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for transforming Legendre polynomial expansions, but
it appears not to generalize to the spherical case.This paper introduces a fast algorithm for obtaining a uniform

resolution representation of a function known at a latitude– Swarztrauber [12] has reviewed other transformation algo-
longitude grid on the surface of a sphere, equivalent to a triangular, rithms.
isotropic truncation of the spherical harmonic coefficients for the

In this paper we introduce a technique for avoiding thefunction. The proposed spectral truncation method, which is based
surface harmonics transformation, while retaining the ben-on the fast multipole method and the fast Fourier transform, projects

the function to a space with uniform resolution while avoiding sur- efits of using surface harmonics representations. The tech-
face harmonic transformations. The method requires O(N2 log N) nique is based on a fast algorithm for the orthogonal pro-
operations for O(N2) grid points, as opposed to O(N3) operations jection of a function defined on the sphere and known atfor the standard spectral transform method, providing a reduced-

a latitude–longitude grid onto the space spanned by acomplexity spectral method obviating the pole problem in the inte-
gration of time-dependent partial differential equations on the truncated surface harmonic expansion. Appropriate choice
sphere. The filter’s performance is demonstrated with numerical of the truncation gives representations with uniform reso-
examples. Q 1997 Academic Press lution. The algorithm uses the Christoffel–Darboux for-

mula [14] for the summation of products of orthogonal
polynomials, in combination with the fast multipole
method [5] and the fast Fourier transform. Semi-implicit1. INTRODUCTION
integration of partial differential equations (PDE) on the

The standard spectral transform algorithm used in sphere can be accomplished by computing products of
weather and climate modeling for spherical geometry is functions in the physical domain, computing differential
not of optimal computational complexity. For a function operators and the inverse Laplacian in a Fourier represen-
tabulated at O(N 2) points on the sphere, the spectral trans- tation [10], and truncating to uniform resolution at each
form algorithm to obtain the corresponding surface har- time step.
monic coefficients requires O(N 3) operations. The inverse In this paper we restrict our attention to the definition
transformation, from coefficients to grid values, is of like and performance of the filter itself, while leaving the dem-
cost. At high resolution, the surface harmonics transforma- onstration of its use in the integration of PDE on the
tion is the most expensive operation of the spectral trans- sphere to a later paper. In Section 2 we define the filter
form method; other operations are of asymptotic complex- mathematically and describe the filtering operation via the
ity of at most O(N 2 log N). Orszag [11] has described proposed algorithm, as well as via the standard transform
an algorithm for fast transformation with asymptotic cost algorithm. In Section 3 we show accuracy and performance

results for both methods.O(N 2 log2 N/log log N). His algorithm, however, based
on a low-order WKB method, is unlikely to be effective
in applications requiring high accuracy. Driscoll and Healy

2. THE SPHERICAL FILTER
[3] and, more recently, Healy, Moore, and Rockmore [7]
have proposed a fast surface harmonics transformation
algorithm of asymptotic complexity O(N 2 log2 N), but

This section consists of three subsections: in the first wesome questions remain regarding its efficiency and stabil-
mathematically define the spherical filter; in the second weity. Alpert and Rokhlin [1] have described a fast algorithm
summarize the standard spectral transform algorithm; and
in the third we describe the novel spectral truncation
method.† Deceased.
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2.1. Isotropic Spherical Truncation uniquely determine the coefficients f m
n for umu # n # N #

K. The truncation of degree N is the linear transformation
The surface harmonics Ym

n (f, u) of degree n 5 0, 1,
2, ... and order m 5 2n, 2n 1 1, ..., n 2 1, n at longitude

h f(fi , uj)j R h f̃ (fi , uj)j, (6)f and latitude u are defined by

where
Ym

n (f, u) 5
1

Ï2f
Pm

n (sin u)eimf, (1)

f̃(f, u) 5 ON
n50

On
m52n

f m
n · Y m

n (f, u). (7)
where Pm

n denotes the normalized associated Legendre
functions,

The standard algorithm uses a particular, convenient
choice for the grid h(fi , uj)j (presented in the next subsec-

Pm
n (e) 5 !Sn 1

1
2D (n 2 m)!

(n 1 m)!
(1 2 e2)m/2 dm

dem Pn(e), (2) tion). We have implemented the new algorithm for this
grid, but the algorithm will also work for other choices of
hujj and even for one choice of hujj for f and another for f̃.

for m $ 0 and e [ [21, 1], where Pn is the Legendre This flexibility is expected to provide some computational
polynomial of degree n. For m , 0 and umu # n, advantages when the filter algorithm is used for the integra-
Pm

n (e) 5 P2m
n (e). tion of PDE.

The set of surface harmonics Y 5 hY m
n j form an orthonor-

mal basis for the space L2(S) of square-integrable functions 2.2. Spectral Transform Method
on the surface of the unit sphere S. Furthermore, each

The spectral transform method performs a forward andtriangular truncation of Y possesses uniform resolution on
backward spherical transform for computing the trunca-the sphere. In particular, if a function f : S R C is given by
tion (6).

First, the Fourier coefficients f m(u) of the function
f (f, u) 5 ON

n50
On

m52n
f m

n · Y m
n (f, u) (3) f(f, u) are determined for m 5 2N, ..., N, for latitudes

u1, ..., uJ (defined below) by the formula

for some N, then any rotation of f can be represented
f m(u) 5

1

Ï2f
E2f

0
f(f, u)e2imf df

(8)
by an expansion of the same degree with appropriately
transformed coefficients. This property of uniform resolu-
tion, in addition to spectral convergence and the simple

5
Ï2f

I OI

i51
f(fi , u)e2imfi,representation of differential operators, is the reason for

the popularity of the surface harmonics for the integration
of partial differential equations on the sphere. where fi 5 2fi/I for i 5 1, ..., I. The number I of gridpoints

The spectral transform method relies on an algorithm in the east–west direction is chosen to allow this Fourier
for the orthogonal projection of a function f known at a analysis to be exact; for band limit K, this restriction implies
latitude–longitude grid onto the space spanned by surface I $ K 1 N 1 1. The equispaced longitudes fi allow use
harmonics Y m

n of degree n # N (see, for example, [13]). of the fast Fourier transform.
In particular, if f is band-limited of degree K, it can be Second, the spherical harmonic coefficients f m

n , for
expanded as umu # n # N, are determined by a surface spherical trans-

form, using the Gaussian quadrature

f (f, u) 5 OK
n50

On
m52n

f m
n · Y m

n (f, u) (4)
f m

n 5 Ef/2

2f/2
f m(u)P m

n (e) cosu du

(9)Suppose the surface discretization (grid)
5 OJ

j51
f m(uj)P m

n (ej) wj ,

(fi , uj), i 5 1, ..., I; j 5 1, ..., J, (5)

where e 5 sinu and u1 , ..., uJ denote the roots of PJ (sinu)
has the property that the function values and w1 , ..., wJ denote the corresponding Gaussian quadra-

ture weights (see, for example, Szegö [14, p. 47]). The
number J of grid points in the north–south direction isf(fi , uj), i 5 1, ..., I; j 5 1, ..., J,
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TABLE I overall complexity of the spectral transform filter is of
O(N 3) for O(N 2) grid values.Parameters Used in the Filter Implementations

2.3. Spectral Truncation MethodN K I J V

In this subsection we present an algorithm for applying15 30 48 24 1
31 62 96 48 2 the truncation filter (6) in O(N 2 log N) operations for
42 84 128 64 2 representations of size O(N2). An earlier presentation of
63 126 192 96 4 this algorithm may be found in Jakob [8]. The procedure
79 158 240 120 4

obviates the computation of surface harmonic transforma-85 170 256 128 4
tions for integration of PDE on the sphere.95 190 288 144 8

106 212 320 160 8 We suppose a function f defined on the sphere is given
119 238 360 180 8 by the surface harmonic expansion (4). The spectral trunca-
127 254 384 192 8 tion algorithm combines steps 2 and 3 of the standard
143 286 432 216 8

spectral transform algorithm, simplifies the sum with the159 318 480 240 8
Christoffel–Darboux formula for orthogonal polynomials,170 340 512 256 8

190 380 576 288 16 and evaluates the resulting sum with the fast multipole
213 426 640 320 16 method.
239 478 720 360 16 The Christoffel–Darboux formula [14, p. 42] for the
255 510 768 384 16

associated Legendre functions has the form319 638 960 480 16
341 682 1024 512 16

Note. The truncation index N, band limit K, east-west grid size I, and
TABLE IInorth-south grid size J are chosen so that I allows efficient FFTs (has

only prime factors 2, 3, and 5), J is even, and the exact reconstruction Relative l2 Truncation Error and l2 Representation Error for
constraints I $ K 1 N 1 1 and J $ (K 1 N 1 1)/2 are satisfied. The the Spectral Transform and Spectral Truncation Algorithms
number V of intervals used for the FMM is also shown.

l2 truncation error l2 representation error

Standard Multipole Standard Multipolechosen to allow this spectral analysis to be exact; for band
N transform truncation transform truncationlimit K, this requires J $ (K 1 N 1 1)/2.

Third, the filtered Fourier coefficients f̃ m(uj) are com- 15 8.80E 2 14 9.10E 2 14 1.00E 2 01 1.00E 2 01
puted by a backward surface harmonic transform, using 31 5.36E 2 13 5.31E 2 13 1.33E 2 02 1.33E 2 02

42 7.08E 2 13 6.91E 2 13 6.07E 2 03 6.07E 2 03only the spherical coefficients up to degree N,
63 1.20E 2 12 1.27E 2 12 1.97E 2 03 1.97E 2 03
79 5.21E 2 12 5.14E 2 12 1.22E 2 03 1.22E 2 03
85 5.52E 2 12 5.68E 2 12 9.33E 2 04 9.33E 2 04f̃ m(u) 5 ON

n5umu
f m

n · P m
n (e). (10)

95 8.62E 2 12 8.81E 2 12 7.09E 2 04 7.09E 2 04
106 9.11E 2 12 9.05E 2 12 5.72E 2 04 5.72E 2 04
106 9.11E 2 12 9.05E 2 12 5.72E 2 04 5.72E 2 04Fourth and last, the filtered grid values f̃ (fi ,uj) of the
119 2.71E 2 12 2.74E 2 12 4.19E 2 04 4.19E 2 04

function are computed by a backward fast Fourier trans- 127 1.37E 2 11 1.37E 2 11 3.63E 2 04 3.63E 2 04
form, again using only the Fourier coefficients up to de- 143 2.13E 2 11 2.15E 2 11 2.63E 2 04 2.63E 2 04

159 7.61E 2 12 7.47E 2 12 1.97E 2 04 1.97E 2 04gree N,
170 1.66E 2 04 1.66E 2 04
190 1.29E 2 04 1.29E 2 04
213 9.86E 2 05 9.86E 2 05f̃(f, u) 5 Ï2f ON

m52N
f̃ m(u)eimf. (11)

239 7.43E 2 05 7.43E 2 05
255 6.22E 2 05 6.22E 2 05
319 3.53E 2 05 3.53E 2 05The Fourier coefficients f m(uj) are computed by the first
341 3.03E 2 05 3.03E 2 05

step in O(IJ log I) operations. The spherical harmonic
coefficients f m

n are computed by the second step in O(JN 2) Note. The test field for the truncation error was a random, but band-
limited field. The truncation error is measured relative to a truncationoperations, while the third step requires O(JN 2) operations
computed with the standard transform with 128 bit arithmetic. The testto compute Fourier coefficients f̃ m(uj). Finally, the filtered
field for representation error was the height field for the shallow waterfunction values f̃(fi , uj) are obtained in the fourth step in
equations test case 1 (local cone with discontinuous second derivative)

O(IJ log I) operations. If K 5 2N (to allow representation described in Williamson et al. [15] rotated by an angle a 5 f/2. The error
of products of functions) and I and J are chosen as small is measured relative to the analytic solution [9]. The truncation error at

high resolutions is omitted due to memory constraints.as possible, then I 5 3N 1 1 and J 5 (3N 1 1)/2 and the
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TABLE III
(ẽ 2 e) ON

n5umu
Pm

n (ẽ)Pm
n (e) 5

(12)Execution Times for the Spectral Transform and Spectral
Truncation Algorithms

«m
N11 [Pm

N11(ẽ)Pm
N(e) 2 Pm

N(ẽ)Pm
N11(e)],

Execution time (s)

whereStandard Multipole Forward &
N transform truncation back. FFTs

«m
n 5 Ï(n2 2 m2)/(4n2 2 1). (13)63 0.042 0.046 0.011

79 0.091 0.077 0.046
85 0.109 0.093 0.041 Combining (9), (10), and (12) we obtain for u ? ui (e ? ei)95 0.153 0.130 0.060

106 0.227 0.160 0.095
119 0.318 0.204 0.116

f̃ m(u) 5 ON
n5umu

SOJ

i51
f m(ui)P m

n (ei)wiD P m
n (e)127 0.372 0.230 0.154

143 0.563 0.301 0.196
159 1.456 0.368 0.272
170 0.950 0.575 0.358 5 OJ

i51
f m(ui)wi ON

n5umu
P m

n (ei)P m
n (e)

(14)190 1.314 0.599 0.582
213 1.805 0.748 0.700
239 3.765 0.940 1.095

5 OJ

i51
f m(ui)wi«

m
N11 .

255 3.632 1.378 1.256
319 8.699 1.738 2.035
341 13.638 2.483 2.334 P m

N11(e)P m
N(ei) 2 P m

N(e)P m
N11(ei)

e 2 ei
.

Note. The times are for the filters, excluding time for the forward and
backward FFTs, which are shown separately, on a workstation with a
double precision LINPACK performance rating of approximately 130 For e 5 ei the quotient is evaluated with l’Hôpital’s rule.
million floating-point operations per second and 512 Mbytes memory. If f m is known at u1 , ..., uJ , the evaluation of f̃ m at a (possibly

different) set of nodes ũ1 , ..., uJ requires two applications
of the fast multipole method (FMM) of size J:

FIG. 1. Log–log plot of execution times for the spectral transform and spectral truncation implementations, as a function of truncation index
N (from Table III). The dashed lines show exact O(N 2) and O(N 3) time complexities, with intercepts chosen to match the actual times at size
N 5 106.



584 JAKOB-CHIEN AND ALPERT

tation at N 5 159 is machine dependent and was not ob-f̃ m(ũj)
«m

N11
5 P m

N11(ej) OJ

i51

f m(ui)wi P
m
N(ei)

ẽj 2 ei (15)
served on other workstations. The spectral truncation algo-
rithm also significantly reduces the memory requirements
of the filter. Instead of JN 2/2 words for the spherical har-

2 P m
N(ẽj) OJ

i51

f m(ui)wi P
m
N11(ei)

ẽj 2 ei

. monic basis functions in the spectral transform algorithm,
the multipole-based spectral truncation algorithm requires
only 4JN spherical harmonics coefficients at the trunca-The FMM allows the evaluation of the J filtered function
tion limit.values for a specific Fourier wavenumber m with O(J)

operations. The total operation cost for steps 2 and 3 is
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