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To the extent that tips are not perfectly
sharp, images produced by scanned probe
microscopies (SPM) such as atomic force
microscopy and scanning tunneling mi-
croscopy are only approximations of the
specimen surface. Tip-induced distortions
are significant whenever the specimen con-
tains features with aspect ratios comparable
to the tip’s. Treatment of the tip-surface in-
teraction as a simple geometrical exclusion
allows calculation of many quantities im-
portant for SPM dimensional metrology.
Algorithms for many of these are provided
here, including the following: (1) calculat-
ing an image given a specimen and a tip
(dilation), (2) reconstructing the specimen
surface given its image and the tip (ero-
sion), (3) reconstructing the tip shape from
the image of a known “tip characterizer”
(erosion again), and (4) estimating the tip
shape from an image of an unknown tip
characterizer (blind reconstruction). Blind

reconstruction, previously demonstrated
only for simulated noiseless images, is here
extended to images with noise or other ex-
perimental artifacts. The main body of the
paper serves as a programmer’s and user’s
guide. It includes theoretical background
for all of the algorithms, detailed discussion
of some algorithmic problems of interest to
programmers, and practical recommenda-
tions for users.
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1. Introduction

Accurate length metrology ofsub-micrometer surface
features is important for a variety of technologies. De-
termination of grain size [1] or surface microroughness
[2] and comparison of measured dimensions of organic
molecules to calculated models [3] all require accuracy
on the scale of nanometers or better. The Semiconductor
Industry Association has identified critical dimension
metrology at thisscale as an important item on the path
to the next generation of semiconductor electronics [4].

Scanned probe microscopy (SPM), chiefly scanning
tunneling microscopy (STM) and atomic force
microscopy (AFM) are promising newcomers as length
metrology tools. They provide three-dimensional
images with resolution at or near the atomic level.
However, while a high resolution image is an important
requisite for accurate measurement of dimensions, it is

not sufficient. One problem, geometrical distortion in
the images due to nonlinearities in the scanners, can be
overcome through the use of interferometry or cali-
brated capacitance gauges to traceably measure the
position of the tip relative to the sample [5, 6]. Another
impediment is image distortion due to dilation of image
features by the tip. Overcoming this obstacle requires
methods of estimating the tip geometry and using the
estimate to reconstruct the true specimen shape from its
measured image. Perhaps the earliest proposed solution
to this problem was that of Reiss et al. [7]. Keller
provided an alternative formulation in terms of Legen-
dre transforms [8]. Other authors [9–11] have published
solutions which are essentially specializations of these
to particular geometries, e.g., spheres or parabolas.
These solutions rely upon the principle that non-
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interpenetrating surfaces in contact must be tangent
at the contact point. For reconstructing general tip
shapes, they require numerical evaluation of slopes. This
has sometimes been found problematical in practice
[12]. As a result another approach relying upon mathe-
matical morphology hasbeen used by a number of au-
thors [12–18]. These are applicable to general shapes
(any tip and sample which can be expressed as an array
of heights in the usual fashion), and they do not require
numerical derivatives.

Any of these methods can be used to reconstruct from
an image either the specimen surface if the tip is known
or the tip geometry if the specimen is known. For tip
estimation, the requirement that the tip characterizer
specimen be known independently of the SPM measure-
ment can be a significant hurdle. This kind of three
dimensional nanometer resolution measurement of the
characterizer is not easily performed by non-SPM tech-
niques. Even if it is once known, one must still be con-
cerned with the stability of the characterizer and reg-
istry. That is, how does one know that the specimen,
once accurately measured, does not change due to con-
tamination, reaction, or other damage, and how does one
know whether the area being imaged in the SPM is the
same area previously measured? This author recently
published an alternative to tip estimation using known
tip characterizers [18]. Williams et al. [19] indepen-
dently arrived at essentially identical conclusions.
Dongmo et al. [20] describe a different, but related,
technique. These methods, which have come to be
known as “blind reconstruction” methods, determine an
outer bound on the tip geometry from an image of an
object without a priori knowledge of the object’s actual
geometry. For well-chosen tip characterizers, the outer
bound determined by these methods may closely ap-
proximate the actual tip geometry [21].

The primary purpose of this paper is to make the
results derived in Ref. [18] available in a practically
implementable form. To that end, actual computer codes
(in C) for image simulation, surface reconstruction, tip
estimation, and related operations are provided in the
appendices. A secondary purpose is to extend the previ-
ous results in an important respect. The original blind
reconstruction algorithm, while useful for modeling,
had practical problems with real images due to an insta-
bility in the presence of noise. The code presented here
employs a threshold test to remove the instability.

There are three main tasks accomplished in the body
of the paper. Firstly, a reasonably comprehensive theo-
retical basis for the algorithms is established, though the
derivation of blind reconstruction is omitted since this is
long and was already published in Ref. [18]. The theo-
retical basis is necessary so that users may understand
what the algorithms calculate, understand the principles

upon which they are based, and judge the reasonable-
ness of results they generate. Secondly, some details of
how the mathematical results are embodied in
algorithms are given, especially when it would not
otherwise be obvious. As a practical matter, for exam-
ple, images are measured only over a finite area. Some-
times the formulas as derived require information from
parts of the image that lie beyond the edge, in unknown
territory. The solution to this problem will be given.
Thirdly, some practical guidance to users will be
offered.

The organization of the paper is as follows: In Sec. 2
the basic mathematical concepts and notation will be
introduced. Section 3 is on image simulation (calculat-
ing the image given the specimen and tip). Section 4 is
on surface reconstruction and certainty maps (estimat-
ing the specimen given the image and the tip or the tip
given the image and specimen, and determining where
the reconstruction is valid). Section 5 covers blind recon-
struction (estimating the tip shape using the image
alone). Each of Secs. 3 through 5 derives or recapitu-
lates the relevant equations, then discusses how these are
implemented in algorithms. In Sec. 6 we discuss the
effect of noise and other limitations. Section 7 provides
some practical examples. The appendices contain
computer code for practical implementation of the
algorithms described in the main body of the paper.

2. The Language of Sets

Mathematical morphology, a branch of set theory
dealing with unions and intersections of sets and their
translates, provides a useful language for problems re-
lated to SPM. For this reason basic routines for the
morphological operations of dilation and erosion are
provided in Appendix C. As we will see in Sec. 3,
imaging can be compactly described in terms of dila-
tion. Once the connection between SPM and dilation is
established, the existence of mathematical morphology
as a branch of set theory means there exist proven rela-
tionships between morphological operations which may
be usefully applied to SPM. For example, in Sec. 4 there
is a brief, straightforward proof that the erosion opera-
tion produces the best obtainable surface reconstruction.
Neither grayscale morphology, asubset of mathematical
morphology towhich we will shortly restrict ourselves,
nor a surface description of objects based upon single-
valued functions (the more conventional approach) can
describe surfaces or tips with undercuts. However it is
worth mentioning that mathematical morphology,when
not restricted to grayscale morphology, isapplicable to
such surfaces.
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We will introduce definitions and properties of mor-
phological operators as we need them. Motivation for
the former and proofs of the latter may be found in the
morphologyliterature [22–26]. However, since it may
be unfamiliar, we introduce some of the notation and
basic ideas here. In most treatments of SPM imaging,
the image, specimen, and tip surfaces are described in
terms of single-valued functions which give the height
of the corresponding object at the given lateral coordi-
nates, (x, y). Thus, s(x, y) is the upper surface (the
“top”) of the specimen. In mathematical morphology,
the specimen is described by the set,S, of all the points
contained within the specimen volume. When only the
upper surface ofS is relevant, as in standard SPM imag-
ing, we can treatS as though it were defined by
S = {(x, y, z)uz # s(x, y)}. This kind of an object,
which consists of a single-valued top and all the points
beneath it, is called an “umbra.” The transformation
between a description in terms of an umbra on the one
hand and its top on the other provides the translation
between mathematical morphology and the standard
description.

The standard description is a boundary representation,
while mathematical morphology represents objects as
solids occupying a volume. Each has its advantages and
disadvantages. The volume description comes with a
compact and intuitive notation, as we will shortly see. It
also has the virtue of being an established body of study,
with definitions and theorems useful to our purpose.
The boundary description, on the other hand, is arguably
sufficient for SPM. Tips and specimens interact at their
surfaces. When we know what the solid object’s
boundaries are, we have all we need. To perform calcu-
lations on the objects’ interior points would be ineffi-
cient. It is often convenient to take advantage of the
existing notation and theorems of mathematical mor-
phology toperform derivations, but convert the results
to surface descriptions for computational efficiency
when it comes time to encode them.

Since a facility for going back and forth between the
alternate descriptions will be useful to us, here are a few
examples of important operations expressed both ways.
The translation of a set,A, by a vector,d, is determined
by addingd to every element ofA:

A + d = {a + d ua[ A} (Definition 1)

This is shown graphically in Fig. 1a. If A were an umbra,
the corresponding description of the translation in terms
of its top would bea(x –dx, y –dy) + dz, whered = (dx,
dy, dz). That is, denoting the top ofA by T [A],

T[A + d](x, y) = a(x –dx, y –dy) + dz.

(Property 1)

a

b

A! B

c

Fig. 1. Some basic operations on sets. a) Translation of a set by a
vector. b) Union and intersection of sets, and their relationship to the
maximum and minimum of the tops of the sets. c) Dilation of one set
by another.

Two overlapping umbras are shown in Fig. 1b. The
union of the two umbras is represented by all of the
shaded area, regardless of the orientation of the shading
lines. It is clear from the definitions that the top of the
union is the maximum of the two tops.

T[AøB](x, y) = max[a(x, y), b(x, y)] .

(Property 2)

Similarly, the intersection is the area of the figure which
is shaded by both umbras. It is the crosshatched area,
and its top is the minimum of the two tops.
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T[AùB](x, y) = min[a(x, y), b(x, y)] .

(Property 3)

For our final example, which we will use shortly, we
introduce the definition of dilation.

A % B = ø
b[B

(A+b) (Definition 2)

This definition as a union of translates is illustrated in
Fig. 1c. Here we take the pointa = 0 to be at the center
of curvature for the curved part ofA. The position ofA
in the figure shows one of the translates,A + b. In this
instance,b is the point at the upper right corner ofB. If
one imagines centeringA in turn over eachb in B, the
area swept out byA is the dilation, labelledA % B in the
figure. A andB were chosen not to be umbras in order
to illustrate the generality of the definition. However, if
we do restrict consideration to umbras, we can use Defi-
nition 1 and Property 2 to write an expression for the
function defining the top of the dilation

T[A % B](x, y) = max
(u, v)

[a(x –u, y –v) + b (u, v)].

(Property 4)

3. Simulation of Imaging, Dilation

3.1 A Model for Imaging

Figure 2 illustrates the principles of AFM or STM
topographic imaging. This and most subsequent figures
show only profiles for the sake of clarity, but the results
and the algorithms in the appendices are applicable to
full three dimensional surfaces. A tip is positioned
above the specimen surface. The tip then approaches
the surface until it makes contact at one or more points.
When it makes contact, the location of the tip apex
defines the image height. The practical meaning of
“contact,” and the degree of approximation implicit in
this model, are determined by the feedback mechanism
employed. In the STM for example, feedback is based
on the tunneling current between a conducting tip and
surface between which a potential difference is main-
tained. The tunneling gap is typically less than 1 nm. In
constant current imaging, the gap should remain con-
stant apart from variations on the order of tenths of a
nanometer due to work function variations. The amount
of compression for hard samples and tips in contact
mode AFM at typical forces should be of similar order.
Therefore, the approximation of contact without com-
pression should be valid at the size scales large com-

Fig. 2. The conventional model for imaging.

pared to 1 nm which are of interest for much of the
topography of patterned semiconductors, microcrystals,
and other surfaces.

3.2. The Imaging Equation

What is a mathematical description of the process
just described? In Fig. 2 let the coordinate system be
chosen so the height of the apex of the raised tip is 0.
Let i (x, y) be the function describing the image surface,
s(x, y) the specimen, andt (x, y) the tip. When the tip
is translated to the point (x', y') the translated tip is
described byt (x–x', y–y'). The tip must be lowered
until it first touches the surface. That is, it must be
translated down by an amount equal to the minimum
distance between tip and specimen surface. Representa-
tive distances as a function of lateral position are shown
by the dashed vertical lines, with the minimum distance
indicated by the thick continuous line at the upper cor-
ner of the sample. When the tip is lowered into contact,
the apex will mark the height of the image at (x', y').
That is,

i (x', y') = – min
(x, y)

[t (x –x', y –y') –s(x, y)] . (1)

Here the minimum is taken over all (x, y) in the hori-
zontal plane.

3.3 Equivalence of Imaging to Dilation

Now we make a few algebraic manipulations, the
point of which is to demonstrate the relationship
between Eq. (1) and dilation. First, we bring the leading
minus sign inside theminoperation, thereby converting
it to a max operation, since –min(a) = max(–a). At
this point the result agrees, apart from notational
differences, with imaging equations in Refs. [12], [14],
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and [15]. Second, we introduce a change of variables,
x = x' – u andy = y' –v. With these changes, Eq. (1)
becomes

i (x', y') = max
(u, v)

[s(x' –u, y' –v) –t (–u, –v)] . (2)

Here we have used the fact thatmax
x' –u

= max
u

. (Sinceu

varies from –̀ to + `, x' –u andu represent the same
region, only specified in a different order.) Now define
a new function,

p(x, y) = – t (–x, –y) , (3)

which is the reflection of the tip through the origin. In
terms of this new function, Eq. (2) becomes

i (x, y) = max
(u, v)

[s(x –u, y –v) +p(u, v)] . (4)

By comparing with Property 4, it is apparent that in
agreement with others [13, 14, 17], Eq. (4) means

I = S % P (5)

whereI , S, andP are the sets of which the functionsi ,
s, andp are the respective tops. That imaging is, in fact,
a dilation is further illustrated in Fig. 3. This figure
shows the same geometrical operation demonstrated in
Fig. 1 when we defined dilation, but using the sample
(thick line) and reflection of the tip introduced at Fig. 2.
The coordinate system is assumed chosen so that the
apex of the untranslated tip lies at the origin. Some of
the various translates of the reflected tip are shown in
the figure. The image (dashed line) produced by dila-
tion in Fig. 3 is the same image determined by the more
conventional operation described in Fig. 2.

3.4 Algorithms for Reflection and Dilation

In order to simulate imaging using the codes in the
appendices, it is necessary to have tip and model sur-
faces expressed as two dimensional arrays of heights.
Such height maps are the standard way in which SPM
images are stored. To process 1-d data (profiles of
height vsx) one simply uses arrays which are formally
2-d but with one of the dimensions having size equal to
1. The algorithms provided operate on integer arrays
specified by pointers of typelong ** . A utility to
allocate arrays of this type is supplied in Sec. 10.2.
Generalization to data types other than long integer is
straightforward. (See the discussion in Appendix A.)

Fig. 3. Forming the image by dilation.

In Sec. 10.3 theireflect routine performs the
reflection operation,P = –T, useful if the tip is not
already in reflected form. The algorithm is a short and
straightforward implementation of the definition of re-
flection through the origin. The order of the height
values within the array is reversed in each of thex and
y directions, and the sign of the result is changed to
produce the inversion inz.

The idilation routine in Sec. 11.1 is a mostly
straightforward implementation of dilation as given in
Eq. 4. As inputs, it requires pointers to arrays containing
the height data for the sample surface and the reflected
tip and the dimensions of these two arrays.

There is a small complication in the implementation
of Eq. (4) which arises over the choice of coordinate
system. Since we represents and p by arrays, it is
convenient to use the integer index into the arrays as the
lateral coordinates,x, y, u, andv in Eq. (4). This repre-
sents no complication with regard to image or specimen
arrays, but does raise a problem for the tip array. On the
one hand it is convenient and natural to place the tip
apex at the origin, as we did in deriving Eq. (4). Other
choices result in the image being translated with respect
to the specimen. On the other hand, arrays in C are
naturally zero-offset, with (0, 0) in the lower left corner.
This is not usually a good place to put the tip apex, since
the array then describes only a single quadrant of the
tip. The solution is to make the natural choice of tip
array, with the apex at some (xc, yc) in the interior, and
then index the array with (u + xc, v + yc) instead of (u v).
Now u and v can range more or less symmetrically
about 0, as we want them to in Eq. (4), while the array
index remains in the appropriate range for the program-
ming language. The procedure just described amounts
to generating a new function,pc(u + xc, v + yc), which
is equal to and replaces inp(u, v) in Eq. (4). In the
idilation routine and others to follow, thetip
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variable refers topc. This explains the difference
between line 77 in the code and what one might expect
by inspection of Eq. (4).

The outermost pair of loops, beginning at lines 68 and
71, ranges in turn over each (x, y) in the image. For each
such (x, y) coordinate, the inner loops, beginning at
lines 75 and 76, range over all (u + xc, y + yc) in the
domain of the tip, computing for each the value of the
expression in Eq. (4)’s square brackets and finally deter-
mining the maximum of these.

Another complication which rears its head here for
the first, but not last, time is the existence of edges. In
our discussion of the last section we assumed the image,
specimen, and tip were described by functions defined
for all (x, y) in the horizontal plane. In fact, however, we
are always given only truncated representations of these
objects. Among the many different translates of the tip
are some in which part of the tip lies over the edge of the
known specimen surface. In this situation, two issues
must be addressed.

First, we must use care in coding in order not to
attempt to address parts ofs or pc outside the specified
arrays. For a givenx the conditions on the range ofu are

0 # x – u # surf_xsiz – 1

0 # u + xc # tip_xsiz –1. (6)

The first of these comes from requiring the argument of
s in Eq. (4) to be within the defined domain ofs. The
second comes from the similar requirement on the argu-
ment ofpc. To satisfy both the conditions of Eq. (6), it
is necessary that

max[x – surf_xsiz + 1, – xc]

# u # min[tip_xsiz – xc – 1, x] . (7)

A similar condition applies tov, and the conditions are
applied in lines 69, 70, 72, and 73.

Second, we must decide what value should be as-
signed to themaxoperation of Eq. (4) when its range
includes parts of the specimen surface for which we
have no data. In the case of dilation, we here assume
that heights of the reflected tip or specimen surface
which are not otherwise defined may be taken to be –`.
Algorithmically, this means that those areas may be
ignored when determining the maximum. Physically,
this means we are assuming that we are provided with
all parts of the tip and specimen that are relevant to the
image.

4. Reconstruction of Surfaces, Erosion
and Certainty Maps

4.1 The Reconstruction Equation

A common problem is, given a measured image and
an estimate for the tip shape, how do we estimate the
specimen surface? The answer is

Sr = I * P . (8)

The * symbol designates erosion, defined by

A * B = ù
b[B

(A – b) . (Definition 3)

We will see thatSr is an upper bound, and not necessar-
ily equal to S. On the other hand,Sr is not only a
reconstruction of the surface, but it is, within the model
given in the last section, thebest possiblereconstruc-
tion. Other reconstruction procedures which start with
the same model are either equivalent toSr, or worse than
Sr. In fact, there have been a number of reconstruction
procedures [7–18]. Although few are stated explicitly in
terms of morphological operators most appear to be
formally equivalent, although some require a problem-
atical evaluation of numerical derivatives or are
restricted to certain tip geometries. To see thatSr is the
best possible reconstruction, we need two properties
from mathematical morphology.

(A % B) * B $ A. (Property 5)

[(A % B) * B] % B = A % B, (Property 6)

SinceI = S % P, Property 5 and Eq. (8) say that

Sr $ S . (9)

This meansSr contains, or is an upper bound on, the
actual surface. That it is theleast such upper bound
consistent with the image may be seen using Property 6,
which upon substitution ofS for A, P for B, I for
S % P andSr for I * P says that

Sr % P = I . (10)

This means that if the specimen were equal toSr, we
would have produced precisely the observed image. It is
therefore not possible to eliminateS= Sr as a possibility.
As a result, no upper bound smaller thanSr is accept-
able, andSr is the leastupper bound.
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A geometrical picture of erosion is presented in Fig. 4
with the aid of yet another result from mathematical
morphology:

I * P = [I c % (–P)]c. (Property 7)

This shows that erosion is related to (is, in fact, the dual
of) dilation. HereXc denotes the complement ofX. In
Fig. 4 I is the space below and including the image
surface (dashed line).I c is the space above the image.
The dilation of I c by –P is graphically constructed in
similar fashion to that used in Fig. 3. The resulting
object’s lower surface is indicated by the thin continuous
line. The final complement operation performs another
inversion, making this theuppersurface of the result,Sr.
This graphical procedure is the same as that employed
by Keller and Franke [12] under the name “envelope
reconstruction,” which is therefore equivalent to erosion.
The result is compared to the actual surface, shown by
the thick continuous line.

Pr = I * S . (11)

In this caseI is the image of the known reference spec-
imen,S. Analogously toSr andS in the foregoing dis-
cussion,Pr is an outer bound on the probe shape, equal
to P at those points whereP touchedS and an outer
bound elsewhere.

4.2 Erosion Algorithm

To put erosion (Definition 3) into a form suitable for
programming, it is useful to have an expression for the
top ofSr . To this end we apply Property 1 (dealing with
translations) and Property 3 (dealing with intersection)
to Definition 3. The result is

sr(x, y) = T [Sr] (x, y)

= min
(u, v)

[i (x + u, y + v) – p(u, v)] . (12)

Section 11.2 contains the function,ierosion , which
implements this equation for integer arrays. The inputs
are pointers (of typelong ** ) to arrays containing the
image and tip, the sizes of these arrays, and coordinates
within the tip which are to be considered the origin.

As with dilation, there are two sets of loops, an outer
set for (x, y) and an inner one for (u, v). Line 104
evaluates the expression in Eq. (12)’s square brackets,
with p offset as before by (xc, yc). (See the discussion in
3.4.) The inner set of loops determines the minimum
over all (u, v) for a given (x, y).

As before, we must be careful about edges. The ex-
pressions in lines 96, 97, 99, and 100 were derived
analogously to those for dilation, differing only because
of the sign differences between the arguments ofi in Eq.
(12) and s in Eq. (4). These lines prevent us from
attempting to address theimage or tip arrays outside
of their defined limits as we would otherwise attempt to
do for those configurations in which part of the tip lies
over the edge of the image.

As it stands, themin operation now proceeds only
over those coordinates where bothtip andimage are
defined. However, we still must consider whether this is
the right thing to do, or whether some other value
should be assigned tominwhen its range includes unde-
fined regions of the image. The image is ordinarily a
measured quantity, and we have no way of knowing
what we would have measured had we extended the
imaging region beyond its current boundaries. How-
ever, the spirit of this calculation is defined by the fact
thatSr $ S. We are calculating anupper boundon the

Fig. 4. Geometrical interpretation of erosion, showing that it is the
surface of deepest penetration. The specimen surface is the thick
continuous line. The image is the dashed line. Various translates of
the tip are shown, together with the minimum of their envelope, which
is the reconstructed surface.

Figure 4 provides a physical interpretation of surface
reconstruction by erosion.Sr is an upper bound onS
rather than equal toS because there are regions like
those in the v-groove or near the base of steep walls
which the tip is too large to penetrate. AlteringS in
these inaccessible regions makes no change in the
image, and it is therefore not possible from the image
alone to tell which of the many possibilities was the true
one. Sr is the best reconstruction because it is the
surface of deepest penetration of the tip.

If the specimen geometry is known but the tip is not,
it is possible to use erosion to reconstruct the tip shape.
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actual specimen surface. In order to preserve this
character to the calculation, we make the worst-case
assumption, that is, we assume that value ofi which
maximizes the result forsr . In this way we guarantee
thatsr is, in fact, an upper bound no matter what the true
value ofi beyond the edge. The assumption fori which
maximizessr is that i → ` where it is not otherwise
known. Algorithmically, this also means the unknown
parts of i are irrelevant to themin procedure, and
ierosion is correct as it stands.

4.3 Certainty Map

We have seen that it is not always possible to recon-
struct the specimen surface from its image. In general,
the reconstruction is equal to the specimen in some
places and greater in others. Interestingly, it is some-
times possible to ascertain where the reconstruction
worked. Pingali and Jain [14] suggested a procedure for
constructing a “certainty map.” The certainty map,
c(x, y), is an array of the same size as the reconstructed
surface, but containing 1’s and 0’s. Ifc(x, y) = 1 for
some pixel, (x, y), thensr(x, y) = s(x, y). Wherec(x,y)
= 0 the corresponding reconstructed pixel may or may
not be equal to the true surface.

Figure 5 shows how it works and why. The image is
formed when the tip scans the surface, always in contact
at one or more points. Two tip positions are shown in
the figure. At position 1 the tip makes contact withsr at
one point. By process of elimination, this point is the
only candidate for the place where the tip contacted the
specimen. All other points are eliminated becausesr is
known to be an upper bound ons. Therefore,s = sr at
this point. At position 2 the tip contacts the recon-
structed surface at multiple points. At least one of these
must coincide with the true surface, but it is not possible
to say which.

4.4 Certainty Map Algorithm

An algorithm,icmap , to calculate the certainty map
is given in Appendix D. It takes as inputs pointers to an
image, a reflected tip (with center coordinates also
given) and a reconstructed surface previously deter-
mined from these usingierosion . The main result
which we need in order to convert the description of the
last section to an algorithm is the condition under with
the tip touches a point on the reconstructed surface. By
inspection of Fig. 5 (see the labels at tip position 1) the
tip at (x, y) touches the reconstructed surface at (x + u,
y + v) if and only if

i (x, y) + t (u, v) = sr(x + u, y + v) . (13)

Fig. 5. Two possible scenarios. The tip at position 1 touches the
reconstructed surface (and therefore also the actual surface) at a single
point. At position 2, the tip touches the reconstructed surface at
multiple points, and it is not therefore possible to know which of them
corresponds to the true surface.

This is the comparison which is performed at line 145.
However, since Eq. (13) requires the unreflected tip and
since we have standardized the algorithms on accepting
the reflected ones as input, we must either call the
ireflect routine or perform a reflection in place.
The latter option is employed here. The innermost pair
of loops (starting at lines 143 and 144) ranges over all
(u, v) in the domain of the functions. The outer pair of
loops ranges over all (x, y) not too near the edge. If
Eq. (13) is true, the block following line 145 increments
a counter which tallies the number of values of (u, v)
for which there is a touch, and stores the location of the
touch. If, at the end of each loop over all (u, v) there has
been only a single touch, the certainty map at the stored
location is set to 1.

As with the previously considered routines, it is nec-
essary to consider the effect of edges. We will consider
an image pixel to be near the edge of the image if, when
the unreflected tip is placed with its center coordinates
over that pixel, part of the tip lies over the edge. As
written, icmap assigns a value of 0 toall such pixels
since there may be additional touch points “unseen”
beyond the edge.

As it happens, this is too conservative. It is possible
to do better than this if we consider that specimen
heights beyond the edge are not free to take on any
value, since heights above a certain bound would have
affected the measured part of the image had they been
present. If the part of the tip which extends beyond the
edge is everywhere above this bound, then we know
that there were no tip-surface touches there.

If certainty map values near the edge are of interest,
we can calculate them with no change inicmap . We
need only change the inputs. Here is the recommended
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procedure: Given anN 3 M measured image and
n 3 m unreflected tip with its zero at pixel (xc, yc):

1. Create a new array of size at least (N + n – 1)
3 (M + m – 1).

2. Imbed the measured image in the interior of the new
array leaving margins at leastxc pixels wide on the
left and n – xc – 1 pixels wide on the right,
with bottom and top margins of at leastyc and
m – yc – 1 respectively.

3. Set the value of the pixels in the margins to a large
height. A safe choice is a height greater than the
maximum height in the measured image plus the
range from maximum to minimum in the tip. (But
do not use a height too near the maximum allowed
by the data type or you risk overflow.)

4. The new augmented image is now the measured
image imbedded in an array with high margins.
Compute an augmented reconstructed surface from
this image using theierosion routine as before.
The margin in this result contains the aforemen-
tioned bound above which the unseen part of the
specimen cannot lie without affecting the measured
part of the image.

5. Compute the certainty map usingicmap with the
augmented image, augmented reconstructed
surface, and tip as inputs. Strip the margins from
this result to obtain the certainty map which corre-
sponds to the original (non-augmented) recon-
structed surface.

5. Blind Estimation of Tip Shape

5.1 Blind Reconstruction Equations

In order to reconstruct the specimen from the image,
it is necessary to have a 3-d model for the tip geometry.
Since tips may abrade or suffer damage during imaging,
it is desirable to frequently re-measure their geometry.
Optical or electron microscopic methods do not directly
provide 3-d information, require removal and reinsertion
of the tip, and suffer from their own probe-specimen
“convolution” effects [27, 28], even though the probe is
a photon or electron. Tip estimation by imaging a
known characterizer, as described in Sec. 4.1, does not
eliminate the need for an independent determination of
a geometry. It simply transfers that requirement to the
characterizer.

An alternative is one of the blind tip estimation
[18–20] methods. As the name implies, this is estima-

tion using the image of anunknowntip characterizer.
This author has already published a detailed derivation
of one procedure [18] capable of reconstructing tips
with complex geometries. The algorithm will be pro-
vided and discussed here, but the derivation will not be
repeated. Williams et al. arrived at the same result [19].
Dongmo et al. discuss a related method for blind estima-
tion of tips that can be characterized with a small num-
ber of parameters [20].

There is a simple explanation of blind reconstruction
which serves to provide an intuitive rationale. Practi-
tioners of SPM are well aware that image protrusions are
broadened replicas of those on the specimen. However,
it is only convention which determines which of the two
objects being scanned across one another is the tip and
which the specimen. We are equally entitled to regard
features on the image as broadened replicas (albeit in-
verted) of the tip. In particular, for example, it is not
possible for the radius of the tip at its apex to be larger
than the radius at the top of the sharpest isolated maxi-
mum in the image, since this would imply that the cor-
responding specimen feature had anegativelateral di-
mension. A similar consideration applies to parts of the
tip away from the apex and corresponding parts of the
image to which they give rise. Since tips are chosen to
be slender and sharp, it can safely be assumed that they
do not interact with surface objects that are sufficiently
far away. In this way, sufficiently separated subsets of
the image may be regarded as independent images, each
of which places an outer bound on the tip shape. The
true tip shape must be inside of the envelope which is at
each point equal to the tightest of all these bounds.
Reconciling all of the bounds produces the bluntest tip,
PR, consistent with the observed image. Putting it
another way, for tips blunter thanPR there is noconceiv-
able specimen which would give rise to the observed
image—their surfaces invariably would be required to
have some feature with negative width, which is unphys-
ical.

We will need some of the detailed results from
Ref. [18] in order to explain the algorithm. There, we
described an iteration process:

Pi + 1 =ù
x[ I

[(I – x ) % Pi'(x )] ù Pi . (14)

Equation (14) allows calculation of thei + 1st iteration
result given thei th. The object,Pi ', was defined in Ref.
[18] to be Pi '(x ) = {d ud [ Pi and 0[ I – x + d}, a
definition which we here give in the simpler form,

Pi '(x ) = Pi ù (x – I ) . (Definition 4)
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When this process is continued until convergence, we
call the result,PR.

PR = lim
(i →`)

Pi . (15)

We proved that each iteration of Eq. (14) produces a
result smaller than or equal to the preceding one, but
that eachPi remains larger than the actual tip. This
convergence limit is the best estimate of the tip, as
obtained by blind reconstruction.

Figure 6 illustrates results obtained by blind recon-
struction in a simulation. Computer models of a speci-
men and tip (shown) were constructed, and the image
computed from them by dilation. The blind reconstruc-
tion result was computed from Eqs. 14 and 15 using the
image and a starting outer bound on the tip (a square
pillar, flat on the top and ~ 100 nm on a side—see the
discussion below) as inputs. (Dimensions in nanometers
are supplied in the figure for greater concreteness. The
scale is set by the actual granular surface [29] upon
which the simulation was based.) The fidelity of the
result is typical of cases in which the specimen contains
features somewhat sharper than the tip. When the tip is
sharper thanall features on the specimen, the approxi-
mation is not as good [18, 21].

5.2 Choosing an Initial Upper Bound

All that is required to start the iteration in Eq. (14) is
P0, the initial outer bound. In practice, one typically
uses

P0 = H 0
–`

for ux u < sx /2 anduy u < sy /2
otherwise

, (16)

which places the origin at the center of a tip with rectan-
gular cross section of sizesx 3 sy. This is the bluntest
possible tip of this lateral dimension. The maximum
height is 0 in order to satisfy the convention that the
apex be at the origin. The dimensionssx andsy define
the rectangular (chosen for convenience in working
with rectangular arrays) “footprint” of the tip. They
define a distance outside of which image features may
be regarded as arising independently of each other.
They should be chosen large enough that points onP
with lateral coordinates outside of this rectangle do not
make contact with the specimen. The choice is often
made based on a “back of the envelope” estimate as
follows: Suppose our specimen’s topography has 100
nm of relief. Further suppose our tip is nominally
parabolic withz= x2/(2r ) andr = 40 nm. Then even for
the most unfavorable specimen geometry (i.e., a vertical
wall 100 nm high) points on the tip with lateral

Fig. 6. Illustration of results of blind tip reconstruction. A 2mm 3

2 mm simulated surface (a 1mm 3 1 mm piece of which is shown at
top), similar to an experimentally observed granular surface [29], was
constructed with minimum feature radius 25 nm. An image was com-
puted by dilation with the actual tip (shown), constructed with 40 nm
radius at the apex. The blind reconstruction result was then computed
by iterating Eq. (14) to convergence, and is shown for comparison
with the actual tip. Cross sections through the apex of the actual tip
(thick line) and the reconstruction result (thinner line) are compared
at the bottom.
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coordinate (x) greater than 90 nm will havez > 100 nm
and will never contact the specimen. In this case,
sx /2 = 90 should be good enough. To allow for the
possibility that the tip is more blunt than the nominal
value one typically builds in a margin of safety by
increasing the result of such a calculation by some suit-
able amount.

Figure 7 shows a simulation illustrating some of the
considerations for the choice of the lateral dimension.
For this example, we use a profile rather than a full 3-d
image, so we need only think about the choice ofsx.
Because designation of tip and sample is arbitrary, it is
always at least a theoretical possibility that the specimen
is a sharp spike and the measured image is actually an
image of the tip. This possibility is reflected in the
lowest of the three reconstructed tips in Fig. 7a, where
the tip dimension,sx, was chosen equal to the dimension
of the measured image. In this case, the blind construc-
tion method returnsPR = I , as it must. The estimated
actual tip is therefore –I (the reflection ofI in bothx and
z), as shown in the figure. Such a large starting estimate
places no meaningful constraints on the result.

If, on the other hand, we can place a rough limit on
the tip shape, we can do much better. We might, for
example, know from an optical inspection that the tip
diameter is smaller than an optical wavelength, or we
might know from electron microscope inspection of tips
that the manufacturing process typically produces radii
below 100 nm. This would allow us to start with a
smallersx, using a rough calculation like that suggested
earlier. The results from two such smaller starting esti-
mates are shown as the remaining two tips in Fig. 7a.
The middle of the three tip results usedsx nearly half the
size of the image. The top result usedsx only 13 % of the
image size. Nevertheless, the two results are nearly
identical near the apex.

This lack of sensitivity to the choice ofsx is illustrated
in Fig. 7b which shows a plot of the reconstructed tip
width near the apex as a function ofsx. For largesx,
corresponding to the first tip in Fig. 7a, the width is that
of the tallest peak in the image. This peak is asymmet-
ric, with smaller secondary peaks on one side. These
secondary peaks might be due to actual secondary fea-
tures on the specimen, or they might be features of the
tip. At this stage it is not possible to eliminate the latter
possibility with the result thatPR is broad. Assx is
reduced, a point is reached at which the other peaks in
the image are considered to provide independent infor-
mation about the tip. Some of these do not contain the
same secondary structures as the first peak, thereby
eliminating the possibility that they are associated with
the tip. At this point the width decreases suddenly to a
value close to the correct one. This result is maintained
for a large range ofsx values. The two upper, more

a

b

Fig. 7. Effect of sx [Eq. (16)] on reconstructed tip size. The bottom
curves in (a) are an image profile (thick line) simulated by dilation of
a surface profile (thinner line) with a parabolic tip. Above are the tips
(offset for clarity) produced by blind reconstruction for three choices
of starting width,sx, shown by the thin horizontal lines. The actual tip
is also shown for comparison. The height above the apex labelled
“width” and indicated by arrows (the same height in each case)
indicates the level from which tip widths were computed for compari-
son in (b). In (b) the horizontal axis indicatessx as a fraction of the
image profile length. The vertical axis indicates the width in the same
units.

symmetrical, reconstruction results in Fig. 7a come
from this region. Only whensx becomes smaller than the
width of the actual tip do we reach a region where the
result is limited bysx.

Some general features of blind reconstruction are il-
lustrated by this. Except for the case when the starting
footprint is too small to permit representation of the
actual tip, all of the results, whatever the choice ofsx,
were valid outer bounds onP. As long as the footprint
is larger than the actual one, smaller is better since it
allows division of the image into a larger number of
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independent pieces, each of which supplies information
aboutP. The result tends to change discontinuously as
the footprint is reduced. This is because not all tip
shapes are consistent with a given image. When a start-
ing out bound is provided, the resulting reconstruction
“snaps” to the next smallest size which is consistent.
This is important to the utility of the method. If the
result changed smoothly with changingP0, we would
never be sure whether we had gotten the answer right.
As it is, the result provides significant improvement to
the starting estimate and is insensitive to the chosenP0

within broad ranges.

5.3 Blind Reconstruction Algorithms

Appendix E contains algorithms needed to estimate a
tip from an image by blind reconstruction. There are
three primary routines. The first computes the largest tip
consistent with a single given point on an image. The
second iterates the first through all image points until
convergence. The third iterates through only a subset of
specially chosen points in the image. These routines all
include a parameter called “thresh ” among their
inputs. We postpone discussion of this parameter until
our discussion of noise in Sec. 6, only remarking for the
time being thatthresh = 0 corresponds to the equa-
tions given so far.

5.3.1 Tip Estimation From a Single Image
Point Sec. 13.1 contains a listing for
itip_estimate_point ( ). This function calcu-
lates [(I –x ') % Pi '(x ')] ùPi for a single point,x '. This
is the right-hand side of Eq. (14) and the basic building-
block for all of the tip estimation routines which follow.

In the middle of the routine are two blocks of code,
one from line 172 to 180, the other from line 190 to 204.
These calculateT [(I –x ') % Pi '(x ')] (x, y) for a given
image pixel atx '. The first block does this ifx ' is in the
interior of the image, where edges are not an issue. The
second block is used whenx ' is near the edge. Once this
term is determined, its intersection withPi is formed (at
line 182 or 206, depending on the block) completing the
calculation of the right-hand side of Eq. (14) for that
particular tip pixel. The outer loops complete the calcu-
lation for all tip pixels,x .

To understand the details of the inner blocks, it is
simplest to leave edge issues aside at first and consider
lines 190 to 204. We use Definition 2 (for dilation) and
Properties 1 and 2 to write

T [(I –x ') % Pi '(x ')] (x, y)

= max
(dx, dy)

[i (x + x' – dx, y + y' – dy)

+ p(dx, dy) – i (x', y')] (17)

We now discuss the meaning of this equation in terms of
a practical implementation, where the image is repre-
sented by anim_xsiz 3 im_ysiz array and the tip
by a tip_xsiz 3 tip_ysiz array. The coordinates
dx anddy range over the domain ofP'. That is, they are
essentially tip coordinates, addressing the intervals
[0,tip_xsiz ) and [0,tip_ysiz ), except that
Definition 4 places an additional condition, about which
more shortly. The coordinatesx' andy' areimagecoor-
dinates, ranging over the intervals [0,im_xsiz ) and
[0,im_ysiz ). Finally, we anticipate that our next step
[see Eq. (14)] will be to form the intersection of
Eq. (17)’s result with the current best estimate,Pi , of the
tip. Therefore, only values ofx and y in the range
[0,tip_xsiz ) and [0,tip_ysiz ) need be calcu-
lated.

Do we need to make some accommodation, as we did
for the dilation and erosion algorithms, for the fact that
Eq. (17) was derived for tips with apex at the origin
while our C arrays are addressed with (0, 0) at the
corner? The answer is, in principle yes. However, per-
haps surprisingly, it makes no difference this time. Both
the left-hand side of Eq. (17) andp( ) on the right are
tip arrays, the arguments of which must range over all or
part of [0,tip_xsiz ) and [0,tip_ysiz ), as al-
ready mentioned. The correction for placing the tip apex
at (xc, yc) instead of (0, 0) would be to replace (x, y) and
(dx, dy) with (x –xc, y –yc) and (dx –xc, dy –yc) in the
remaining terms. However, (x, y) and (dx, dy) either do
not appear in the remaining terms or appear in pairs
with opposite sign, cancelling any offset. As a result,
line 177, which calculates the term in Eq. (17)’s square
brackets, contains no explicit offsets.

We have so far glossed over the conditions placed on
d by Definition 4. We consider them now. Definition 4
requires the apex, then contemplated as being at the
origin, to be contained withinI –x + d. Since it is
convenient for programming to place the apex atdc =
(xc, yc, 0) the same condition on the apex becomes
dc [ I – x ' + d. Switching from set notation to surface
functions, this becomes

0 # i (x' – dx + xc, y' – dy + yc)

– i (x', y') + p(dx, dy) – p(xc, yc) , (18)

or since we retain the condition that the tip’s apex,
p(xc, yc), be zero height

i (x', y') – i (x' – dx + xc, y' – dy + yc)

# p(dx, dy) . (19)
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In the code, the first part of the condition in Defini-
tion 4 is enforced by restricting the (dx, dy) loop begin-
ning at lines 174 and 175 to the interval [0,tip_xsiz ),
[0,tip_ysiz ). The second part is enforced at line 176,
which evaluates Eq. (19) and skips to the next (dx, dy) if
it is not true. The (dx, dy) loop computes the maximum
only of those terms meeting these conditions, thus com-
pleting the evaluation of Eq. (17) when (x', y') is not too
near the edge of the image.

When it is near the edge, as always, additional care is
needed. The general philosophy in dealing with un-
known parts of the image is to assume the worst case.
In calculatingPR we are computing an upper bound on
P. Therefore, weneverrevise a tip pixel’s height down-
ward if there existsanyconceivable configuration of the
image in the unknown area beyond the edge which
would be consistent with the pixel’s present value.

Algorithmically, the problem of edge proximity
chiefly manifests itself via the fact that the indices into
image [ ] [ ] might take on values outside the allocated
memory space for that array either in line 176 or 177.
Physically, this corresponds to the situation illustrated in
Fig. 8. Whenx ' is near the edge of the image, there may
exist some values ofd such that whenI is translated by
d –x ' the point x , which we require for forming the
intersection withPi , or the image apex atdc, which we
require for evaluating the condition in Eq. (19), or both,
lie outside of the known part of the image. The code
block between lines 190 and 204 is essentially a repeti-
tion of the one we just considered, but with additional
lines interspersed to handle the various cases which may
arise.

To begin with, we can subdivide all the possibilities
into six (23 3) relevant cases. These correspond to two

possibilities for the pointx and three for the apex loca-
tion. The lateral coordinates ofx either do or do not lie
within the domain of the translated image. We call these
possibilities “x inside” and “x outside.” If the lateral
coordinates ofdc lie inside the domain of the image and
the vertical coordinate lies on or below the translated
image surface [condition given by Eq. (19) is true], we
say thatdc is “inside.” If the vertical coordinate is above
the translated image surface [Eq. (19) is false]dc is
“outside.” If the lateral coordinates ofdc are outside the
domain of the image [impossible to evaluate Eq. (19)],
then the status ofdc is “indeterminate.”

We can simplify these six cases to four by realizing
that it is appropriate to treatdc indeterminate as equiva-
lent todc inside. That is, whendc falls outside the known
area of the image, the worst case is to assume that the
image height is sufficiently large that Eq. (19) is satis-
fied. This can only result in the dilation having a larger
value, with corresponding smaller reduction in the cur-
rent tip estimate when the intersection is formed.

The appropriate action to take depending upon the
four remaining possibilities follows. Possibilities 1 and
2: Whendc is outside andx either inside or out, thend
Ó P'(x '). We therefore ignore this configuration and
go to the next value ofd. Possibility 3: Whendc is
inside andx is outside, we must assume, worst case, that
i + x – d → `. Since the (id,jd ) loop is computing the
maximum value of this quantity, there is no need to
continue the loop—we will not subsequently find a
value larger than infinity! We therefore abort the loop,
making no change in the tip estimate for thisx . Possibil-
ity 4: When dc is inside andx is inside, we have the
“normal” case that we already treated in the interior.

5.3.2 Full Tip Estimation Algorithm To extract
all of the available information about the tip shape, we
would like to applyitip_estimate_point ( ) to all
points in the measured image. The routine,
itip_estimate_iter ( ), in Sec. 13.2 essentially
does this. Some of the points can be skipped, however,
because we can predict in advance that they result in no
refinement of the tip shape. These points are those at
which I = (I * Pi ) % Pi (see Ref. 18). The time saved
by avoiding calls toitip_estimate_point ( ) for
those points at which this is true usually provide a gen-
erous return for the time invested calculating (I * Pi )
%Pi .

The routine,itip_estimate ( ), also in Sec. 13.2,
repeatedly callsitip_estimate_iter ( ) until con-
vergence. This result isPR [Eq. (15)]. The input parame-
ters for itip_estimate ( ) are the measured image
and its dimensions, the dimensions of the tip to be calcu-
lated, the coordinates within this array at which the apex
is to be placed (usually the center, but offsetting the
apex to one side may be desirable, for example, if one

Fig. 8. Whenx ' is near the edge of the image,I , part ofPi , which
may include the apex atdc and/or other points like the one atx , may
lie over the edge once the image is translated (I – x ' + d). The
unknown part of the image is suggested by a dashed line with question
mark.
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anticipates an asymmetrical tip), and a pointer,tip0 ,
to a starting tip estimate. The starting estimate is often
simply an array of the appropriate size filled with zeros,
but it may be the result of a previous partial calculation.
(See the next section.) The result of
itip_estimate ( ) replaces the original values in
tip0.

5.3.3 Partial Tip Estimation Algorithm
Section 13.3 contains a partial tip estimation al-

gorithm, itip_estimate0 ( ). This one forms the
intersection of itip_estimate_point ( ) applied
only to a subset of image points. While not as complete
as the full algorithm, it can be calculated in substantially
less time. By choosing those image points which are
likely to contain the most information about the tip, the
result of this partial calculation is often quite good. It
may be used as the final tip estimate, or it may become,
as its name suggests, a starting estimate for the full tip
estimation routine, thereby reducing the total time re-
quired for the full calculation.

The algorithm employedhere selects points which are
local maxima in the image. Alternatives are possible, for
example choosing points on the image with high curva-
ture. The routine,useit ( ), sets the criterion for points
used by itip_estimate0 ( ). Programmers can
change the criterion simply by changing this algorithm.

6. Noise and Other Limitations

We have heretofore ignored the effect of noise. Many
measuring instruments in common experience are at
least approximately linear. As soon as one begins to ask
questions about probe/sample interactions in the SPM,
however, one is dealing with an inherently nonlinear
interaction. This results in a different, perhaps less
familiar and therefore less intuitive, effect of noise upon
such operations as surface reconstruction and tip
estimation.

6.1 Effect of Noise on Surface Reconstruction

Any measuring instrument can be conceptualized as
producing a measured output,ô, from the input,x , via
some instrument dependent measuring operator,M , so
that ideally

ô = M { x } . (20)

In the familiar linear case, one can write this as a convo-
lution of the input with an “instrument function” or in
Laplace transform space as a product of the input with
an instrument “transfer function.”M has an inverse,

x = M –1{ ô} which allows “reconstruction” of the input.
If there is noise on the output (ôm = ô + n wheren is a
noise term characterized, perhaps, by average value 0
and standard deviations ) then

M–1{ ôm} = M–1{ ô + n} = x + M–1{ n} . (21)

Thus, noise on the output can be referred back to the
input as an equivalent input noise,M–1{ n}. Further-
more,M–1 is linear, so if the average ofn is 0, so is the
average ofM–1{ n}. This means that noise does notbias
the reconstruction. One may either average the results of
many reconstructions or reconstruct the average of
many measurements. The results are the same.

This familiar, almost intuitive, behavior applies only
to linear instruments. In particular, it doesnot apply to
surface reconstruction in SPM. This is illustrated in
Fig. 9. The thick wavy solid line is a surface on which
has been superimposed a noisy image (the thinner line).
For illustrative purposes, the left half of the image has
only two noise spikes, an upward-going one and a down-
ward-going one. On the right, all pixels are noisy, with
one standard deviation (henceforth designateds ) indi-
cated. The dashed line is the erosion of the tip from the
noisy image, offset slightly for clarity. It is evident that
the upward-going spike on the left had virtually no
effect on surface recovery. Remember that erosion is
taking a minimum envelope (see Fig. 4). The upward
spike has little effect because the adjacent pixels, cou-
pled with the broad tip, are enough to establish that the
specimen could not have been that high. The effect of
the downward-going noise spike, however, is magnified.
It manifests itself as a tip-shaped depression in the
result.

Fig. 9. Effect of noise (one standard deviation,s , indicated) on
surface reconstruction. Shown are a parabolic tip and a noisy image
(thin line) superimposed on the actual surface (thick line). The recon-
structed surface (dashed line) is offset slightly for clarity.
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On the right of the image, where the noise has a
wavelength short compared to the tip, the likelihood of
encountering a negative noise spike within an area com-
parable to the tip size approaches one. The reconstruc-
tion height is therefore almost always smaller than the
actual specimen height. The amount by which it is
smaller depends upon the size of the tip and the fre-
quency characteristics of the noise. For example if the
noise is Gaussian, and if the noise level at each pixel is
independent of its neighbors, then we should expect to
find that ~ 1/3 of pixels deviate from the mean by more
than 1s , 5 % bymore than 2s , 0.3 % by more than 3s ,
and so on in the familiar Gaussian progression. If the tip
effectively interacts with the specimen over a 103 10
pixel square area, we should not be surprised to see
events occurring within these 100 pixels that have an
individual probability of only 1/100. Thus a bias of 2s
or even 3s would be expected. In Fig. 9, the bias is
nearly 2s . Fortunately, Gaussian probability distribu-
tions have exponential tails, so multiples ofs much
greater than 3 or 4 should be uncommon.

As a consequence of this bias, smoothing or filtering
the reconstruction result is not equivalent to smoothing
the image and then reconstructing. The latter is gener-
ally to be preferred. Even so, filtering cannot be ex-
pected to removeall of the noise. It is therefore neces-
sary to be aware that noise introduces bias to the extent
of some small multiple of the remaining rms noise level.

6.2 Effect of Noise on Certainty Maps

Noise has a more profound effect on the Pingali
certainty maps described in Sec. 4.3. Figure 10a shows
part of a simulated image with a vertical scale spanning
approximately 160 nm. A random number generator has
been used to add Gaussian noise withs = 1 nm. Figure
10b shows the correct or ideal certainty map obtained
during reconstruction of the noiseless image. By con-
trast, Fig. 10c shows the results when the noise is in-
cluded. Though Figs. 10b and c resemble each other the
correlation coefficient is only 0.2.

The source of the problem is evident in Fig. 9. The
reconstruction of noisy images contains many tip-
shaped depressions resulting from the deeper negative
noise spikes. These tip-shaped regions will all be scored
as nonrecoverable by a test that counts the number of
pixels touched by the tip. Thus, even in places where
recovery is reasonably good, few pixels will meet this
rigorous test.

In the noisy recovery the areas scored as recoverable
are far less dense than in the noiseless recovery. This
suggests that we could improve the result by scoring
areas of Fig. 10c according to whether or not they are in
a high density neighborhood. We could do this either

with a density plot or by closing gaps between pixels
when the gap size falls below some threshold. The
noiseless certainty map had the appealing property that
there were no false positives. A closing or density plot
will no longer have that property, but for noisy recon-
structions may give an improved qualitative measure of
the confidence to be placed in the result. Figure 10d
creates such a “confidence” map from the result in (c)
using the closing method. The correlation coefficient
between the ideal result in Fig. 10b and the result with
noise in Fig. 10d is 0.4. Unfortunately, performance
degrades rapidly with increasing noise, so certainty or
confidence maps require more work if they are to be
useful at noise levels much greater than that shown
here.

6.3 Effect of Noise on Blind Tip Estimation

Blind tip estimation, as presented so far, is based
upon the assumption that all image features derive from
the dilation of the specimen surface with a tip. To the
extent that this is true, sharp parts of the image require
a correspondingly sharp tip. It was this observation,
carried to its logical conclusion, that enabled us to esti-
mate the tip shape from the image.

In fact, however, the assumption is only approxi-
mately true. Electronic or vibrational noise often mani-
fests itself as sharp spikes, sharper than the tip which
produced the image. The typical result is that in the
early stages of the iterative process that ultimately de-
terminesPR the conclusion is erroneously reached that
the tip apex contains a feature of height and sharpness
similar to some of these noise spikes. If that were the
extent of the effect it would not particularly pose a
problem. It is not unusual, it is in fact to be expected,
that noisy inputs lead to noisy outputs. However, the
error made in the early stages of the iterative process
propagates to later stages and is magnified. The too-
sharp tip no longer appears consistent withother fea-
tures on the specimen, including some which actually
were produced by dilation with the real tip. The al-
gorithm as presented so far responds to even small
inconsistencies of this sort by narrowing the tip still
further. The overly sharp apex feature in this way prop-
agates away from the apex through subsequent itera-
tions, with the result that the error in the final result can
be substantially larger than the noise level.

This problem is illustrated in Fig. 11a. The thickest
line, labelled “Correct result,” was obtained by blind
reconstruction of a noiseless image simulated by the
dilation of a surface with a tip. The other results were all
obtained after adding noise to the image (3s level
shown). The innermost tip, labelled “T = 0,” is the result
of a blind reconstruction usingitip_estimate ( )
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Fig. 10. Effect of noise on certainty map. (a) An image simulated with a parabolic tip. (b) The certainty map upon reconstruction of
the noiseless image. White areas are those scored as recoverable. (c) The certainty map upon reconstruction of image + noise. (d)
Closing small gaps between pixels in (c) as an aid to visualizing areas with a higher density of points.

with the threshold parameter set equal to 0. It is consid-
erably sharper than the ideal result. It is very close to
I * I , which has been shown to be the largest tip which
produces no distortion of the surface at all [18]. The
repair for this problem which has been implemented in
itip_estimate_point ( ) is to introduce a
threshold parameter. This parameter, in effect, estab-
lishes a level of inconsistency between the image and the
tip estimate which will be tolerated. The threshold is
implemented initip_estimate_point ( ) at lines
182 and 206. These are the lines at which the intersec-
tion between the current tip estimate and the result of the
preceding calculation is formed. Whenthresh = 0
these lines simply replace the value of the current esti-

mate with the new result if the new result is smaller.
Whenthresh Þ 0 there is a bias in favor of retaining
the current estimate. Only if the difference between the
new value and the old one exceeds the threshold is any
change at all made, and then not by the full amount of
the difference. By replacing the old value with the new
one +thresh , we introduce a positive bias intended to
offset the tendency, which we saw in Fig. 9, for noise to
bias the results negatively.

Results for various settings of the threshold parameter
are shown by the remaining curves in Fig. 11a. The
rms difference between these curves and the correct
(noiseless) result are shown in Fig. 11b as a function of
the threshold value. Although this figure is the result for
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a particular choice of image, tip, and noise, its features
are typical. The curve has a minimum, in this case at a
threshold near 3s . The location can be understood in
general terms. The reconstructed tip shape is deter-
mined by some number,n, of image pixels with inde-
pendent noise levels. By inverting the normal probabil-
ity distribution (the same argument we employed to
understand the amount of bias in the erosion of noisy
images near the end of Sec. 6.1), if 100 <n < 105 we
should expect to find some pixels with sampling errors
in the range 2.3s to 4.3s . It is therefore to be expected
that the best choice of threshold also falls in this range,
though it may be higher if other error sources are more
important than noise (see Sec. 6.4).

When the threshold is optimum, the difference be-
tween the result with noise and the noiseless one is
characterized by rms value comparable to the threshold.
That is, this rms difference is also typically in the range
of 2s to 4s . As we saw in Sec. 6.1 this is the same sort
of error one encounters with simple erosion of noisy
objects. Thus, with the use of the threshold parameter,
the effect of noise in blind reconstruction is similar in
magnitude to its effect in tip reconstruction by simple
erosion with a known characterizer.

The deviation of the tip from the ideal result in-
creases to either side of this minimum, to the left be-
cause the result is too sharp and to the right because it
is too blunt. The increase to the left is much more rapid
than that to the right. This also is typical. As the
threshold is increased from 0, the transition from too
sharp to optimum happens relatively suddenly. Contin-
ued increase of the threshold value past its optimum
point then results in a gradual deterioration of the qual-
ity of the result.

6.4 Other Limitations

Electronic and vibrational noise are not the only phe-
nomena which can introduce into an image features that
are not the result of dilation of the specimen with a
single tip geometry. Others include scanner nonlineari-
ties, flexing of the cantilever or tip as a result of friction
or other lateral forces [30], feedback loop overshoot
resulting from scanning too quickly, mid-image tip
changes due to collision with the surface, and, at the
sub-nanometer level, failure of the standard imaging
model due to inhomogeneous sample compressibility or
work function.

These arepossiblesources of trouble. The extent to
which they will be important in practice is still largely
unexplored. With a threshold of 0, any of these phe-
nomena, even at low levels, might be expected to cause
the same sort of instability in the tip reconstruction
algorithm produced by noise. However, if the threshold
is sized comparably, the algorithm will stably produce

a

b

Fig. 11. Effect of noise on blind reconstruction as a function of the
threshold parameter,T. (a) A family of tip shapes constructed from a
simulated noisy image (rms noise =s , 3s level as indicated), com-
pared to the ideal result (thickest line) calculated by blind reconstruc-
tion of the image without noise. (b) The rms deviation of the computed
tip shapes from the ideal result as a function of threshold. Both axes
are expressed in units ofs .
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a result. Of course, the accuracy of that result degrades
with increasing threshold, so the important thing will be
the size of these effects relative to the desired accuracy
of the reconstruction. Should they prove to be a problem,
there are methods, still largely unused, to improve the
performance of the instruments. Scanner nonlinearities
may be overcome through the use of closed-loop opera-
tion around linear position sensors. These methods are
beginning to be used in instruments designed for length
metrology [5, 6,31]. If lateral forces are strong enough
to cause cantilever flexing, there are imaging modes
which minimize friction [32] and even AFM’s which
operate without cantilevers [33]. Feedback loop over-
shoot can be combatted by slowing the scan speed, at
least near steep specimen features. Tip changes can be
detected by doing tip characterization both before and
after imaging important specimens. Efforts are now
underway to verify the operation of blind reconstruction
experimentally.

7. A Practical Guide

This section is intended to be a user’s guide to the
software provided in the appendix. It includes typical
examples of usage, guidelines based upon experience,
and indications of common problems.

7.1 Filtering

Dilation, erosion, and blind reconstruction of tips are
all nonlinear operations. As we noted at the end of
Sec. 6.1 they do not commute with filtering operations.
For example, filtering an image followed by erosion in
general produces a different result than erosion followed
by filtering. Since morphological operations tend to ex-
aggerate certain types of noise, it is advantageous to
first filter the data.

Because images are raster scanned, low frequency
noise manifests itself as long wavelength distortions in
the raster direction but short apparent wavelength in the
orthogonal direction, resulting in the familiar streaki-
ness of many SPM images. This is usually removed in
an image flattening step which includes, at least in part,
a line-wise component. A method for combining an
area-wise surface fit with line-wise flattening in a least
squares approach has recently been proposed [34]. In-
clusion of linewise flattening is particularly important
when performing a blind tip reconstruction, for other-
wise the sharp steps from one line to the next might be
mistaken as indicating similar sharp features on the tip.
For the same reason care must be exercised in perform-
ing the background fits only over those portions of the

image that truly represent background. For example, in
flattening an image of a biomolecule on a flat back-
ground, the molecule should be excluded from the fit.
Otherwise the flattening algorithm may itself introduce
just those sorts of sharp line to line transitions which we
seek to avoid.

After flattening a variety of filtering options are
available. Among the most common are neighborhood
averaging, with or without weighting, and median filter-
ing [35]. Neighborhood averaging smooths edges in an
image, including real ones. For this reason median fil-
ters are often preferred [36] despite the fact that they
require more computation time. Actual sharp features in
the image contain much of the information about the tip
shape which the blind estimation procedure extracts.
Preservation of the real ones is therefore just as impor-
tant here as avoidance of artificial ones was in the last
paragraph. For that reason neighborhood averaging
filters should be avoided.

7.2 Image Simulation and Surface or Tip Recon-
struction Using Dilation and Erosion

7.2.1 Image Simulation Occasions for image
simulation often arise in a straightforward way. For
example, we may have a structural model for a biological
molecule based upon theory or previous experiment. We
have an image believed to be an image of this molecule,
and an estimate of the tip shape when the image was
taken. Is the actual image consistent with the expected
image? To answer this question, one constructs a
computer model of the molecule on a flat substrate (S)
and another model of the tip (T). Invert the tip using
ireflect to obtainP = –T. Then useidilation
with S andP as inputs to obtainI .

7.2.2 Surface or Tip ReconstructionReconstruc-
tion of the surface from a measured image once a tip
estimate is available is similarly straightforward. One
simply uses theierosion ( ) routine with I andP as
inputs. Alternatively, as we have mentioned, if we have
a known reference surface we can useierosion ( )
with I andS to determinePr. Remember that thisPr is
equal toP only for those parts ofP which touched the
characterizer. ElsewherePr is an outer bound. Of course,
errors in characterizing the reference surface propagate
and produce an error in the tip estimate.

One characteristic failure, illustrated in Fig. 12, is
easy to recognize. In Fig. 12a we show a spherical tip
characterizer and its image. In Fig. 12b are four tips
determined by eroding spheres of various radii from the
image in Fig. 12a. TheDr = 0 tip nicely reproduces the
actual tip. If uncertainty in the characterizer radius leads
us to erode too large a sphere (theDr = 25 % and
Dr = 50 % curves) the resulting tip has a characteristic
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is adversely affected by the size of the tip estimate. The
apex coordinates,xc andyc , are nearly always put in
the center of the tip array attip_xsiz /2 and
tip_ysiz /2. It is only rarely justified to populate
tip0 with any height values other than zeros at
the beginning of a calculation. Thetip0 parameter
is primarily useful in allowing a partial result, for
example from itip_estimate0 ( ) or
itip_estimate_point ( ), to be used as a starting
point for subsequent refinement.

The correct threshold parameter is more problemati-
cal. In principle, one ought to be able to measure the
noise level in an image, either by repeatedly imaging the
same area or by recording a “noise” image with the
lateral scan turned off. A threshold of 3 to 5 times the
rms noise, depending upon the size of the image, should
be sufficient. In practice however, other factors like
imaging errors due to scanner nonlinearities, feedback
overshoot, or cantilever bending may be more important
than electrical and mechanical noise. The size of these
effects may be difficult to estimate a priori. However, it
is also observed that the effect of too small an estimate
of threshold is to produce a tip that resemblesI * I , as
in the low threshold curves shown in Fig. 11a. This
result is unphysically sharp, characterized by a disconti-
nuity in the slope at its apex. For many images, the
result transitions sharply to something more reasonable
when the threshold reaches the correct value. This can
be used to select a threshold by trial and error.

Once starting values for the parameters have been
obtained, one could simply insert them into the
itip_estimate ( ) procedure to obtain the result.
However, one can often save on computation time by
usingitip_estimate ( ) only as the finishing step of
a two step process. The two steps are as follows: (1) Call
itip_estimate0(image,...,tip,... ). The
tip array now holds a partial tip estimate based only on
image points pre-selected as most likely to contain
significant tip information. Because of this,tip is now
often close to the final value. (2) Call
itip_estimate (image,...,tip,... ). By
virtue of lines 232 and 235 this routine will be able to
eliminate many steps which would have been required
had tip not been pre-refined by step 1.

There are several different measurement modes in
which we might employ blind reconstruction. These
modes include using the unknown specimen surface as
its own characterizer, using a separate characterizer,
finding the best tip estimate consistent with several im-
ages, and combining blind reconstruction with the ero-
sion method when part of a characterizer is known.
Each of these is now considered in turn.

7.3.1 Using an Unknown Surface as its Own Tip
Characterizer With the previously existing methods

a

b

Fig. 12. Using a spherical tip characterizer. (a) The image (dashed
line) produced when a spherical object is scanned with a tip. (b) Tips,
shown offset for clarity, reconstructed by eroding spheres of various
sizes from the image in (a). The spheres differ from the actual charac-
terizer radius by amounts varying from – 33 % to + 50 %, as indicated.

unphysical discontinuity in its slope at the apex and the
height at the apex differs from zero. Recognizing this
may sometimes give us an indication that something is
wrong. Unfortunately, if we err withr in the other direc-
tion there is no such easy indication. There is nothing
unphysical about theDr = – 33 % result.

7.3 Tip Estimation Using Blind Reconstruction

In this section we first make some general comments
applicable to blind reconstruction, then consider several
modes in which the algorithm may be employed.

The blind tip estimation routines all require the
following inputs: an image and its dimensions, the array
dimensions of the desired result, the coordinates of the
apex within the tip array, a set of starting height values,
and a threshold value. The image and its dimensions are
usually supplied by a measurement. Reasonable choices
for the remaining values must then be supplied.

The array dimensions,tip_xsiz and tip_ysiz ,
of the desired tip estimate must be chosen large enough
to allow description of all parts of the tip that participate
in the imaging. In practice, one can often begin by using
the lateral extent of some of the taller protrusions in the
image as a guide, or by choosing a size calculated based
on the expected tip shape, with some extra added for a
margin of safety, as described in Sec. 5.2. As we
discussed there, the results are not strongly affected if
these are chosen a bit too large. However, execution time
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it was necessary to image a known tip characterizer in
addition to the unknown specimen. Since with blind
reconstruction a known characterizer is not necessary,
the question naturally arises whether we may use the
unknown specimen as its own tip characterizer.

The answer is a qualified yes, as illustrated in Fig. 13.
Here the specimen contains three significant features, a
small radius one on the left, a larger radius one of the
same height (h1) in the middle, and a taller (height =h2)
large radius one on the right. Errors in the reconstructed
tip for a distanceh1 from the apex are comparable to the
small radius feature at the left. As a result, errors in the
reconstruction of that feature are comparable to its
size—its apex gets eroded to a point. This is not a good
approximation. On the other hand, a blunter feature like
the middle one is reproduced with errors small com-
pared to its size. This is a reasonable approximation. The
taller feature at the right falls in between these two
cases. The part of the tip more thanh1 from the apex was
untouched by the sharp specimen feature at the left. The
only information concerning this part of the tip comes
from the tall feature itself, parts of which are therefore
not well approximated.

The conclusion from this illustration is that when a
specimen is used as its own tip characterizer, some parts
of the specimen (those which are sharpest or tallest and
therefore participated in defining the tip shape) are not
well reconstructed, but other parts are. Therefore, this
method can be usefully employedwhen the features of
interest on the specimen are somethingother than the
sharpest or tallest ones contained there.

the last section, the more desirable approach will usu-
ally be to have a separate characterizer. This separate
characterizer should ideally be chosen to have features
sharper and as tall as those of interest on the unknown
specimen. One advantage of blind reconstruction is that
these desirable properties need not be combined in the
same feature [21]. That is, it is not necessary for the
characterizer to contain high aspect ratio features like
tall sharp spikes. For most purposes, tall broad features,
provided their edges are sharp, combined with shorter
narrower objects work just as well. For unknowns with
more than a few tens of nanometers of relief, some
combination of the proposed [37, 38] lithographically
patterned sharp-edged or undercut objects along with
some deliberate surface roughness or deposition of
small particles is likely to be effective.

The process of reconstructing the unknown’s topog-
raphy is illustrated in Fig. 14. Figure 14a shows recon-
struction of the tip shape from the image of a character-
izer which has a tall feature and some significant
surface roughness. The tip is estimated by using the
itip_estimate ( ) routine with the characterizer im-
age as input. The resulting tip is then used to reconstruct
the unknown from its image in Fig. 14b by using the
ierosion ( ) routine with the unknown’s image and
the tip as just estimated. The recommended procedure is

a

Fig. 13. Using a specimen as its own tip characterizer. Parts of the
specimen, like the sharp feature at the left or tall one at the right,
which participate in defining the tip estimate are not well approxi-
mated. Blunter and shorter features like the middle one are.

7.3.2 Using a Separate Tip Character-
izer Usually the unknown specimen is chosen for its
scientific or technological interest. If we use it to esti-
mate the tip with which it is imaged, we are stuck with
its properties, however undesirable they may be for that
purpose. For this reason, though it is sometimes possible
to use a specimen as its own tip characterizer as in

b

Fig. 14. Reconstruction of a specimen surface using blind tip esti-
mation and a separate tip characterizer. (a) The tip is reconstructed
from an image of a characterizer with some features sharper than
those of the unknown. (b) The unknown is reconstructed from its
image.
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to image the characterizer, then the unknown, then the
characterizer again. In this way one can obtain before
and after estimates of the tip to rule out tip changes
during imaging.

Even when using a surface reconstruction technique,
it is important to choose tips sharp enough to touch
features of interest. It is not possible for any technique
to reconstruct what the tip did not touch. Given that the
tip is chosen sharp enough, there are two ways to view
the results of the above exercise. One can adopt a “rough
and ready” philosophy in which one chooses the best tip
characterizer possible, then regards the reconstructed
surface as the best possible estimate of the true surface.
A problem with this approach is the lack of an uncer-
tainty estimate. However, there is a more rigorous
approach. Since the reconstructed tip is, if anything, too
blunt, the reconstructed surface is an inner bound on the
parts of the object touched by the tip [18]. The image is
an outer bound. The part of the unknown accessible to
the tip is therefore bounded above and below by these
two surfaces. Using sharp tips and sharp characterizers
narrows the difference between the bounds.

7.3.3 Finding the Largest Tip Consistent With
Independent Images The blind reconstruction
algorithm determines the largest tip consistent with all
the features within a given image. Sometimes it is useful
to calculate the largest tip consistent withseveral im-
ages. For example, one might have an edge artifact
which is sharp along one direction but translationally
symmetric along the orthogonal one. Such an artifact
provides good tip characterization along only one axis.
However, if several images are acquired with the artifact
in different orientations, one has good information along
several axes. How best to combine all this information?

This is straightforward. One simply uses the output of
the calculation with one image as the starting estimate
for the next one. That is, one calculates
itip_estimate(im1,...,tip,... ), then
passes that value oftip to the routine again in
itip_estimate(im2,...,tip,... ), and so on
through all the available images. Then one cycles
through the images again, starting again with im1 until
there is no further change in the tip estimate. The advan-
tage of this procedure is illustrated in Fig. 15, where we
determine a tip shape from several orientations of an
edge artifact. When using multiple images rather than a
single one, one must be more concerned about whether
the tips which produced the two images were really the
same. Was there tip damage when the tip was retracted
from the first surface or approached the second? Was
the angle of the tip to the surface the same in both
instances? If the tips were not actually the same to
within the threshold parameter, forcing consistency in
this way leads to an incorrect result.

7.3.4 Combining Blind Reconstruction With the
Erosion Method We have discussed two methods for
estimating a tip using the image of a tip characterizer.
The erosion method,Pr = I * S, requires the geometry
of the characterizer to be independently known. Blind
reconstruction [Eq. (14) and Eq. (15)] does not. IfS is
known with low enough uncertainty, then the erosion
method yields the better result. However, accurate
enough knowledge ofS is difficult to obtain in practice,
particularly for characterizers with relief on the scale of
hundreds of nanometers. Such tall characterizers are
necessary for estimating tip shapes for tall specimens
like lithographically patterned semiconductors. At
smaller size scales the task of obtaining a known char-
acterizer, while not demonstrated at present, may be
more amenable to solution. Molecules (e.g., fullerenes)
have consistent shapes determined by bonding interac-
tions. Somewhat larger particles (perhaps colloidal gold
[39]) may exist in a size regime where surface tension
dominates over bulk forces, so they may adopt a spher-
ical shape. These small particles of known shape, how-
ever, only permit characterization of the tip for a
distance from the apex less than the particle height.

We therefore anticipate the possibility of mixed char-
acterizers, in which some parts have known shape and
other parts do not. For instance, one might decorate the
surface of the tall funnel-like structures of Edenfeld et
al. [38] with colloidal gold spheres.

It is useful in this instance to use partially blind
reconstruction, as first briefly described in Ref. [21].
The concept and the procedure are explained with the
aid of Fig. 16. In Fig. 16a we have a characterizer in
which we assume the small spherical particle at the left
is known to have radius,r . We take from the image the
subset which is the image of the sphere, and erode from
it a sphere of this size. This is the known-characterizer,
or erosion, method of tip estimation [Eq. (11)], and it
produces the tip shown as the dashed line in Fig. 16b.
This is an outer bound on the tip shape, and hence a
valid starting point for a blind reconstruction calcula-
tion using the whole image. The result is shown in Fig.
16b as the combined (dash-dot) curve. This is con-
trasted with completely blind reconstruction (thin con-
tinuous line) in which no assumption is made concern-
ing the particle’s size or shape.

In this way we produce a general method for which
information about the characterizer is not required, but
may be used when available. As is evident in Fig. 16,
the erosion method provides good characterization near
the tip apex, but no characterization whatever more than
a known-particle diameter away. The blind reconstruc-
tion result is not as limited in vertical range, but is
everywhere too broad by an amount on the order of the
particle size. The combination provides the best of both
worlds.
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Fig. 15. Tip reconstruction consistent with multiple images. (a) Top view of four possible orientations of an edge artifact. At the middle right
is a view of the pyramidal tip, showing its orientation with respect to the edge artifacts. (b) Tip reconstructed by imaging a single orientation of
the edge. (c) Tip reconstructed using images of the edge in all orientations shown. (d) Comparison of cross sections along thex direction through
the actual tip (thick line), the tip in (c) (thin line), and the tip in (b) (dashed line). A realistic scale in these simulations was determined by choosing
models for tip and edge with end radii (r tip = 30 nm,redge= 5 nm) and included angles (utip = 70.58, uedge= 70.58 asymptotically far from the edge,
less near the edge) consistent with commercial claims for similar objects.

8. Summary

Distortion of image features due to the non-ideal
geometry of tips is an important issue for nanometer-
scale metrology, particularly for specimen features with
aspect ratios comparable to that of the tip such as are
frequently encountered in the study of granular materi-
als, microroughness, lithographically patterned semi-
conductor electronics, and biological materials.

We have discussed how the tip-sample interaction
can be modeled, how and to what extent image distor-
tions may be corrected, and how tip geometries may be
estimated from images of tip characterizers. When the
characterizer geometry is not independently known, the
tip estimation method is called blind reconstruction.
The appendices provide algorithms necessary for image
simulation, surface reconstruction, and tip estimation.
In Secs. 3 through 5 we discussed the basis and some of
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a

b

Fig. 16. Partially blind reconstruction of a tip. (a) A tip characterizer, tip
and calculated image. The tip characterizer is mostly unknown, with the
exception of the small spherical particle at left, which is assumed to be of
known radius. (b) Comparison (expanded view) of various reconstructed
tips with the actual one used in the calculation.

the details of these algorithms. In Sec. 6 we discussed
some of the limitations of the algorithms and introduced
a method to stabilize blind reconstruction in the pres-
ence of noise. Finally, Sec. 7 provided some practical
guidance on the use of the algorithms.

9. Appendix A. General Notes Con-
cerning Algorithms

The appendices comprise an annotated listing of a
morphology library. That is, if the line numbers, com-
ments and section headers are stripped, what remains
should compile on a standard C compiler.Throughout,
comments are in standard typeface, while C code is
boldface.At the time of this writing, the code is avail-
able in machine-readable format for anonymous FTP
from NIST.1 These algorithms are intended to be illus-
trative implementations of the operations discussed in
the main body of the text. Since some of the algorithms
reported here are newly derived, their derivation and
correctness have been the principal concerns of this
study. Efficiency has been a lesser concern, and al-
though some steps to improve execution time are in-
cluded no representation is made here that these rou-
tines are optimum in that respect.

1 FTP to ftp.nist.gov. Use anonymous login. Change directory to
pub/spm_morph. Download files. Note that many Web browsers al-
low anonymous ftp if you supply ftp://ftp.nist.gov as the address.

The routines as presented were all formulated to use
integer arithmetic. There are two reasons for this. First,
commercial instruments read images using analog to
digital converters. The data are therefore typically 12 or
16 bit integers. Second, the certainty map and tip esti-
mation algorithms employ tests of equality which are
relatively simple when integer arithmetic is used, since
there is then no problem with round-off error.

In order to conveniently employ two dimensional
arrays of variable dimension, such as those required to
represent images, surfaces, and tips, we use pointers of
type long ** . Utility routines,allocmatrix ( ) and
freematrix ( ), are provided in Appendix B for
creating and freeing arrays addressed this way.
Appendix B also contains a reflection routine,
ireflect(T,m,n) , which is provided as a utility. It
reflects the array T (sizem 3 n) through the origin.
Since all the morphology and tip estimation routines
provided here require (or produce) reflected versions of
the tip, theireflect ( ) function may be useful either
to place the tip in that form or to convert a result back
to the real-space geometry.

If it is necessary to perform these operations on float-
ing point or double precision arrays, there are two pos-
sibilities. The routines below may be changed to accept
a different data type by changing the appropriate type
declaration statements. The programmer who does this
should be aware that some of the algorithms employ
tests of equality which will need to be modified for
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floating or double precision data types due to the possi-
bility of round-off error. Alternatively the arrays can be
appropriately scaled, converted to integers, the
morphologyoperations performed, converted back to
floating point and rescaled. For example, to compute
C = A % B, one computesC = (aA % aB)/a . The
scale factor,a , is any convenient factor chosen to scale
A and B to a useful range of integer values for the
dilation operation. For example, ifA andB are floating
point arrays taking on values ranging from 0 to 1, one
might choosea = 105, since this should provide ample
resolution while remaining safely within the range of
4 byte long integers.

10. Appendix B. Header Material and
Utility Routines

10.1 Header

Include files

1 [include <stdio.h>
2 [include <memory.h>

Some useful Macros

3 [define MIN(a,b) ((a)<(b)?a:b)
4 [define MAX(a,b) ((a)>(b)?a:b)

Function declarations

5 long **ireflect( );
6 long **idilation( );
7 long **ierosion( );
8 long **icmap( );
9 long **iopen( );
10 long **allocmatrix( );
11 long itip_estimate_iter( );
12 long itip_estimate_point( );
13 void itip_estimate( );
14 void itip_estimate0( );
15 long useit( );
16 void freematrix( );

10.2 Array Allocation and De-allocation

The following routines allow allocation and freeing of matrices

17 long **allocmatrix(ysiz,xsiz)
18 long ysiz,xsiz;

Allocates a long integer matrix of dimension [ysiz][xsiz] using an
array of pointers to rows. ysiz is the number of rows. xsiz is the
number of columns.

19 {
20 long **mptr, points to allocated matrix

i; counter

Allocate pointers to rows

21 mptr = (long **)malloc(ysiz*sizeof(long*));
22 if (mptr == NULL) {
23 printf(“Error: Allocation of mptr failed”);
24 printf(“ in allocmatrix\n”);
25 exit(1);
26 }

Allocate rows

27 for (i=0;i<ysiz;i++) {
28 mptr[i]=(long *)malloc(xsiz*sizeof

(long));
29 if (mptr[i] == NULL) {
30 printf(
31 “Error: Allocation of mptr[%ld]”,i);
32 printf(“ failed in allocmatrix\n”);
33 exit(1);
34 }
35 }

Done. Return result.

36 return mptr;
37 }
38 void freematrix(mptr,ysiz)

Frees memory allocated with allocmatrix

39 long **mptr;
40 long ysiz;
41 {
42 long i;
43 for (i=0;i<ysiz;i++) free(mptr[i]);
44 free(mptr);
45 }

10.3 Reflection

The following routine performs reflection of integer arrays.

46 long **ireflect(surface,surf_xsiz,surf_ysiz)
47 long **surface, surface is a surf_ysiz3 surf_xsiz array

surf_xsiz,surf_ysiz; size of surface
48 {
49 long **result;
50 long i,j; index

Create output array of appropriate size

51 result = allocmatrix(surf_ysiz,surf_xsiz);
52 for (j=0;j<surf_ysiz;j++) { Loop over all points in

output array
53 for (i=0;i<surf_xsiz;i++) {
54 result[j][i] = 2surface[surf_ysiz-1-

j][surf_xsiz-1-i];
55 }
56 }
57 return(result);
58 }
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11. Appendix C. Elementary Morphology
Routines

11.1 Dilation

The following routine performs dilation on integer arrays.

59 long **idilation(surface,surf_xsiz,
surf_ysiz, tip,tip_xsiz,tip_ysiz,xc,yc)

60 long **surface, surface is a surf_ysiz3 surf_xsiz array
surf_xsiz,surf_ysiz, size of surface
**tip, tip is a tip_ysiz3 tip_xsiz array representing
the reflectedtip (i.e., p(x,y) in Eq. (3))
tip_xsiz,tip_ysiz, size of tip
xc,yc; center coordinates of tip

61 {
62 long **result;
63 long i,j,px,py; index
64 long max;
65 long pxmin,pxmax,pymin,pymax; range of indices

into tip
66 long temp;

Create output array of appropriate size.

67 result = allocmatrix(surf_ysiz,surf_xsiz);
68 for (j=0;j<surf_ysiz;j++) { Loop over all points in

output array

Compute allowed range ofpy . This may be different from the full
range of the tip due to edge overlaps.

69 pymin = MAX(j-surf_ysiz+1,-yc);
70 pymax = MIN(tip_ysiz-yc-1,j);
71 for (i=0;i<surf_xsiz;i++) {

Compute allowed range ofpx . This may be different from the full
range of the tip due to edge overlaps.

72 pxmin = MAX(i-surf_xsiz+1,-xc);
73 pxmax = MIN(tip_xsiz-xc-1,i);
74 max = surface[j-pymin][i-pxmin]

+ tip[pymin+yc] [pxmin+xc];
75 for (px=pxmin;px<=pxmax;px++) { Loop

over points in tip
76 for (py=pymin;py<=pymax;py++) {

The next line calculates the term in square brackets in Eq. (4). For
comparison purposes, note thati, j, px , andpy here play the roles
of x, y, u, and v respectively. Thexc , yc offsets allow the point
(px,py )=(0,0) to reference the tip “center” (usually the apex) placed
somewhere in the interior of the tip array.

77 temp = surface[j-py][i-px] +
tip[py+yc][px+xc];

78 max = MAX(temp,max);
79 }
80 }
81 result[j][i] = max;
82 }
83 }
84 return(result);
85 }

11.2 Erosion

The following routine performs erosion on integer arrays.

86 long **ierosion(image,im_xsiz,im_ysiz,tip,
tip_xsiz,tip_ysiz,xc,yc)

87 long **image, image is an im_ysiz3 im_xsiz array
im_xsiz,im_ysiz, size of image
**tip, tip is a tip_ysiz3 tip_xsiz array representing
the reflectedtip (i.e., p(x,y) in Eq. (3))
tip_xsiz,tip_ysiz, size of tip
xc,yc; center coordinates of tip

88 {
89 long **result;
90 long i,j,px,py; index
91 long min;
92 long pxmin,pxmax,pymin,pymax; range of indices into

tip
93 long temp;

Create output array of appropriate size

94 result = allocmatrix(im_ysiz,im_xsiz);
95 for (j=0;j<im_ysiz;j++) { Loop over all points in

output array

Compute allowed range ofpy . This may be different from the full
range of the tip due to edge overlaps.

96 pymin = MAX(-j,-yc);
97 pymax = MIN(tip_ysiz-yc,im_ysiz-j)-1;
98 for (i=0;i<im_xsiz;i++) {

Compute allowed range ofpx . This may be different from the full
range of the tip due to edge overlaps.

99 pxmin = MAX(-xc,-i);
100 pxmax = MIN(tip_xsiz-xc,im_xsiz-i)-1;
101 min = image[j+pymin][i+pxmin]-

tip[pymin+yc][pxmin+xc];
102 for (px=pxmin;px<=pxmax;px++) { Loop over

points in tip
103 for (py=pymin;py<=pymax;py++) {

The next line calculates the term in square brackets in Eq. (12). For
comparison purposes, note thati , j , px , andpy here play the roles
of x, y, u, and v respectively. Thexc , yc offsets allow the point
(px,py ) = (0,0) to reference the tip “center” (usually the apex)
placed somewhere in the interior of the tip array.

104 temp = image[j+py][i+px] 2
tip[py+yc][px+xc];

105 min = MIN(temp,min);
106 }
107 }
108 result[j][i] = min;
109 }
110 }
111 return(result);
112 }

11.3 Opening

The opening ofA by B is denotedA 8 B and defined asA 8 B =
(A * B)% B . This routine is used by the tip estimation routines to
save time, since points whereI 8 P = I do not produce tip refinement
and need not be considered.

113 long **iopen(image,im_xsiz,im_ysiz,
tip,tip_xsiz,tip_ysiz)
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114 long **image, image is an im_xsiz3 im_ysiz array
im_xsiz,im_ysiz, size of image
**tip, tip is a tip_ysiz3 tip_xsiz array
tip_xsiz,tip_ysiz; size of tip

115 {
116 long **result,**eros;
117 eros = ierosion(image,im_xsiz,im_ysiz,

tip,tip_xsiz,tip_ysiz,tip_xsiz/2,
tip_ysiz/2);

118 result = idilation(eros,im_xsiz,im_ysiz,
tip,tip_xsiz,tip_ysiz,tip_xsiz/2,
tip_ysiz/2);

119 freematrix(eros,im_ysiz); free intermediate result
120 return(result);
121 }

12. Appendix D. Certainty Map

122 long **icmap(image,im_xsiz,im_ysiz,tip,
tip_xsiz,tip_ysiz,rsurf,xc,yc)

123 long **image, image is an im_ysiz3 im_xsiz array
im_xsiz,im_ysiz, size of image
**tip, tip is a tip_ysiz3 tip_xsiz array
tip_xsiz,tip_ysiz, size of tip
**rsurf, rsurf is an im_ysiz im_xsiz array
xc,yc; center coordinates of tip

124 {
125 long **cmap;
126 long imx,imy,tpx,tpy; index
127 long tpxmin,tpxmax,tpymin,tpymax;
128 long count;
129 long rxc,ryc; center coordinates of reflected tip
130 long x,y;
131 rxc = tip_xsiz-1-xc; compute center of unreflected tip
132 ryc = tip_ysiz-1-yc;

Create output array of appropriate size. Initialize all entries to 0.

133 cmap = allocmatrix(im_ysiz,im_xsiz);
134 for (imy=0;imy<im_ysiz;imy++)
135 for (imx=0;imx<im_xsiz;imx++)

cmap[imy][imx]=0;

Loop over all pixels in the interior of the image. We skip pixels
near the edge. Since it is possible there are unseen touches over the
edge, we must conservatively leave these cmap entries at 0.

136 for (imy=ryc;imy<=im_ysiz+ryc-
tip_ysiz;imy++) {

137 for (imx=rxc;imx<=im_xsiz+rxc-
tip_xsiz;imx++) {

138 tpxmin = MAX(0,rxc-imx);
139 tpxmax = MIN(tip_xsiz-1,im_xsiz-1

+rxc-imx);
140 tpymin = MAX(0,ryc-imy);
141 tpymax = MIN(tip_ysiz-1,im_ysiz-1

+ryc-imy);
142 count = 0;
143 for (tpy=tpymin;tpy<=tpymax&&count<2;

tpy++) {
144 for (tpx=tpxmin;

tpx<=tpxmax&&count<2;tpx++) {
145 if (image[imy][imx]-tip[tip_ysiz-1-

tpy][tip_xsiz-1-tpx] ==

rsurf[tpy+imy-ryc][tpx+imx-rxc]) {
146 count++; increment count
147 x = tpx+imx-rxc; remember coordinates
148 y = tpy+imy-ryc;
149 }
150 }
151 }
152 if (count==1) cmap[y][x] = 1; single contact =

good reconstruction
153 }
154 }
155 return(cmap);
156 }

13. Appendix E. Blind Tip Estimation
Routines

13.1 Tip Estimate From a Single Image Point

The following routine is a basic building block from which the
more complete tip estimation routines to follow are constructed. It
computes the tip shape as deduced from a singlei, j image coordi-
nate.

The threshold parameter is used as follows: A new estimate of the
tip height at a given pixel is computed according to the formula given
by Eq. (14). This value is then augmented by thresh. If the old
estimate is less than the augmented new estimate, no action is taken.
Otherwise, the value is changed to agree with the augmented new
estimate. Thus, ifthresh = 0, this routine implements Eq. (14)
directly. Larger values of threshold give greater noise immunity at the
cost of degrading the estimate.

The interior of the image is easier (and safer) to use in calculating
the tip estimate. At the edges part of the tip extends beyond the edge
where the image values are unknown. It is possible to handle this case
by making worst case assumptions and thereby extract some informa-
tion even from the data near the edge. Below, I separate the code into
two parts, one which handles the interior and one which handles the
edges. This serves two functions. First, because the edges can be
tricky to handle properly, I had more than the usual share of errors in
this part of the code during development. It was useful to be able to
turn this part of the code on or off at will. Second: The execution of
the routine is slightly faster with the code divided since it is not then
necessary to do checking for special cases in the part of the code that
handles the interior.

To compile code which skips the edges, set USE_EDGES to 0 on
the next line.

157 [define USE_EDGES 1 set to 1 to include edges, 0 to
exclude

158 [define MINUS_INF 22147483648L smallest 4 byte
integer

159 [define INFINITY 2147483647L largest 4 byte integer
160 long itip_estimate_point(ixp,jxp,image,

im_xsiz,im_ysiz,tip_xsiz,tip_ysiz,xc,yc,
tip0,thresh)

161 long ixp,jxp, image coordinate, x'= (ixp,jxp) , for
which the calculation is performed
**image, image array
im_xsiz,im_ysiz, x,y size of image array
tip_xsiz,tip_ysiz, x,y size of tip to be determined
xc,yc, center coordinates of tip
**tip0, starting est. Size must be tip_xsiz by tip_ysiz
thresh; threshold value to use
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162 {
163 long ix,jx, index into the output tip array (x)

id,jd; index into p' (d)
164 long temp,imagep,dil; various intermediate results
165 long count=0; counts places where tip estimate

is improved
166 long interior;
167 int apexstate, States and their possible values

xstate,
inside = 1, Point is inside image
outside = 0; Point is outside image

168 interior = jxp>=tip_ysiz-1 && jxp<=im_ysiz-
tip_ysiz && ixp>=tip_xsiz-1 &&
ixp<=im_xsiz-tip_xsiz;

First handle the large middle area where we don’t have to be con-
cerned with edge problems. Because edges are far away, we can leave
out the overhead of checking for them in this section.

169 if (interior) {
170 for (jx=0;jx<tip_ysiz;jx++) {
171 for (ix=0;ix<tip_xsiz;ix++) {
172 imagep = image[jxp][ixp];
173 dil = MINUS_INF; initialize maximum to2 `

174 for (jd=0;jd<tip_ysiz;jd++) {
175 for (id=0;id<tip_xsiz;id++) {

The next line implements the condition contained in Eq. (19). Here
ixp, jxp, id, jd, xc, andyc take the place ofx', y', dx , dy , xc

andyc. The following one evaluates the term in square brackets in Eq.
(17).

176 if (imagep-image[jxp+yc-jd] [ixp
+xc-id] > tip0[jd][id]) continue;

177 temp = image[jx+jxp-jd][ix+ixp-id]+
tip0[jd][id]-imagep;

178 dil = MAX(dil,temp);
179 } end for id
180 } end for jd
181 if (dil == MINUS_INF) continue;
182 tip0[jx][ix] = dil<tip0[jx][ix]-

thresh?(count++,dil+thresh):
tip0[jx][ix];

183 } end for ix
184 } end for jx
185 return(count);
186 } endif
187 [if USE_EDGES

Now handle the edges

188 for (jx=0;jx<tip_ysiz;jx++) {
189 for (ix=0;ix<tip_xsiz;ix++) {
190 imagep = image[jxp][ixp];
191 dil = MINUS_INF; initialize maximum to–`

192 for (jd=0;jd<=tip_ysiz-1 &&
dil<INFINITY;jd++) {

193 for (id=0;id<=tip_xsiz-1;id++) {

Determine whether the tip apex at (xc,yc) lies within the domain of
the translated image, and if so, if it is inside (i.e., below or on the
surface of) the image.

194 apexstate = outside; initialize

195 if (jxp+yc-jd<0 || jxp+yc-jd>= im_ysiz
|| ixp+xc-id<0 || ixp+xc-id>=
im_xsiz) apexstate = inside;

196 else if (imagep-image[jxp+yc-
jd][ixp+xc-id] <=tip0[jd][id])
apexstate = inside;

Determine whether the point (ix, jx) under consideration lies within
the domain of the translated image.

197 if (jxp+jx-jd<0 || jxp+jx-jd>=im_ysiz
|| ixp+ix-id<0 || ixp+ix-id>=
im_xsiz) xstate = outside;

198 else xstate = inside;

There are 3 actions we might take, depending upon which of 4 states
(2 apexstate possibilities3 2 xstate ones) we are in.

If apexstate == outside , the condition in Eq. (19) is not
satisfied. Regardless ofxstate , no change is made for this (id,jd ).

199 if (apexstate==outside) continue;

If apex is inside and x is outside worst case isimage[jx+jxp-
jd] [ix+ixp-id] →` . This would result in no change forany
(id,jd ). We therefore abort the loop and go to next (ix,jx ) value.

200 if (xstate==outside) goto nextx;

The only remaining possibility is x and apex both inside. This is the
same case we treated in the interior.

201 temp = image[jx+jxp-jd][ix+ixp-
id]+tip0[jd][id]-imagep;

202 dil = MAX(dil,temp);
203 } end for id
204 } end for jd
205 if (dil == MINUS_INF) continue ;
206 tip0[jx][ix] = dil<tip0[jx][ix]-

thresh?(count++,dil+thresh):
tip0[jx][ix];

207 nextx:;
208 } end for ix
209 } end for jx
210 return(count);
211 [endif
212 }

13.2 Full Tip Estimation Algorithm

The following routine estimates tip size by calling tip_estimate_iter
until it converges.

213 void itip_estimate (image,im_xsiz,im_ysiz,
tip_xsiz,tip_ysiz,xc,yc,tip0,thresh)

214 long **image, image array
im_xsiz,im_ysiz, x,y size of image array
tip_xsiz,tip_ysiz, x,y, size of tip to be determined
xc,yc, center coordinates of the tip
**tip0, starting estimate. Must be tip_xsiz by tip_ysiz

in size
thresh; threshold value to use
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215 {
216 long iter=0;
217 long count=1;
218 while (count) {
219 iter++;
220 count = itip_estimate_iter(image,im_xsiz,

im_ysiz,tip_xsiz,tip_ysiz,xc,yc,tip0,
thresh);

221 printf (“Finished iteration [%ld. “,iter);
222 printf (“%ld image locations “,count);
223 printf (“produced refinement.\n”);
224 }
225 }

The following routine performs one iteration of the tip estimation
recursion algorithm through all image pixels. The values of the revised
estimate replace those in tip0, and the number of pixels where the
value was changed is returned.

226 long itip_estimate_iter(image,im_xsiz,
im_ysiz,tip_xsiz,tip_ysiz,xc,yc,tip0,
thresh)

227 long **image, image array
im_xsiz,im_ysiz, x,y size of image array
tip_xsiz, tip_ysiz, x,y, size of tip to be determined
xc,yc, center coordinates of tip
**tip0, starting est. Size must be tip_xsiz by tip_ysiz
thresh; threshold value to use

228 {
229 long ixp,jxp; index into the image (x')
230 long **open;
231 long count=0; counts places where tip estimate

is improved
232 open = iopen(image,im_xsiz,im_ysiz,tip0,

tip_xsiz,tip_ysiz);
233 for (jxp=tip_ysiz-1-yc;jxp<=im_ysiz-1-yc;

jxp++) {
234 for (ixp=tip_xsiz-1-xc;ixp<=im_xsiz-1-

xc;ixp++) {
235 if (image[jxp] [ixp] -open[jxp] [ixp] >

thresh) if (itip_estimate_point (ixp,
jxp, image,im_xsiz,im_ysiz,tip_xsiz,
tip_ysiz,xc, yc,tip0,thresh)) count++;

236 }
237 }
238 freematrix(open,im_ysiz);
239 return(count);
240 }

13.3 Partial Tip Estimation Algorithm

The tip estimation routine in Sec. 13.2 is complete but may be
expensive in compute time. The routine below is a faster partial
calculation which iterates itip_estimate_point( ) through a relatively
small number of image points chosen because they are among those
that generate the most refinement of the tip shape. The result may be
useful in either of two ways. It may be used as the tip estimate by itself
when a cruder estimate is sufficient.

Alternatively, it may be used as a starting estimate for the full
algorithm in Sec. 13.2. Using itip_estimate0( ) prior to calling
itip_estimate( ) can save execution time compared to calling
itip_estimate( ) directly. This is because the order of evaluation of the
points can affect the execution speed. The image at some locations
(e.g., isolated local maxima) puts great constraints on the
tip shape. If the tip shape is refined by considering these points first,

time is saved later. The itip_estimate_point( ) routine in Sec. 13.1,
since it performs the calculation at a single point, allows the user to
select the order in which image coordinates are considered. In using
the routine in this mode, the fact that the refined tip replaces tip0
means results of one step automatically become the starting point for
the next step. The routine returns a long integer which is the number
of pixels within the starting tip estimate which were updated.

241 void itip_estimate0(image,im_xsiz,im_ysiz,
tip_xsiz,tip_ysiz,xc,yc,tip0,thresh)

242 long **image, image array
im_xsiz,im_ysiz, x,y size of image array
tip_xsiz,tip_ysiz, x,y, size of tip to be determined
xc,yc, center coordinates of the tip
**tip0, starting estimate. Must be tip_xsiz by tip_ysiz

in size
thresh; threshold value to use

243 {
244 long i,j,n;
245 long arraysize; size of array allocated to store list of

image maxima
246 long *x,*y; point to coordinates of image maxima
247 long iter=0;
248 long count;
249 long delta; defines what is meant by near neighborhood

for purposes of point selection.

We need to create temporary arrays to hold a list of selected image
coordinates. The space needed depends upon the image. This creates
a memory management issue. We address it by allowing for 300
maxima—a good number (corresponding perhaps to a grainy surface)
which should be big enough for most images. Then we monitor
memory usage and reallocate a larger array if necessary.

Coordinates to be used are determined by the routineuseit ,
below, which returns either 1 (if the given coordinate is to be used)
or 0 (if not). The user can substitute his own version of this routine
if he believes he has a more economical algorithm for choosing
points.

250 arraysize = 300;
251 x = (long *)malloc(arraysize*sizeof(long));
252 if (x == NULL) {
253 printf(“Unable to allocate x array in”);
254 printf(“ itip_estimate0 routine.\n”);
255 return;
256 }
257 y = (long *)malloc(arraysize*sizeof(long) ) ;
258 if (y == NULL) {
259 printf(“Unable to allocate y array in”);
260 printf(“ itip_estimate0 routine.\n”);
261 free(x);
262 return;
263 }

Now choose a nearest neighborhood size to send theuseit rou-
tine. The neighborhood should be at least equal to 1 (i.e., consider all
points with x,y within61 of the one under consideration). Otherwise
ALL points are used, equivalent to the full itip_estimate routine, and
no speed advantage is derived, which loses the whole point of having
a tip_estimate0. However, the size of the neighborhood should in
principle scale with the size of the tip. I use a small fraction of tip size
(1/10) because in practice the routine seems to run acceptably quickly
even at this setting—there’s no point in sacrificing performance for
speed if the present speed is acceptable.
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264 delta = MAX(MAX(tip_xsiz,tip_ysiz)/10,1);

Create a list of coordinates to use.

265 n=0; Number of image maxima found so far
266 for (j=tip_ysiz-1-yc;j<=im_ysiz-1-yc;

j++) {
267 for (i=tip_xsiz-1-xc;i<=im_xsiz-1-xc;

i++){
268 if (useit(i,j,image,im_xsiz,im_ysiz,

delta)) {
269 if (n == arraysize) { need more room in

temporary arrays
270 arraysize *= 2; increase array size by factor

of 2
271 x = (long *)realloc(x,

arraysize*sizeof(long) );
272 if (x == NULL) {
273 printf(“Unable to realloc x”);
274 printf(“array in itip_”);
275 printf(“estimate0.\n”);
276 free(y);
277 return;
278 }
279 y = (long *)realloc(y,

arraysize*sizeof(long) );
280 if (y == NULL) {
281 printf(“Unable to realloc y”);
282 printf(“array in itip_”);
283 printf(“estimate0.\n”);
284 free(x);
285 return;
286 }
287 }
288 x[n] = i; We found another one
289 y[n] = j;
290 n++;
291 }
292 }
293 }
294 printf(“Found %ld internal local

maxima\n”,n);

Now refine tip at these coordinates recursively until no more change

295 do {
296 count = 0;
297 iter++;
298 for (i=0;i<n;i++)
299 if (itip_estimate_point(x[i],y[i],

image,im_xsiz,im_ysiz,tip_xsiz,
tip_ysiz,xc,yc,tip0,thresh)) count++;

300 printf(“Finished iteration [%ld.”,iter);
301 printf(“ %ld image locations “,count);
302 printf(“produced refinement.\n”);
303 }while (count);

Free temporary space

304 free(x); free(y);
305 }

The following is a routine that determines whether a selected point
at coordinates x, y within an image is deemed to be suitable for image

refinement. In this implementation, the algorithm simply decides to
use the point if it is a local maximum of the image. It defines a local
maximum as a point with height greater than any of its near neighbors.

306 long useit(x,y,image,sx,sy,delta)
307 long x,y; Coordinates of selected point within image
308 long **image; pointer to image
309 long sx,sy; x and y size of image
310 long delta; size of neighborhood to search for maximum.

Searches interval ([x-delta,x+delta],[y-delta,y+delta]).
311 {
312 long xmin,xmax,ymin,ymax; actual interval to search
313 long i,j;
314 long max=image[y][x]; value of maximum height in the

neighborhood
315 xmin = MAX(x-delta,0);
316 xmax = MIN(x+delta,sx-1);
317 ymin = MAX(y-delta,0);
318 ymax = MIN(y+delta,sy-1);
319 for (j=ymin;j<=ymax;j++) {
320 for (i=xmin;i<=xmax;i++) {
321 max = image[j][i]>max?image[j][i]:max;
322 }
323 }
324 if (max == image[y][x]) return(1);
325 return(0);
326 }
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