35.5(i) |
the Bessel function of matrix argument (first kind) |
|
BesselBmat |
|
|
|
" |
(35.5.3) |
the Bessel function of matrix argument (second kind) |
DLMF_BS_mod.ocd Bessel Functions – Modified |
|
modBesselI |
|
|
|
|
(10.25.2) |
the modified Bessel function of the first kind |
|
modBesselK |
|
|
|
" |
(10.25.3) |
the modified Bessel function of the second kind |
|
modcylinder |
|
|
|
" |
§10.25 |
the modified cylinder function |
DLMF_BS_modsph.ocd Bessel Functions – Modified Spherical |
|
modsphBesselK |
|
|
|
|
(10.47.9) |
the modified spherical Bessel function
|
|
modsphBesseli1 |
|
|
|
" |
(10.47.7) |
the modified spherical Bessel function
|
|
modsphBesseli2 |
|
|
|
" |
(10.47.8) |
the modified spherical Bessel function
|
DLMF_BS_sph.ocd Bessel Functions – Spherical |
|
sphBesselJ |
|
|
|
|
(10.47.3) |
the spherical Bessel function of the first kind |
|
sphBesselY |
|
|
|
" |
(10.47.4) |
the spherical Bessel function of the second kind |
|
sphHankel2 |
|
|
|
" |
(10.47.6) |
the spherical Hankel function of the second kind |
|
sphHankelh1 |
|
|
|
" |
(10.47.5) |
the spherical Hankel function of the first kind |
DLMF_BS_z.ocd Bessel Functions – Zeros |
|
zBesselj |
|
|
|
|
§10.21(i) |
the th zero of the Bessel function
of the first kind
|
|
zBessely |
|
|
|
" |
" |
the th zero of the Bessel function
of the second kind
|
|
zderivBesselj |
|
|
|
" |
" |
the th zero of the derivative of the Bessel
function of the first kind
|
|
zderivBessely |
|
|
|
" |
" |
the th zero of the derivative of the Bessel
function of the second kind
|
DLMF_CH.ocd Confluent Hypergeometric Functions |
|
KummerconfhyperM ( hypergeo1:hypergeometric1F1)
|
|
|
|
|
(13.2.2) |
the Kummer confluent hypergeometric function
|
|
KummerconfhyperU |
|
|
|
" |
(13.2.6) |
the Kummer confluent hypergeometric function
|
|
OlverconfhyperM |
|
|
|
" |
(13.2.3) |
Olver’s confluent hypergeometric function |
|
WhittakerconfhyperM |
|
|
|
" |
(13.14.2) |
the Whittaker confluent hypergeometric function
|
|
WhittakerconfhyperW |
|
|
|
" |
(13.14.3) |
the Whittaker confluent hypergeometric function
|
DLMF_CH_mat.ocd Confluent Hypergeometric Functions – Matrix arguments |
|
genhyperPsimat |
|
|
|
|
(35.6.2) |
the confluent hypergeometric function of matrix argument (second kind) |
DLMF_CH_q.ocd Confluent Hypergeometric Functions – -analogues |
|
qPochhammer |
|
|
|
|
§17.2(i) |
the -Pochhammer symbol (or -shifted factorial)
|
|
qmultiPochhammersym |
|
|
|
|
|
|
|
" |
the -multiple Pochhammer symbol
|
DLMF_CM.ocd Combinatorial Analysis |
|
Bellnumber ( combinat1:Bell)
|
|
|
|
|
§26.7(i) |
the Bell number |
|
Catalannumber |
|
|
|
" |
(26.5.1) |
the Catalan number |
|
Euleriannumber |
|
|
|
|
§26.14(i) |
the Eulerian number |
|
LeviCivitasym |
|
|
|
|
|
|
|
|
(1.6.14) |
the Levi-Civita symbol |
|
Pochhammersym ( hypergeo0:pochhammer)
|
|
|
|
|
§5.2(iii) |
the Pochhammer symbol (or shifted factorial) |
|
StirlingnumberS ( combinat1:Stirling_S)
|
|
|
|
|
§26.8(i) |
the Stirling number of the second kind |
|
Stirlingnumbers ( combinat1:Stirling_s)
|
|
|
|
" |
§26.8(i) |
the Stirling number of the first kind |
|
binom ( combinat1:binomial)
|
|
|
|
|
§1.2(i) |
the binomial coefficient |
|
multinomial ( combinat1:multinomial)
|
|
|
|
|
§26.4(i) |
the multinomial coefficient |
|
ncompositions |
|
|
|
|
§26.11 |
the number of compositions of
|
|
|
|
|
|
the number of compositions of into exactly parts
|
|
npartitions |
|
|
|
|
§26.2 |
the total number of partitions of
|
|
|
|
|
§26.9(i) |
the total number of partitions of into at most parts
|
|
npermutations |
|
|
|
|
§26.13 |
the number of permutations of
|
|
nplanepartitions |
|
|
|
" |
§26.12(i) |
the number of plane partitions of
|
|
nrestcompositions |
|
|
|
|
|
|
|
|
|
|
|
§26.11 |
the restricted number of compositions of into exactly parts
|
|
nrestpartitions |
|
|
|
|
|
|
" |
§26.10(i) |
the restricted number of partitions of
|
|
|
|
|
|
|
|
|
|
|
|
§26.9(i) |
the restricted number of partitions of into at most parts
|
DLMF_CM_q.ocd Combinatorial Analysis – -analogues |
|
idem |
|
|
|
|
|
§17.1 |
the idem function |
|
qStirlingnumbera |
|
|
|
|
(17.3.9) |
the -Stirling number
|
|
qbinom |
|
" |
(17.2.27) |
the -binomial coefficient
|
|
qfactorial |
|
|
|
|
(5.18.2) |
the -factorial
|
|
qmultinomial |
|
|
|
|
§26.16 |
the -multinomial coefficient
|
DLMF_CW.ocd Coulomb Functions |
|
irregCoulombG |
|
|
|
|
(33.2.11) |
the irregular Coulomb (radial) function (for repulsive interactions)
|
|
irregCoulombH |
|
|
|
|
(33.2.7) |
the irregular Coulomb (radial) function (for repulsive interactions)
|
|
irregCoulombc |
|
|
|
|
(33.14.9) |
the irregular Coulomb (radial) function (for attractive interactions)
|
|
irregCoulombh |
|
|
|
" |
(33.14.7) |
the irregular Coulomb (radial) function (for attractive interactions)
|
|
regCoulombF |
|
|
|
|
(33.2.3) |
the regular Coulomb (radial) function (for repulsive interactions)
|
|
regCoulombf |
|
|
|
|
(33.14.4) |
the regular Coulomb (radial) function (for attractive interactions)
|
|
regCoulombs |
|
|
|
" |
(33.14.9) |
the regular Coulomb (radial) function (for attractive interactions)
|
DLMF_CW_mag.ocd Coulomb Functions – Magnitudes, Phases |
|
Coulombphasesigma |
|
|
|
|
(33.2.10) |
the phase shift of the irregular Coulomb function
|
|
Coulombphasetheta |
|
|
|
|
(33.2.9) |
the phase of the irregular Coulomb function
|
|
Coulombturnr |
|
|
|
|
(33.14.3) |
the outer turning point for Coulomb (radial) functions (for repulsive interactions) |
|
Coulombturnrho |
|
|
|
" |
(33.2.2) |
the outer turning point for Coulomb (radial) functions (for attractive interactions) |
|
envCoulombM |
|
|
|
|
(33.3.1) |
the envelope of the Coulomb functions (for repulsive interactions) |
|
normCoulombC |
|
|
|
|
(33.2.5) |
the normalizing constant for Coulomb (radial) function |
DLMF_EF.ocd Elementary Functions |
|
Gudermannian |
|
|
|
|
(4.23.39) |
the Gudermannian function |
|
aGudermannian |
|
|
|
" |
(4.23.41) |
the inverse of the Gudermannian function |
|
acos ( transc1:arccos)
|
|
|
|
" |
§4.23(ii) |
the inverse of the cosine function |
|
acosh ( transc1:arccosh)
|
|
|
|
" |
§4.37(ii) |
the inverse of the hyperbolic cosine function |
|
acot ( transc1:arccot)
|
|
|
|
" |
(4.23.9) |
the inverse of the cotangent function |
|
acoth ( transc1:arccoth)
|
|
|
|
" |
(4.37.9) |
the inverse of the hyperbolic cotangent function |
|
acsc ( transc1:arccsc)
|
|
|
|
" |
(4.23.7) |
the inverse of the cosecant function |
|
acsch ( transc1:arcsch)
|
|
|
|
" |
(4.37.7) |
the inverse of the hyperbolic cosecant function |
|
asec ( transc1:arcsec)
|
|
|
|
" |
(4.23.8) |
the inverse of the secant function |
|
asech ( transc1:arcsech)
|
|
|
|
" |
(4.37.8) |
the inverse of the hyperbolic secant function |
|
asin ( transc1:arcsin)
|
|
|
|
" |
§4.23(ii) |
the inverse of the sine function |
|
asinh ( transc1:arcsinh)
|
|
|
|
" |
§4.37(ii) |
the inverse of the hyperbolic sine function |
|
atan ( transc1:arctan)
|
|
|
|
" |
§4.23(ii) |
the inverse of the tangent function |
|
atanh ( transc1:arctanh)
|
|
|
|
" |
§4.37(ii) |
the inverse of the hyperbolic tangent function |
DLMF_EF_lambert.ocd Elementary Functions – lambert |
|
LambertW |
|
|
|
|
(4.13.1) |
the Lambert -function
|
|
LambertWm |
|
|
|
" |
§4.13 |
the non-principal branch of the Lambert -function
|
|
LambertWp |
|
|
|
" |
" |
the principal branch of the Lambert -function
|
DLMF_EF_mv.ocd Elementary Functions – mv |
|
Acos ( transc3:arccos)
|
|
|
|
|
(4.23.2) |
the multivalued inverse of the cosine function |
|
Acosh ( transc3:arccosh)
|
|
|
|
" |
(4.37.2) |
the multivalued inverse of the hyperbolic cosine function |
|
Acot ( transc3:arccot)
|
|
|
|
" |
(4.23.6) |
the multivalued inverse of the cotangent function |
|
Acoth ( transc3:arccoth)
|
|
|
|
" |
(4.37.6) |
the multivalued inverse of the hyperbolic cotangent function |
|
Acsc ( transc3:arccsc)
|
|
|
|
" |
(4.23.4) |
the multivalued inverse of the cosecant function |
|
Acsch ( transc3:arccsch)
|
|
|
|
" |
(4.37.4) |
the multivalued inverse of the hyperbolic cosecant function |
|
Asec ( transc3:arccsc)
|
|
|
|
" |
(4.23.5) |
the multivalued inverse of the secant function |
|
Asech ( transc3:arcsech)
|
|
|
|
" |
(4.37.5) |
the multivalued inverse of the hyperbolic secant function |
|
Asin ( transc3:arcsin)
|
|
|
|
" |
(4.23.1) |
the multivalued inverse of the sine function |
|
Asinh ( transc3:arcsinh)
|
|
|
|
" |
(4.37.1) |
the multivalued inverse of the hyperbolic sine function |
|
Atan ( transc3:arctan)
|
|
|
|
" |
(4.23.3) |
the multivalued inverse of the tangent function |
|
Atanh ( transc3:arctanh)
|
|
|
|
" |
(4.37.3) |
the multivalued inverse of the hyperbolic tangent function |
|
Ln ( transc3:ln)
|
|
|
|
" |
(4.2.1) |
the multivalued logarithm function |
DLMF_EF_q.ocd Elementary Functions – -analogues |
|
qCos |
|
|
(17.3.6) |
the -cosine function
|
|
qExp |
|
" |
(17.3.2) |
the -exponential function
|
|
qSin |
|
" |
(17.3.4) |
the -sine function
|
|
qcos |
|
" |
(17.3.5) |
the -cosine function
|
|
qexp |
|
" |
(17.3.1) |
the -exponential function
|
|
qsin |
|
" |
(17.3.3) |
the -sine function
|
DLMF_EL.ocd Elliptic Integrals |
|
ccompellintEk |
|
|
|
|
(19.2.9) |
(Legendre’s) complementary complete elliptic integral
of the second kind (of modulus )
|
|
ccompellintKk |
|
|
|
" |
" |
(Legendre’s) complementary complete elliptic integral
of the first kind (of modulus )
|
|
compellintDk |
|
|
|
" |
(19.2.8) |
the complete elliptic integral of Janke (of modulus )
|
|
compellintEk |
|
|
|
" |
" |
(Legendre’s) complete elliptic integral of the second kind (of modulus )
|
|
compellintKk |
|
|
|
" |
" |
(Legendre’s) complete elliptic integral of the first kind (of modulus )
|
|
compellintPik |
|
|
|
|
" |
(Legendre’s) complete elliptic integral of the third kind (of modulus )
|
|
incellintDk |
|
|
|
" |
(19.2.6) |
the incomplete elliptic integral of Janke (of modulus )
|
|
incellintEk |
|
|
|
" |
(19.2.5) |
(Legendre’s) incomplete elliptic integral of the second kind (of modulus )
|
|
incellintFk |
|
|
|
" |
(19.2.4) |
(Legendre’s) incomplete elliptic integral of the first kind (of modulus )
|
|
incellintPik |
|
|
|
|
(19.2.7) |
(Legendre’s) incomplete elliptic integral of the third kind (of modulus )
|
DLMF_EL_Bulirsch.ocd Elliptic Integrals – Bulirsch |
|
Bulirschcompellintcel |
|
|
|
|
|
|
|
(19.2.11) |
Bulirsch’s complete elliptic integral |
|
Bulirschincellintel1 |
|
|
|
|
(19.2.15) |
Bulirsch’s incomplete elliptic integral of the first kind |
|
Bulirschincellintel2 |
|
|
|
|
|
|
|
(19.2.12) |
Bulirsch’s incomplete elliptic integral of the second kind |
|
Bulirschincellintel3 |
|
|
|
|
(19.2.16) |
Bulirsch’s incomplete elliptic integral of the third kind |
DLMF_EL_Carlson.ocd Elliptic Integrals – Carlson |
|
CarsonellintRC |
|
|
|
|
(19.2.17) |
Carlson’s elliptic integral combining inverse circular and hyperbolic functions |
|
Carsonmultivarhyper |
|
|
|
|
|
|
|
(19.16.9) |
Carlson’s multivariate hypergeometric function |
|
CarsonsymellintRD |
|
|
|
|
(19.16.5) |
Carlson’s elliptic integral symmetric in only two variables |
|
CarsonsymellintRF |
|
|
|
" |
(19.16.1) |
Carlson’s symmetric elliptic integral of first kind |
|
CarsonsymellintRG |
|
|
|
" |
(19.16.3) |
Carlson’s symmetric elliptic integral of second kind |
|
CarsonsymellintRJ |
|
|
|
|
(19.16.2) |
Carlson’s symmetric elliptic integral of third kind |
DLMF_ER.ocd Error Functions, Dawson’s and Fresnel Integrals |
|
Faddeevaw |
|
|
|
|
(7.2.3) |
the complementary error function
|
|
erf |
|
" |
(7.2.1) |
the error function |
|
erfc |
|
" |
(7.2.2) |
the complementary error function
|
|
inverf |
|
" |
(7.17.1) |
the inverse error function |
|
inverfc |
|
" |
" |
the inverse complementary error function |
|
repinterfc |
|
|
|
|
(7.18.2) |
the repeated integrals of complementary error function |
DLMF_ER_Fresnel.ocd Error Functions, Dawson’s and Fresnel Integrals – Fresnel |
|
DawsonintF |
|
|
|
|
(7.2.5) |
Dawson’s integral |
|
Fresnelcosint |
|
|
|
" |
(7.2.7) |
the Fresnel cosine integral |
|
FresnelintF |
|
|
|
" |
(7.2.6) |
the Fresnel integral |
|
Fresnelsinint |
|
|
|
" |
(7.2.8) |
the Fresnel sine integral |
|
GoodwinStatonint |
|
|
|
" |
(7.2.12) |
the Goodwin–Staton integral |
|
auxFresnelf |
|
|
|
" |
? |
the auxiliary function for Fresnel integrals
|
|
auxFresnelg |
|
|
|
" |
" |
the auxiliary function for Fresnel integrals
|
DLMF_ER_Voigt.ocd Error Functions, Dawson’s and Fresnel Integrals – Voight |
|
FischersHh |
|
|
|
|
(7.18.12) |
Fischer’s probability function |
|
MillsM |
|
|
(7.8.1) |
Mill’s ratio |
|
VoightH |
|
|
(7.19.4) |
the line broadening function |
|
VoigtU |
|
" |
(7.19.1) |
the Voigt function
|
|
VoigtV |
|
" |
(7.19.2) |
the Voigt function
|
DLMF_EX.ocd Exponential, Logarithmic, Sine, and Cosine Integrals |
|
auxsincosintf |
|
|
|
|
(6.2.17) |
the auxiliary function for sine and cosine integrals
|
|
auxsincosintg |
|
|
|
" |
(6.2.18) |
the auxiliary function for sine and cosine integrals
|
|
coshint |
|
" |
(6.2.16) |
the hyperbolic cosine integral |
|
cosint |
|
" |
(6.2.11) |
the cosine integral
|
|
cosintCin |
|
|
|
" |
(6.2.12) |
the cosine integral
|
|
expintE |
|
" |
(6.2.1) |
the exponential integral
|
|
expintEi ( expint:expintEi)
|
|
|
|
" |
§6.2(i) |
the exponential integral
|
|
expintEin |
|
|
|
" |
(6.2.3) |
the complementary exponential integral |
|
genexpintE ( expint:E)
|
|
|
|
|
(8.19.1) |
the generalized exponential integral |
|
logint ( expint:logint)
|
|
|
|
|
(6.2.8) |
the logarithmic integral |
|
shiftsinint |
|
|
|
" |
(6.2.10) |
the shifted sine integral |
|
sinhint |
|
" |
(6.2.15) |
the hyperbolic sine integral |
|
sinint |
|
" |
(6.2.9) |
the sine integral
|
DLMF_EX_inc.ocd Exponential, Logarithmic, Sine, and Cosine Integrals – Incomplete |
|
gencosint |
|
|
|
|
(8.21.2) |
the generalized cosine integral |
|
genshiftcosint |
|
|
|
" |
(8.21.1) |
the generalized shifted cosine integral |
|
genshiftsinint |
|
|
|
" |
" |
the generalized shifted sine integral |
|
gensinint |
|
|
|
" |
(8.21.2) |
the generalized sine integral |
|
incBeta |
|
|
(8.17.1) |
the incomplete beta function |
|
incGamma |
|
|
|
|
(8.2.2) |
the upper incomplete gamma function |
|
incgamma |
|
|
|
" |
(8.2.1) |
the lower incomplete gamma function |
|
normincBetaI |
|
|
|
|
(8.17.2) |
the normalized incomplete beta function |
|
normincGammaP |
|
|
|
|
(8.2.4) |
the normalized incomplete gamma function
|
|
normincGammaQ |
|
|
|
" |
" |
the normalized incomplete gamma function
|
|
scincgamma |
|
|
|
" |
(8.2.6) |
the scaled incomplete gamma function |
|
terminant |
|
|
|
" |
(2.11.11) |
the terminant function |
DLMF_EX_mat.ocd Exponential, Logarithmic, Sine, and Cosine Integrals – Matrix arguments |
|
multivarEulerBeta |
|
|
|
|
(35.3.3) |
multivariate beta function |
DLMF_GA.ocd Gamma Function |
|
BarnesG |
|
|
(5.17.1) |
the Barne’s -function (or double gamma) function
|
|
EulerBeta ( hypergeo0:beta)
|
|
|
|
|
(5.12.1) |
the Euler beta function |
|
EulerGamma ( hypergeo0:gamma)
|
|
|
|
|
(5.2.1) |
the Euler gamma function |
|
digamma |
|
" |
(5.2.2) |
the digamma (or psi) function |
|
polygamma |
|
|
|
|
§5.15 |
the polygamma function |
DLMF_GA_mat.ocd Gamma Function – Matrix arguments |
|
multivarEulerGamma |
|
|
|
|
§35.3(i) |
the multivariate gamma function |
DLMF_GA_q.ocd Gamma Function – -analogues |
|
qBeta |
|
|
(5.18.11) |
the -Beta function
|
|
qDigamma |
|
|
|
|
? |
the -digamma function
|
|
qGamma |
|
" |
(5.18.4) |
the -gamma function
|
|
qpolygamma |
|
|
|
|
? |
the -polygamma function
|
DLMF_GH.ocd Generalized Hypergeometric Functions and Meijer -Function |
|
MeijerG |
|
|
|
|
|
|
|
|
|
(16.17.1) |
the Meijer -function
|
|
genhyper1F1 ( hypergeo1:hypergeometric1F1)
|
|
|
|
|
§16.2 |
Kummer confluent hypergeometric function,
|
|
genhyper2F1 ( hypergeo1:hypergeometric2F1)
|
|
|
|
|
|
|
|
" |
Gauss’ hypergeometric function,
|
|
genhyperF ( hypergeo1:hypergeometric_pFq)
|
|
|
|
|
|
|
|
|
|
|
|
" |
the generalized hypergeometric function |
|
genhyperH |
|
|
|
|
|
|
" |
(16.4.16) |
the bilateral hypergeometric function |
|
genhyperOlverF |
|
|
|
|
|
|
" |
(16.2.5) |
Olver’s scaled generalized hypergeometric function |
DLMF_GH_Appell.ocd Generalized Hypergeometric Functions and Meijer -Function – Appell |
|
AppelF1 ( hypergeon2:appel_F1)
|
|
|
|
|
|
|
|
|
|
|
|
(16.13.1) |
the first Appell function |
|
AppelF2 ( hypergeon2:appel_F2)
|
|
|
|
|
|
|
|
|
|
|
|
(16.13.2) |
the second Appell function |
|
AppelF3 ( hypergeon2:appel_F3)
|
|
|
|
|
|
|
" |
(16.13.3) |
the third Appell function |
|
AppelF4 ( hypergeon2:appel_F4)
|
|
|
|
|
|
|
|
|
|
|
|
(16.13.4) |
the fourth Appell function |
DLMF_GH_mat.ocd Generalized Hypergeometric Functions and Meijer -Function – Matrix arguments |
|
genhyperFmat |
|
|
|
|
|
|
|
|
|
|
|
(35.8.1) |
the generalized hypergeometric function of matrix argument |
DLMF_GH_q.ocd Generalized Hypergeometric Functions and Meijer -Function – -analogues |
|
qgenhyperphi |
|
|
|
|
|
|
|
|
|
|
|
(17.4.1) |
the -hypergeometric (or basic hypergeometric) function
|
|
qgenhyperpsi |
|
|
|
|
|
|
" |
(17.4.3) |
the bilateral -hypergeometric (or bilateral basic hypergeometric) function
|
DLMF_GH_qAppell.ocd Generalized Hypergeometric Functions and Meijer -Function – -Appell |
|
qAppelPhi1 |
|
|
|
|
|
|
|
|
|
|
|
(17.4.5) |
the first -Appell function
|
|
qAppelPhi2 |
|
|
|
|
|
|
|
|
|
|
|
(17.4.6) |
the second -Appell function
|
|
qAppelPhi3 |
|
|
|
|
|
|
" |
(17.4.7) |
the third -Appell function
|
|
qAppelPhi4 |
|
|
|
|
|
|
|
|
|
|
|
(17.4.8) |
the fourth -Appell function
|
DLMF_HE.ocd Heun Functions |
|
HeunHf |
|
|
|
|
|
|
|
|
|
§31.4 |
the Heun function |
|
|
|
|
HeunHl |
|
|
|
|
|
|
|
|
|
(31.3.1) |
the (fundamental) Heun function |
|
HeunpolyHp |
|
|
|
|
|
|
|
|
|
|
|
(31.5.2) |
the Heun polynomial |
DLMF_HY.ocd Hypergeometric Function |
|
Jacobiphi |
|
|
|
|
(15.9.11) |
the Jacobi function |
|
RiemannsymP |
|
|
|
|
(15.11.3) |
Riemann’s -symbol for solutions of the generalized hypergeometric differential equation
|
|
hyperF ( hypergeo1:hypergeometric2F1)
|
|
|
|
|
(15.2.1) |
(Gauss’) hypergeometric function |
|
hyperOlverF |
|
|
|
" |
(15.2.2) |
Olver’s scaled hypergeometric function |
DLMF_IC.ocd Integrals with Coalescing Saddles |
|
canonint |
|
|
|
|
(36.2.4) |
the canonical integral function |
|
cuspcatastrophe |
|
|
|
|
(36.2.1) |
the cuspoid catastrophe of codimension
|
|
diffrcanonint |
|
|
|
|
(36.2.10) |
the diffraction canonical integral |
|
ellumbcanonint |
|
|
|
|
(36.2.5) |
the elliptic umbilic canonical integral function |
|
ellumbcatastrophe |
|
|
|
|
(36.2.2) |
the elliptic umbilic catastrophe |
|
ellumbdiffrcanonint |
|
|
|
|
(36.2.11) |
the elliptic umbilic diffraction canonical integral function |
|
hyperumbcanonint |
|
|
|
|
(36.2.5) |
the hyperbolic umbilic canonical integral function |
|
hyperumbcatastrophe |
|
|
|
|
(36.2.3) |
the hyperbolic umbilic catastrophe |
|
hyperumbdiffrcanonint |
|
|
|
|
(36.2.11) |
the hyperbolic umbilic diffraction canonical integral function |
|
umbcanonint |
|
|
|
|
(36.2.5) |
the umbilic canonical integral function |
|
umbcatastrophe |
|
|
|
|
§36.2 |
the umbilic catastrophe |
|
umbdiffrcanonint |
|
|
|
|
(36.2.11) |
the umbilic diffraction canonical integral function |
DLMF_JA.ocd Jacobian Elliptic Functions |
|
Jacobiamk |
|
|
|
|
(22.16.1) |
the Jacobi’s amplitude function (of modulus )
|
|
Jacobiellcdk |
|
|
|
" |
(22.2.8) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellcnk |
|
|
|
" |
(22.2.5) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellcsk |
|
|
|
" |
(22.2.9) |
the Jacobian elliptic function (of modulus )
|
|
Jacobielldck |
|
|
|
" |
(22.2.8) |
the Jacobian elliptic function (of modulus )
|
|
Jacobielldnk |
|
|
|
" |
(22.2.6) |
the Jacobian elliptic function (of modulus )
|
|
Jacobielldsk |
|
|
|
" |
(22.2.7) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellnck |
|
|
|
" |
(22.2.5) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellndk |
|
|
|
" |
(22.2.6) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellnsk |
|
|
|
" |
(22.2.4) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellsck |
|
|
|
" |
(22.2.9) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellsdk |
|
|
|
" |
(22.2.7) |
the Jacobian elliptic function (of modulus )
|
|
Jacobiellsnk |
|
|
|
" |
(22.2.4) |
the Jacobian elliptic function (of modulus )
|
|
aJacobiellcdk |
|
|
|
" |
§22.15(i) |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellck |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellcnk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellcsk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobielldnk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobielldsk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellnck |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellndk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellnsk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellsck |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellsdk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
|
aJacobiellsnk |
|
|
|
" |
" |
the inverse of the Jacobian elliptic function (of modulus )
|
DLMF_JA_aux.ocd Jacobian Elliptic Functions – Auxiliary |
|
JacobiEpsilonk |
|
|
|
|
(22.16.14) |
Jacobi’s Epsilon function (of modulus )
|
|
JacobiZetak |
|
|
|
" |
(22.16.32) |
Jacobi’s Zeta function (of modulus )
|
DLMF_JA_gen.ocd Jacobian Elliptic Functions – Generalizations |
|
agenJacobiellk |
|
|
|
|
|
|
|
|
|
|
|
? |
the inverse of the generic Jacobian elliptic function
(of modulus )
|
|
genJacobiellk |
|
|
|
" |
(22.2.10) |
the generic Jacobian elliptic function (of modulus )
|
DLMF_LA.ocd Lam’e Functions |
|
LameEc |
|
|
§29.3(iv) |
the Lamé function
|
|
LameEs |
|
" |
" |
the Lamé function
|
|
Lameeigvala |
|
|
|
|
§29.3(i) |
the eigenvalues of Lamé’s equation
|
|
Lameeigvalb |
|
|
|
" |
" |
the eigenvalues of Lamé’s equation
|
|
LamepolycE |
|
|
|
|
(29.12.3) |
the Lamé polynomial
|
|
LamepolycdE |
|
|
|
" |
(29.12.7) |
the Lamé polynomial
|
|
LamepolydE |
|
|
|
" |
(29.12.4) |
the Lamé polynomial
|
|
LamepolysE |
|
|
|
" |
(29.12.2) |
the Lamé polynomial
|
|
LamepolyscE |
|
|
|
" |
(29.12.5) |
the Lamé polynomial
|
|
LamepolyscdE |
|
|
|
" |
(29.12.8) |
the Lamé polynomial
|
|
LamepolysdE |
|
|
|
" |
(29.12.6) |
the Lamé polynomial
|
|
LamepolyuE |
|
|
|
" |
(29.12.1) |
the Lamé polynomial
|
DLMF_LE.ocd Legendre and Related Functions |
|
DunsterQ |
|
|
|
|
(14.20.2) |
Dunster’s conical function |
|
FerrersP |
|
|
|
|
§14.2(ii) |
, shorthand for the Ferrers function of the first kind
|
|
|
|
|
(14.3.1) |
the Ferrers function of the first kind |
|
FerrersQ |
|
|
|
|
§14.2(ii) |
, shorthand for the Ferrers function of the second kind
|
|
|
|
|
(14.3.2) |
the Ferrers function of the second kind |
|
assLegendreOlverQ |
|
|
|
|
§14.2(ii) |
, shorthand for Olver’s associated Legendre function
|
|
|
|
|
§14.21(i) |
Olver’s associated Legendre function |
|
assLegendreP |
|
|
|
|
§14.2(ii) |
, shorthand for the associated Legendre function of the first kind
|
|
|
|
|
§14.21(i) |
the associated Legendre function of the first kind |
|
assLegendreQ |
|
|
|
|
§14.2(ii) |
, shorthand for the associated Legendre function of the second kind
|
|
|
|
|
§14.21(i) |
the associated Legendre function of the second kind |
|
sphharmonicY |
|
|
|
|
(14.30.1) |
the spherical harmonic |
|
surfharmonicY |
|
|
|
" |
(14.30.2) |
the surface harmonic of the first kind |
DLMF_MA.ocd Mathieu Functions and Hill’s Equation |
|
Mathieuce |
|
|
|
|
§28.2(vi) |
the Mathieu function
|
|
Mathieueigvala |
|
|
|
|
§28.2(v) |
the eigenvalues of the Mathieu’s equation
|
|
Mathieueigvalb |
|
|
|
" |
" |
the eigenvalues of the Mathieu’s equation
|
|
Mathieueigvallambda |
|
|
|
|
§28.12(i) |
the eigenvalues of Mathieu’s equation
|
|
Mathieufe |
|
|
|
|
(28.5.1) |
the second solution of Mathieu’s equation
|
|
Mathieuge |
|
|
|
" |
(28.5.2) |
the second solution of Mathieu’s equation
|
|
Mathieume |
|
|
|
" |
§28.12(ii) |
the Mathieu function
|
|
Mathieuse |
|
|
|
" |
§28.2(vi) |
the Mathieu function
|
DLMF_MA_cross.ocd Mathieu Functions and Hill’s Equation – Cross-Products |
|
modMathieuD |
|
|
|
|
(28.28.24) |
the cross-products of modified Mathieu functions and their derivatives |
|
radMathieuDc |
|
|
|
|
(28.28.39) |
the cross-products of radial Mathieu functions and their derivatives
|
|
radMathieuDs |
|
|
|
" |
(28.28.35) |
the cross-products of radial Mathieu functions and their derivatives
|
|
radMathieuDsc |
|
|
|
" |
(28.28.40) |
the cross-products of radial Mathieu functions and their derivatives
|
DLMF_MA_mod.ocd Mathieu Functions and Hill’s Equation – Modified |
|
modMathieuCe |
|
|
|
|
(28.20.3) |
the modified Mathieu function
|
|
modMathieuFe |
|
|
|
" |
(28.20.6) |
the modified Mathieu function
|
|
modMathieuGe |
|
|
|
" |
(28.20.7) |
the modified Mathieu function
|
|
modMathieuIe |
|
|
|
|
(28.20.17) |
the modified Mathieu function
|
|
modMathieuIo |
|
|
|
" |
(28.20.18) |
the modified Mathieu function
|
|
modMathieuKe |
|
|
|
" |
(28.20.19) |
the modified Mathieu function
|
|
modMathieuKo |
|
|
|
" |
(28.20.20) |
the modified Mathieu function
|
|
modMathieuM |
|
|
|
|
§28.20(iii) |
the modified Mathieu function
|
|
modMathieuMe |
|
|
|
|
(28.20.5) |
the modified Mathieu function
|
|
modMathieuSe |
|
|
|
" |
(28.20.4) |
the modified Mathieu function
|
DLMF_MA_rad.ocd Mathieu Functions and Hill’s Equation – Radial |
|
radMathieuMc |
|
|
|
|
(28.20.15) |
the radial Mathieu function
|
|
radMathieuMs |
|
|
|
" |
(28.20.16) |
the radial Mathieu function
|
DLMF_NT.ocd Functions of Number Theory |
|
Eulertotientphi |
|
|
|
|
(27.2.7) |
Euler’s totient, the number of positive integers relatively prime to ,
()
|
|
|
|
|
(27.2.6) |
the sum of th powers of integers relatively prime to
|
|
JordanJ |
|
" |
(27.2.11) |
Jordan’s function |
|
Liouvillelambda |
|
|
|
|
(27.2.13) |
the Liouville’s function |
|
Mangoldtlambda |
|
|
|
|
(27.2.14) |
Mangoldt’s function |
|
Moebiusmu |
|
|
|
|
(27.2.12) |
the Möbius function |
|
ndivisors |
|
|
|
|
§27.2(i) |
the number of divisors of (divisor function)
|
|
|
|
|
|
the number of ways of expressing as product of factors
|
|
nprimes |
|
|
(27.2.2) |
the number of primes not exceeding
|
|
nprimesdiv |
|
|
|
|
§27.2(i) |
the number of distinct primes dividing
|
|
sumdivisors |
|
|
|
|
(27.2.10) |
the sum of powers of divisors of
|
DLMF_NT_aux.ocd Functions of Number Theory – Auxiliary |
|
Dedikindeta |
|
|
|
|
(27.14.12) |
Dedekind’s eta function (or modular function) |
|
Dirichletchar |
|
|
|
|
§27.8 |
the Dirichlet character |
|
|
|
|
|
|
|
DiscriminantDelta |
|
|
|
|
(27.14.16) |
the discriminant function |
|
Eulerphi |
|
|
|
|
(27.14.2) |
Euler’s reciprocal function |
|
Gausssum |
|
|
|
|
(27.10.9) |
the Gauss sum |
|
Jacobisym |
|
|
|
|
§27.9 |
the Jacobi symbol |
|
Legendresym |
|
|
|
" |
§27.9 |
the Legendre symbol |
|
Ramanujantau |
|
|
|
|
(27.14.18) |
Ramanujan’s tau function |
|
Rmanujansum |
|
|
|
|
(27.10.4) |
Ramanujan’s sum |
|
WaringG |
|
|
§27.13(iii) |
Waring’s function
|
|
Waringg |
|
" |
" |
Waring’s function
|
|
nsquares |
|
|
|
|
§27.13(iv) |
the number of squares |
DLMF_OP.ocd Orthogonal Polynomials |
|
ChebyshevpolyT |
|
|
|
|
§18.3 |
the Chebyshev polynomial of the first kind |
|
ChebyshevpolyU |
|
|
|
" |
§18.3 |
the Chebyshev polynomial of the second kind |
|
ChebyshevpolyV |
|
|
|
" |
§18.3 |
the Chebyshev polynomial of the third kind |
|
ChebyshevpolyW |
|
|
|
" |
§18.3 |
the Chebyshev polynomial of the fourth kind |
|
HermitepolyH |
|
|
|
" |
§18.3 |
the Hermite polynomial |
|
JacobipolyP |
|
|
|
|
§18.3 |
the Jacobi polynomial |
|
LaguerrepolyL |
|
|
|
|
§18.1 |
, shorthand for the Laguerre polynomial
|
|
|
|
|
§18.3 |
the (generalized or associated) Laguerre (or Sonin) polynomial |
|
LegendrepolyP |
|
|
|
|
§18.3 |
the Legendre (or spherical) polynomial |
|
dilChebyshevpolyC |
|
|
|
" |
(18.1.3) |
the dilated Chebyshev polynomial of first kind |
|
dilChebyshevpolyS |
|
|
|
" |
" |
the dilated Chebyshev polynomial of second kind |
|
dilHermitepolyHe |
|
|
|
" |
§18.3 |
the dilated Hermite polynomial |
|
shiftChebyshevpolyT |
|
|
|
" |
§18.3 |
the shifted Chebyshev polynomial of the first kind |
|
shiftChebyshevpolyU |
|
|
|
" |
§18.3 |
the shifted Chebyshev polynomial of the second kind |
|
shiftJacobipolyG |
|
|
|
|
(18.1.2) |
the shifted Jacobi polynomial |
|
shiftLegendrepolyP |
|
|
|
|
§18.3 |
the shifted Legendre polynomial |
|
ultrasphpoly |
|
|
|
|
§18.3 |
the ultraspherical (or Gegenbauer) polynomial |
DLMF_OP_askey.ocd Orthogonal Polynomials – askey |
|
CharlierpolyC |
|
|
|
|
§18.19 |
the Charlier polynomial |
|
HahnpolyQ |
|
|
|
|
|
|
|
|
§18.19 |
the Hahn polynomial |
|
KrawtchoukpolyK |
|
|
|
|
§18.19 |
the Krawtchouk polynomial |
|
MeixnerPollaczekpolyP |
|
|
|
|
§18.19 |
the Meixner–Pollaczek polynomial |
|
MeixnerpolyM |
|
|
|
|
§18.19 |
the Meixner polynomial |
|
RacahpolyR |
|
|
|
|
|
|
|
|
|
|
|
§18.25 |
the Racah polynomial |
|
WilsonpolyW |
|
|
|
|
|
|
" |
§18.25 |
the Wilson polynomial |
|
contHahnpolyp |
|
|
|
|
|
|
|
§18.19 |
the continuous Hahn polynomial |
|
contdualHahnpolyS |
|
|
|
|
§18.25 |
the continuous dual Hahn polynomial |
|
dualHahnpolyR |
|
|
|
|
|
|
|
|
§18.25 |
the dual Hahn polynomial |
DLMF_OP_aux.ocd Orthogonal Polynomials – Auxiliary |
|
Besselpolyy |
|
|
|
|
(18.34.1) |
the Bessel polynomial |
|
PollaczekpolyP |
|
|
|
|
(18.35.4) |
the Pollaczek polynomial |
|
assJacobipolyP |
|
|
|
|
(18.30.4) |
the associated Jacobi polynomial |
|
assLegendrepoly |
|
|
|
|
(18.30.6) |
the associated Legendre polynomial |
|
diskpoly |
|
|
|
|
(18.37.1) |
the disk polynomial |
|
trianglepoly |
|
|
|
|
|
|
|
|
(18.37.7) |
the triangle polynomial |
DLMF_OP_mat.ocd Orthogonal Polynomials – Matrix arguments |
|
JacobifunPmat |
|
|
|
|
(35.7.2) |
the Jacobi function of matrix argument |
|
LaguerrefunLmat |
|
|
|
|
(35.6.3) |
the Laguerre function of matrix argument |
|
|
|
|
|
|
DLMF_OP_q.ocd Orthogonal Polynomials – -analogues |
|
AlSalamChiharapolyQ |
|
|
|
|
(18.28.7) |
the Al-Salam–Chihara polynomial |
|
AskeyWilsonpolyp |
|
|
|
|
|
|
|
|
|
|
|
(18.28.1) |
the Askey–Wilson polynomial |
|
StieltjesWigertpolyS |
|
|
|
|
(18.27.18) |
the Stieltjes–Wigert polynomial |
|
bigqJacobipolyP |
|
|
|
|
|
|
|
|
|
|
|
(18.27.5) |
the big -Jacobi polynomial
|
|
contqHermitepolyH |
|
|
|
|
(18.28.16) |
the continuous -Hermite polynomial
|
|
contqinvHermitepolyh |
|
|
|
" |
(18.28.18) |
the continuous -Hermite polynomial
|
|
contqultrasphpoly |
|
|
|
|
(18.28.13) |
the continuous -ultraspherical (or Rogers) polynomial
|
|
discqHermitepolyhI |
|
|
|
|
(18.27.21) |
the discrete -Hermite I polynomial
|
|
discqHermitepolyhII |
|
|
|
" |
(18.27.23) |
the discrete -Hermite II polynomial
|
|
littleqJacobipolyp |
|
|
|
|
(18.27.13) |
the little -Jacobi polynomial
|
|
qHahnpolyQ |
|
|
|
|
|
|
|
|
|
|
|
(18.27.3) |
the -Hahn polynomial
|
|
qLaguerrepolyL |
|
|
|
|
(18.27.15) |
the -Laguerre polynomial
|
|
qRacahpolyR |
|
|
|
|
|
|
|
|
|
|
|
(18.28.19) |
the -Racah polynomial
|
|
qinvAlSalamChiharapolyQ |
|
|
|
|
|
|
|
(18.28.9) |
the -Al-Salam–Chihara polynomial
|
|
scbigqJacobipolyP |
|
|
|
|
|
|
|
|
|
|
|
(18.27.6) |
the scaled big -Jacobi polynomial
|
DLMF_PC.ocd Parabolic Cylinder Functions |
|
WhittakerparaD |
|
|
|
|
§12.1 |
Whittaker’s notation for the parabolic cylinder function |
|
paraU |
|
" |
§12.2(i) |
the parabolic cylinder (or Weber) function
|
|
paraV |
|
" |
" |
the parabolic cylinder (or Weber) function
|
|
paraW |
|
" |
§12.14(i) |
the parabolic cylinder (or Weber) function
|
DLMF_PC_mag.ocd Parabolic Cylinder Functions – Magnitudes, Phases |
|
envparaU |
|
|
|
|
§14.15(v) |
the envelope of the parabolic cylinder function
|
|
envparaUbar |
|
|
|
" |
" |
the envelope of the parabolic cylinder function
|
|
paraUbar |
|
|
|
|
§12.2(vi) |
the parabolic cylinder (or Weber) function
|
DLMF_ST.ocd Struve and Related Functions |
|
StruveH |
|
|
(11.2.1) |
the Struve function
|
|
StruveK |
|
" |
(11.2.5) |
the Struve function
|
DLMF_ST_aux.ocd Struve and Related Functions – Auxiliary |
|
AngerJ |
|
|
(11.10.1) |
the Anger function |
|
AngerWeberA |
|
|
|
" |
(11.10.4) |
the Anger–Weber function |
|
WeberE |
|
" |
(11.10.2) |
the Weber function |
DLMF_ST_lommel.ocd Struve and Related Functions – lommel |
|
LommelS |
|
|
(11.9.5) |
the Lommel function
|
|
Lommels |
|
" |
(11.9.3) |
the Lommel function
|
DLMF_ST_mod.ocd Struve and Related Functions – Modified |
|
modStruveL |
|
|
|
|
(11.2.2) |
the modified Struve function
|
|
modStruveM |
|
|
|
" |
(11.2.6) |
the modified Struve function
|
DLMF_SW.ocd Spheroidal Wave Functions |
|
radsphwaveS |
|
|
|
|
|
|
|
|
(30.11.3) |
the radial spheroidal wave function |
|
spheigvalLambda |
|
|
|
|
§30.3(i) |
the eigenvalues of the spheroidal differential equation |
|
sphwavePs |
|
|
|
|
§30.6 |
the spheroidal wave function of complex argument |
|
sphwaveQs |
|
|
|
" |
" |
" |
DLMF_SW_real.ocd Spheroidal Wave Functions – Real |
|
sphwavePsreal |
|
|
|
|
§30.4(i) |
the spheroidal wave function of first kind |
|
sphwaveQsreal |
|
|
|
" |
§30.5 |
the spheroidal wave function of second kind |
DLMF_TH.ocd Theta Functions |
|
Jacobithetacombinedq |
|
|
|
|
|
|
|
|
§20.11(v) |
the combined theta function |
|
Jacobithetaq |
|
|
|
|
|
|
|
|
§20.2(i) |
the Jacobi theta function of
|
|
Jacobithetatau |
|
|
|
" |
" |
the Jacobi theta function of
|
DLMF_TH_Riemann.ocd Theta Functions – Riemann |
|
Riemanntheta |
|
|
|
|
(21.2.1) |
the Riemann theta function |
|
Riemannthetachar |
|
|
|
|
|
|
|
|
(21.2.5) |
the Riemann theta function with characteristics |
|
scRiemanntheta |
|
|
|
|
(21.2.2) |
the scaled Riemann theta function (or oscillatory part of the theta function) |
DLMF_TJ.ocd 3 extitj, 6 extitj, 9 extitj Symbols |
|
Wignerninejsym |
|
|
|
|
(34.6.1) |
the Wigner symbol
|
|
Wignersixjsym |
|
|
|
|
(34.4.1) |
the Wigner symbol
|
|
Wignerthreejsym |
|
|
|
" |
(34.2.4) |
the Wigner symbol
|
DLMF_WE.ocd Weierstrass Elliptic and Modular Functions |
|
KleincompinvarJtau |
|
|
|
|
(23.15.7) |
Klein’s complete invariant |
|
modularlambdatau |
|
|
|
" |
(23.15.6) |
the elliptic modular function |
DLMF_WE_invar.ocd Weierstrass Elliptic and Modular Functions – on invariants |
|
Weierstrasspinvar |
|
|
|
|
(23.3.8) |
the Weierstrass -function (on invariants)
|
|
Weierstrasssigmainvar |
|
|
|
" |
§23.3(i) |
the Weierstrass sigma function (on invariants)
|
|
Weierstrasszetainvar |
|
|
|
" |
" |
the Weierstrass zeta function (on invariants)
|
DLMF_WE_lattice.ocd Weierstrass Elliptic and Modular Functions – on Lattice |
|
Weierstrasselatt |
|
|
|
|
§23.3(i) |
the Weierstrass lattice roots (on Lattice) |
|
Weierstrassinvarlatt |
|
|
|
" |
§23.3 |
the Weierstrass invariants (on Lattice) |
|
Weierstrassplatt |
|
|
|
|
(23.2.4) |
the Weierstrass -function (on Lattice)
|
|
Weierstrasssigmalatt |
|
|
|
" |
(23.2.6) |
the Weierstrass sigma function (on Lattice)
|
|
Weierstrasszetalatt |
|
|
|
" |
(23.2.5) |
the Weierstrass zeta function (on Lattice)
|
DLMF_ZE.ocd Zeta and Related Functions |
|
ChebyshevPsi |
|
|
|
|
(25.16.1) |
the Chebyshev -function
|
|
DirichletL |
|
|
|
|
(25.15.1) |
the Dirichlet -function
|
|
EulersumH |
|
|
|
|
§25.16(ii) |
the Euler sum |
|
Hurwitzzeta |
|
|
|
|
(25.11.1) |
the Hurwitz zeta function |
|
Jonquierephi |
|
|
|
" |
§25.12(ii) |
Truesdell’s notation for polylogarithm |
|
LerchPhi |
|
|
|
|
(25.14.1) |
Lerch’s transcendent |
|
Riemannxi |
|
|
|
|
(25.4.4) |
the Riemann function
|
|
Riemannzeta |
|
|
|
" |
(25.2.1) |
the Riemann zeta function |
|
dilog |
|
" |
(25.12.1) |
the dilogarithm |
|
genEulersumH |
|
|
|
|
§25.16(ii) |
the generalized Euler sum |
|
perZeta |
|
|
(25.13.1) |
the periodic zeta function |
|
polylog |
|
|
(25.12.10) |
the polylogarithm |
DLMF_types.ocd |
|
UnitDisc |
|
|
|
|
Intro. |
the set of complex numbers in the (open) unit disc |
arith1.ocd (official)
|
|
abs |
|
|
? |
the absolute value of
|
asymp1.ocd (experimental)
|
|
O |
|
|
(2.1.3) |
the order not exceeding |
|
asymptotic |
|
|
|
|
(2.1.1) |
asymptotically equal |
|
o |
|
|
(2.1.2) |
the order less than |
asymp2.ocd (DLMF speculative) |
|
asymptotic_expansion |
|
|
|
|
§2.1(iii) |
asymptotic expansion (the right-hand side is the asymptotic expansion of the left-hand side) |
complex1.ocd (official)
|
|
argument |
|
|
|
|
(1.9.7) |
the phase of a complex number
|
|
conjugate |
|
|
|
|
(1.9.11) |
the complex conjugate of a complex number
|
|
imaginary |
|
|
|
|
(1.9.2) |
the imaginary part of a complex number
|
|
real |
|
|
" |
the real part of a complex number
|
equals.ocd |
|
definition |
|
|
|
|
Intro. |
equal by definition |
equivalence.ocd |
|
equivalence |
|
|
|
|
Intro. |
modular equivalence |
integer2.ocd (experimental)
|
|
divides |
|
|
? |
the divides operator operator |
linalg1.ocd (official)
|
|
scalarproduct |
|
|
|
|
? |
the vector dot product operator |
|
transpose |
|
|
|
|
" |
the transpose of a matrix |
|
vectorproduct |
|
|
|
|
" |
the vector cross product operator |
nums1.ocd (official)
|
|
e |
|
|
(4.2.11) |
the exponential base |
|
gamma |
|
|
(5.2.3) |
the Euler constant |
|
i |
|
|
? |
the imaginary unit |
|
pi |
|
|
(3.12.1) |
the ratio of the circumference of a circle to its diameter |
physical_consts1.ocd (experimental)
|
|
Boltzmann_constant |
|
|
|
|
CODATA |
the Boltzmann constant |
|
speed_of_light |
|
|
|
|
CODATA |
the speed of light |
rounding1.ocd (official)
|
|
ceiling |
|
|
Intro. |
the ceiling of a real number
|
|
floor |
|
|
" |
the floor of a real number
|
set1.ocd (official)
|
|
size |
|
|
§26.1 |
the cardinality of a set |
setname1.ocd (official)
|
|
C |
|
|
Intro. |
the set of complex numbers |
|
N |
|
|
" |
the set of ‘natural’ numbers (positive integers) |
|
Q |
|
|
" |
the set of rational numbers |
|
R |
|
|
" |
the set of real numbers |
|
Z |
|
|
" |
the set of integers |
transc1.ocd (official)
|
|
cos |
|
|
(4.14.2) |
the cosine function |
|
cosh |
|
" |
(4.28.2) |
the hyperbolic cosine function |
|
cot |
|
" |
(4.14.7) |
the cotangent function |
|
coth |
|
" |
(4.28.7) |
the hyperbolic cotangent function |
|
csc |
|
" |
(4.14.5) |
the cosecant function |
|
csch |
|
" |
(4.28.5) |
the hyperbolic cosecant function |
|
exp |
|
" |
(4.2.19) |
the exponential function |
|
ln |
|
" |
(4.2.2) |
the principal branch of logarithm function |
|
log |
|
|
§4.2 |
the logarithm to general base
|
|
sec |
|
|
(4.14.6) |
the secant function |
|
sech |
|
" |
(4.28.6) |
the hyperbolic secant function |
|
sin |
|
" |
(4.14.1) |
the sine function |
|
sinh |
|
" |
(4.28.1) |
the hyperbolic sine function |
|
tan |
|
" |
(4.14.4) |
the tangent function |
|
tanh |
|
" |
(4.28.4) |
the hyperbolic tangent function |
veccalc1.ocd (official)
|
|
curl |
|
|
(1.6.22) |
the curl operator |
|
divergence |
|
|
|
|
(1.6.21) |
the divergence operator |
|
grad |
|
|
(1.6.20) |
the gradient operator |
Unclassified |
|
AGM |
|
|
§19.8(i) |
arithmetic-geometric mean |
|
Bohrradius |
|
|
|
|
CODATA |
the Bohr radius |
|
Diracdelta |
|
|
|
|
§1.17(i) |
the Dirac delta functional (or distribution) |
|
Diracdeltaseq |
|
|
|
|
" |
the Dirac delta sequence |
|
FiniteSet |
|
|
|
|
? |
elements of the finite set |
|
Fouriercostrans |
|
|
|
|
(1.14.9) |
the Fourier cosine transform of a function |
|
Fouriersintrans |
|
|
|
|
(1.14.10) |
the Fourier sine transform of a function |
|
Fouriertrans |
|
|
|
|
(1.14.1) |
the Fourier transform of a function |
|
Fouriertransdist |
|
|
|
|
(1.16.35) |
the Fourier transform of a distribution |
|
HeavisideH |
|
|
|
|
(1.16.13) |
the Heaviside function |
|
Hilberttrans |
|
|
|
|
§1.14(v) |
the Hilbert transform of a function |
|
Kroneckerdelta |
|
|
|
|
Intro. |
the Kronecker delta |
|
Laplacetrans |
|
|
|
|
(1.14.17) |
the Laplace transform of a function |
|
Lattices |
|
|
|
|
? |
the set of Lattices on the complex plane (in the sense of elliptic functions) |
|
LauricellaFD ( hypergeon2:LauricellaFD)
|
|
|
|
|
§19.15 |
Lauricella’s (multivariate) hypergeometric function |
|
Matrices |
|
|
|
|
? |
Matrices with elements of the given type; dimensions
|
|
|
|
|
|
|
|
Mellintrans |
|
|
|
|
(1.14.32) |
the Mellin transform of a function |
|
Pade |
|
|
§3.11(iv) |
the Padé approximant |
|
Rydbergconst |
|
|
|
|
CODATA |
the Rydberg constant |
|
Schwarzian |
|
|
|
|
(1.13.20) |
the Schwarzian |
|
Stieltjestrans |
|
|
|
|
(1.14.47) |
the Stieltjes transform of a function |
|
Tuples |
|
|
? |
-Tuples of elements of type
|
|
|
|
|
|
|
|
Vectors |
|
|
" |
Vectors with elements of type ; dimension
|
|
|
|
|
|
|
|
Wronskian |
|
|
|
|
(1.13.4) |
the Wronskian |
|
cartprod |
|
|
|
|
§23.1 |
the Cartesian product operator |
|
continuous[] |
|
|
|
|
§1.4(ii) |
the set of functions continuous on the interval
|
|
continuous |
|
|
|
|
§1.4 |
the set of continuous functions -times differentiable on the interval
|
|
diag |
|
|
? |
the diagonal elements |
|
diffd |
|
|
" |
the differential operator |
|
electricconst |
|
|
|
|
CODATA |
the electric constant or vacuum permitivity |
|
env |
|
|
? |
the envelope of a function |
|
exptrace |
|
|
|
|
§35.1 |
the exponential of the trace |
|
finestructureconst |
|
|
|
|
CODATA |
the fine-structure constant |
|
intinnerprod |
|
|
|
|
§1.16(i) |
the inner-product (by integration) |
|
log |
|
|
§4.2 |
the logarithm to base 10 |
|
nonnegIntegers |
|
|
|
|
? |
the set of non-negative integers |
|
pgcd |
|
|
§27.1 |
the greatest common divisor |
|
posIntegers |
|
|
|
|
? |
the set of positive integers |
|
setmod |
|
|
§21.1 |
the set modulus operator |
|
shiftfactorial |
|
|
|
|
(35.4.1) |
the partitional shifted factorial |
|
sign |
|
|
Intro. |
the sign of a number
|
|
trace |
|
|
" |
the trace of a matrix |
|
variation[] |
|
|
|
|
(1.4.33) |
the total variation of a function |
|
variation |
|
|
|
|
|
the total variation of a function on an interval |
|
zonalpolyZ |
|
|
|
|
§35.4(i) |
the zonal polynomial |