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Abstract

Many physical measurements y(¢;) can be modelled by
a system of linear, first kind integral equations
Eup

K(t;,)x(§)dé +¢€;, i=1,2,....,m, (1)
lo
where 2(§) is the function being measured, the K (¢;,¢)
are known instrument response functions, and the ¢;
are random measuring errors. Discretizing the integrals
produces an ill-conditioned linear regression model, and
minimizing the sum of squared residuals forces variance
that should properly be relegated to the residuals into
the least squares estimate which becomes a wildly os-
cillating, spurious approximation to z(£). Adopting the
principle that acceptable residuals should resemble the
€; leads to three statistical tests for the suitability of an
estimate. Stabilized estimates can be obtained either
by appending a set of regularization constraints to the
model or by truncating the singular value decomposition
of the matrix. Using a test problem with known solution,
it is shown that conventional methods for choosing the
regularization parameter yield unacceptable estimates,
but that the three statistical tests can be used to choose
an optimal value. It is also shown that truncating the
distribution of singular values does not work as well as
discarding the components of the rotated data vector
that are overwhelmed by measurement errors, and that
the three statistical tests can be used to optimize the
choice of the truncation threshold.

y(ti) =

1 Introduction

When a measuring instrument is used to observe a func-
tion z(€) on some interval &, < £ < &y, the resulting
measurements can often be modelled by a system of lin-
ear, first kind integral equations (1) where the y; = y(¢;)
are the measured values, the K;(§) = K (¢;,&) are known
instrument response functions, and the ¢; are random
measuring errors. The exactly known ¢; are discrete val-
ues of a physical variable ¢ which is an alias for £, so the
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y; comprise a discrete approximation to a function y(t)
which is a smoothed (and possibly distorted) approxi-
mation to z(§).

Discretizing the integrals in (1) leads to a usually
poorly conditioned linear regression model

(2)

where x* is a discrete n-vector approximation to the
function z(€), with n < m, and S? is a positive definite
variance matrix for the measurement errors. It will be
assumed here that the errors are independently normally
distributed with known variances, i.e., that

vy=Kx"+e, £(e)=0, 5(6€T)=SQ,

2

7Sm

e~N(0,8%) . S?=diag(s},s3,---,s%) , (3)

where good estimates are available for the s;. This allows

the problem to be scaled by the tranformations
b=S"'ly, A=S'K, n=Sle

(4)
to give

b=Ax"+n, n~N(0,I,), (5)
where I,,, is m-order identity matrix. Note that in cases
where the measurement errors are correlated, i.e., when
S? is not a diagonal matrix, the same scaling can be ob-
tained by substituting for the matrix S in (4) the lower
triangular matrix L obtained from the Cholesky factor-

ization S2 = LLT.

2 Estimates
Let x be any estimate of the solution vector x* and

r=b-Ax (6)
be the corresponding residual vector. It is instructive to
rewrite the scaled model (5) in the form

n =Db—-Ax",

n~N(O, Ly ). (7)



Comparing the expressions for ¥ and 1 led Rust [11]
to suggest the following principle which will guide the
selection of estimates for the solution: An estimate X
is acceptable only if T is a plausible sample from the n-
distribution. It follows then that:

1. The elements of r should be distributed like n(0, 1),

2. The elements of r should comprise a white noise
time-series,

3. The sum of squared residuals #7 # should lie in some
interval [ m — kv2m, m + kv2m |, with | k |< 2.

The last of these conditions follows from the fact that

Y oni=n"n~x*(m), (8)
=1
whence
E{n"n}=m, o*{n"n}=2m. 9

In general x should be chosen as small as possible with-
out constraining the estimate to violate either of the first
two conditions.

The traditional least squares estimate

%= (ATA) T ATb , with i~ *(m—n) , (10)

will almost never satisfy the above three conditions be-
cause it is almost always the case that m —n < m. The
size of m is limited by the number of measurements that
can be made during the course of an experiment and the
size of n is chosen as large as possible in order to make
the discretized model (2) a good approximation to the
original system of integral equations (1).

3 A Test Problem

A test problem capturing many salient features of real
instrument correction problems is obtained by discretiz-
ing a variant of the well known [10] Phillips equation

3
y(t) = / K(9e(9ds, 0<t<6. (1)
where

b (14cos |TEB]) L Je—ti<3 12
0, otherwise,

K(t7§) :{

and

y(t) =

| =

{(6—|t|) [1+%cos<%t>] —i—%sin(ﬁgﬂ)}.
(

This problem differs from the original Phillips equation
only in the inclusion of the normalizing factor % which
is needed to assure that the corresponding measuring
instrument would not violate physical conservation laws.
The solution is

:v(f)zl—kcos(%g) , 1E1<3. (14)

The functions y(t) and z(£) are plotted on the right
in Figure 1, and on the left are plotted the functions
K(t,&;) for £, = —3.0, —1.5, 0.0, 1.5, 3.0.

x(¢) and y(1)

0.35 2.0
/ ~ 1.8
0.30 / +
! ~— 1.6
>
__0.25 ! 1.4
2 |
4 0.20 o - -2
5 / 5 -
NUICIALE] S| 0.8
X [l
o.10f ~—~ 0.6
] wn
B . 0.4
0.05r | *
oy / 0.2
/ \
0.00 . 0.0
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4
t & and t

Figure 1: The Phillips Problem

The problem was discretized by choosing m = 150
equally spaced t; on the interval —5.925 < ¢t < 5.925 and
using an n = 121 point trapezoidal rule on —3.0 < ¢ <
3.0 to give

y'=Kx*, (15)

where x* is a 121-vector of z(¢;) computed by (14), and
y* was computed by (15) rather than (13) in order to
assure that the €; were the only errors in the model. The
€; were gotten by random sampling from N(0,S?) with

S = diag(s1, 52, ..., sm), si=(10"Yyr,  (16)
so the errors in the y; are in the 4th digit — too small
to be discernible in Figure 1. The problem was scaled
by the transformations in Eqs. (4) to give a matrix with
condition number cond(A) = 2.924 x 10°.

The least squares estimate is shown in Figure 2, where
the flattened, dashed curve is () and the jagged curve
is the estimate X. The wild oscillations in the latter are
commonly attributed to the ill conditioning of the matrix
which greatly magnifies the relatively small errors in the
b vector when the estimate is calculated by (10). But the
diagnostics plots given in Figure 3 also demonstrate that
the estimate captured variance that properly belongs in
the residuals.
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Figure 2: The Linear Least Squares Estimate

4 Estimate Diagnostics

When the true solution is not known, the residual vector
provides the only objective guide for assessing the quality
of an estimate. The three criteria for acceptable resid-
uals which were given in Section 2 provide quantitative
statistical tests for acceptability which are illustrated for
the least squares estimate in Figure 3. In the upper left
graph, the residuals are plotted as a time-series, i.e., r; is
plotted as a function of the element number ¢, with sam-
ple spacing At = Ai = 1. The sum of squared residuals
25.43 is far outside the 2-¢ interval

[m —2V2m, m+2V2m | = [1154, 1846] . (17)

Inspecting the plot suggests that there are too many
small values to have been obtained from a n(0,1) distri-
bution, an impression that is verified by the histogram
plot in the upper right graph. The smooth curve in the
plot was obtained by renormalizing the n(0,1) distri-
bution with the factor m = 150 to make it consistent
with the histogram. A formal goodness of fit test gave
X2 = 479.0782 which is so extremely large that the prob-
ablility of a larger value is negligible.

The graph at the lower left of the Figure is a plot of
the periodogram of the residual time-series, i.e., a plot
of variance versus frequency on the interval [0, 1/2A¢].
An excellent reference on how to estimate and interpret
a periodogram is Chapter 7 of Fuller’s book on time-
series [1]. For the estimate given here the residual time
series was zero padded to have 8192 terms and the dis-
crete Fourier transform was calculated at 4096 frequen-
cies fr = k/8192. The periodogram P(fy) was com-
puted from the squared modulus of the transform. For
a white noise time-series, the variance should be dis-
tributed evenly over the whole frequency interval. Since

the variance is almost completely confined to the first
half of the interval, it is clear, even without a formal
test, that the least squares residuals do not comprise a
white noise series. A formal test confirming this fact is
given by the cumulative periodogram which is plotted as
a solid curve at the lower right of the Figure.

The cumulative periodogram was computed by

S P(f5)
S P(f)

The theoretical distribution for white noise would be a
line, C(f) = 2f. The dashed lines are defined by

C(f) = , k=1,2,...,4096.  (18)

Cio(f) =—6+2f, C*(f)=6d+2f, (19)

where ¢ is the 5% point for the Kolmogorov-Smirnov
statistic for a sample of size m /2 = 75. The area between
them is a 95% confidence band for white noise. Since the
estimate lies outside this band for 64% of the frequencies,
the white noise hypothesis is rejected.

5 Regularization

The most widely used method for stabilizing the wildly
oscillating least squares estimate of x is to introduce an
a priori side constraint of the form

I Q(x = x0) [I3 = (x = x0)"Q"Q(x — x0) < 5, (20)

where xq is an optional initial estimate of x*, Q is a
matrix representation of the linear operator for the con-
straint, and 82 is a constant determining the strength
of the constraint. The estimate for x* is obtained by
solving

I (b—Ax) |3 + X || Q(x—xo) |3 = min, (21)

where the parameter \? is a Lagrange multiplier whose
value depends on the value of 32. The solution is

%(\) = (ATA +2°Q7Q) " (ATb + A\*Q7Qxy) .
(22)
The most frequently used choice for Q is just the n-th
order identity matrix. For this choice, the problem can
be stated as an augmented linear reqression model

<A20>:(§n>x*+(;zy>= (23)

with
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Figure 3: Diagnostics for the Linear Least Squares Estimate

and the parameter A becomes a weighting constant which
must be chosen large enough to damp out wild oscilla-
tions in the estimate by keeping it close to xo, but at the
same time small enough to prevent too much growth in
the || [b — Ax()\)] ||3 term. The least squares estimate
becomes

%(\) = (ATA+21,) " (ATb+Axo) . (25)

In the special case when xg = 0 the above procedure is
known to numerical analysts as Tikhonov regularization
and to statisticians as ridge regression. This method has
been used effectively for almost forty years, but it seems
logical that the results would be improved by using an
initial estimate better than xo = 0. For the test problem
given in Section 3, a better initial estimate was gotten
by fitting an interpolating spline to the y(t;) values in
the interval —3 < t; < 3 and discretizing that spline on
-3 < & < 3 to get the required 121 elements of xq.
This is the problem that will be discussed in the next 3
sections.
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6 The L-Curve Estimate

The success of any regularization calculation depends
crucially on the choice of the value for A. Originally, this
was a subjective procedure guided by a priori knowledge
about the solution, a method still widely used. But de-
termined efforts to automate this choice have been made
in both the numerical analysis and the statistics com-
munities. In the former, the currently most widely used
method is based on the L-curve first introduced by Law-
son and Hanson [9, Chapt. 26] and further developed
by Hansen and O’Leary [5, 7]. The L-curve is a plot of
logg || X(A) ||2 versus log;, || b — AX(A) ||2 for a range
of candidate values for A\. The graph in Figure 4 is an
L-curve plot for the test problem. The basic idea of the
L-curve method is to choose the A which constrains the
length of the estimate vector X(A) as much as possible
while at the same time increasing the sum of squared
residuals as little as possible. Therefore A is chosen to
be the value corresponding to the point in the corner



L—curve ( 1.00E-01 < A < 1.00E+402 )

FIxI] )

logiol

0.92 0.96

logip(

1.00 1.04 1

[lo = Axl] )

.08 1.

Figure 4: The L-curve for Spline-y Regularization

where the curvature is maximized (the point indicated
by the small circle in the plot). For the test problem,
this “optimal” value is A = 0.748. The corresponding
solution is plotted as the solid curve at the upper left
of Figure 5 where the true solution is also plotted as a
dashed curve. Even if the true solution were not known,
it would be clear that a larger value of A is required to
completely suppress the spurious oscillations in the esti-
mate.

The residuals are plotted as a time series at the up-
per right of the Figure. The sum of squared residu-
als 73.90 is far below the 2-o interval (17). The ex-
pected value for this quantity, i.e., m 150, gives
logyg || b — AX()A) ||2= 1.0880 which corresponds to a
point far out on the right of the horizontal segment of the
L-curve. A histogram plot of the residuals (not shown in
the Figure) was similar to the one at the upper right of
Figure 3, with far too many values clustered in the cen-
tral boxes and not enough in the wings. The x? value for
testing its goodness of fit to a normal distribution was
147.35 which, with 11 degrees of freedom, would have
a negligible probability of occurrence. The periodogram
and cumulative periodogram given in the bottom two
plots of the Figure indicate consistency with the white
noise hypothesis, so the L-curve estimate meets only one
of the three criteria given in Section 2 for an acceptable
estimate.

7 The Minimum GCV Estimate

The method favored in the statistics community for pick-
ing A is to choose it to minimize the generalized cross-
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validation (GCV) function

b — Ax 2
_ _lb-Az P 26)
trace (I, — AAT)
where )
AT = (ATA+X1,) AT, (27)

The basic idea, first introduced by Wahba [12], is to
choose A to make x(\) a good predictor for missing data
values b;. More precisely, if x(*)()) is the Tikhonov es-
timate when the kth data point by is omitted, then the
best value of A is thought to be the one which minimizes

PO\ = zm: [bk - (A5<<k> (/\))IJ2 .

k=1

(28)

It can be shown that the minimizer for G(X) is the same
as the minimizer for P(X).

The graph in Figure 6 is a plot of G(X) versus A for the
test problem. The minimum (indicated by the small cir-
cle) occurs at A = 39.250. The corresponding estimate
is plotted as a solid curve in Figure 7 together with the
true solution which is plotted as a dashed curve. The
two curves are almost indistinguishable, so the minimum
GCV estimate is clearly superior to the L-curve esti-
mate, but the correponding residual diagnostics, which
are plotted in Figure 8, indicate that it is not an accept-
able estimate. The sum of squared residuals 106.7 falls
significantly to the left of the acceptable interval (17).
The histogram plot of the residuals, shown at the upper
right of the Figure, is a very poor approximation to the
corresponding normal distribution, and the x? value for
comparing the two is 37.0396 which, with 10 degrees of
freedom, would occur only 56 times out of a million for
samples from the normal distribution. The periodogram
and cumulative periodogram for the residual time series
indicate consistency with the white noise hypothesis so,
like the L-curve estimate, the minimum GCV estimate
satisfies only one of the three criteria given in Section 2.
Clearly a larger value of A is needed to further increase
the sum of squared residuals and reduce the excessive
number of residuals in the central box of the histogram.
Inspecting the curve in Figure 6 reveals that increasing
A by a factor of two would not much increase the value

of G(N).

8 The “Optimal” Value of A

Since both the L-curve and the minimum GCV methods
gave estimates with unacceptable residual distributions,
it was necessary to experiment with several trial values
of A to find one which gave a good estimate. The results
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of that experiment are summarized in Table 1. The 9th to the problem is known, but it would not be fair to use
column could be included only because the true answer this knowledge in choosing the best A. The strategy here
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was to find the range of values which give residuals that
satisfy all three of the criteria in Section 2 and then pick
one value from this range as the “optimal” .

The first criterion is that the residuals should be dis-
tributed like a standard normal distribution. Columns
5, 6 and 7 summarize the results for the y? test of good-
ness of fit of the residual histogram to the correspod-
ingly renormalized standard normal distribution. For
the plotted histograms, the residuals were binned into
25 non-overlapping subintervals of equal length whose
union covered [—Tmax , Tmax], Where rmax = max;{|r;|},
but to do the x? test, subintervals containing fewer than
5 residuals were combined to give a histogram with un-
equal intervals but with no box containing fewer than 5
counts. Therefore the number of degrees of freedom var-
ied somewhat erratically with changes in the value of A,
so the x? value and its associated probability were not
simpe unimodal functions of A. Accepting 0.05 as the
the minimum probability for acceptability means that,
except for a small range of values around A = 85.0 (row
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14), all of the values between A = 67.5 (row 7) and
A =100 (row 17) gave acceptable residual histograms.
The second criterion in Section 2 is that the residu-
als should form a white noise time series. The test was
based on the cumulative periodogram and the 95% band
for white noise whose construction was described in Sec-
tion 4. Each residual time series was deemed to be white
noise if its cumulative periodogram strayed outside the
band at no more than 5% of the frequencies, and not
to be white noise otherwise. The results of these tests
are summarized in Column 8 of the Table which indi-
cates that the second criterion is satisfied only for values
of A in the interval [0.748, 80.0]. Actually, 0.748 was
the smallest non-zero value that was tried, so the accept-
able range might extend to somewhat smaller values, but
these would fail to satisfy either of the other two crite-
ria. In fact, the intersection of this interval with the
acceptable interval from the preceding paragraph, i.e.,
[67.5, 100.0], gives 67.5 < XA < 80.0 as the range of
values which satisfy both of the first two criteria.



Column 1
Column 2
Column 3
Column 4

5

Column

Column 6

Column 7
Column 8

Column 9

Column 10

Table 1: Diagnostics for the Spline-y Regularization Experiment

(1] 2 3 I 5 6 7 859 0 |
| | Method A Sor? x> ndf  Prob  wn [Az|.ms Fig. |
1 | Lst. Sqr. 0.000 25.4  479.08 8 0.0000 no 30.24400 3
2 | L-curve 0.748 73.9 14735 11  0.0000 yes 0.23961 )
3| Min. GCV  39.250 106.7 37.04 10 0.0001 yes 0.00374 8
4 | Trial A 55.000 1136 30.16 13 0.0045 yes  0.00268
5 | Trial A 60.000 117.0 31.92 13 0.0025 yes 0.00246
6 | Trial A 65.000 121.1 24.89 13  0.0239 yes 0.00228
7 | Trial A 67.500 123.5 20.87 13 0.0755 yes 0.00220
8 | Trial A 70.000 126.1 19.15 14 0.1591 yes 0.00213
9 | Trial A 72.500 129.0 1536 14 0.3542 yes 0.00206
10 | Trial A 75.000 132.2 15.75 14 0.3289 yes 0.00200

11 | Trial A 77.500 135.6 1756 15 0.2867 yes 0.00195 9
12 | Trial A 80.000 139.5 16.31 14  0.2948 yes 0.00190
13 | Trial A 82.500 143.6 18.18 15 0.2533 no  0.00186
14 | Trial A 85.000 148.2 26.34 15 0.0346 no  0.00181
15 | Trial A 87.500 153.1 25.11 16 0.0679 no  0.00178
16 | Trial A 90.000 158.4 2142 16 0.1631 no  0.00175
17 | Trial A 100.000 184.4 26.24 16 0.0508 no  0.00167
18 | Trial A 110.000 219.0 46.10 14 0.0000 no  0.00164
19 | Trial A 120.000 264.0 88.72 14 0.0000 no  0.00166
20 | Trial A 130.000 321.2 20798 15 0.0000 no  0.00172

contains integers indexing the different trials.

gives the method used for choosing the value of A.

gives the value of A. Boldface values give residuals satisfying all three criteria in Section 2.

gives the sum of squared residuals. Boldface values give residuals which satisy criterion 3 in Section 2.

gives the x? value for testing the goodness of fit of the residual histogram to the corresponding normal
distribution.

gives the number of degrees of freedom used in the goodness of fit test.

gives the probability of obtaining a x? value as high as or higher than the one in column 5. Boldface
values give residuals which satisfy criterion 1 in Section 2.

tells whether or not the cumulative periodogram of the residual time series indicated consistency with
the white noise hypothesis. Boldface values indicate consistency with criterion 2 in Section 2.

gives the root mean square average magnitude of the errors in the elements of the estimate, i.e.,

I~ .
|AZ|rms = n Z |Z;(A) — x;lz ) (29)
Jj=1

where () is the jth element of X()\) and 7 is the jth element of the true solution x*.

gives the Figure number for the corresponding diagnostic plots.
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The third criterion in Section 2 restricts the sum of
squared residuals to lie inside the 2-o interval for its
expected value, i.e., [m —KV2m, m+ m/%}, with |
k |< 2. The sums of squared residuals are tabulated in
Column 4 of the Table. Choosing k = 2 gives (17) as
the acceptable interval for the sum of squared residuals,
and comparing this range with the values in Column 4
reveals that all A in the interval [60.0, 100.0] produce
acceptable values. This interval completely contains the
one given in the preceding paragraph for satisfying both
of the first two criteria, so any A value in the interval
[67.5, 80.0] will give residuals which satisfy all three of
the criteria given in Section 2.

The acceptable interval for A can be further reduced by
strengthening one or more of the constraints imposed by
the three criteria. For example, requiring that the prob-
ability value in Column 7 be greater than 0.10 restricts
the acceptable interval to [70.0, 80.0]. Also, choosing
% = 1 in the third criterion constrains the sum of squared
residuals to lie in the interval

[m—\/%, m+V2m | =[132.7,167.3],  (30)

which in turn requires 75.0 < A < 90.0. Intersecting the
latter interval with the former resticts A to the range
75.0 < X < 80.0. This is a fairly narrow interval, and
there is no compelling reason to choose any one partic-
ular value in it over any other, so the midpoint A = 77.5
was taken to be the “optimal” value. The corresponding
estimate is graphically indistinguishable from the true
solution. The diagnostic plots are given in Figure 9.

It will be noted that the “optimal” A does not min-
imize the root mean square error (29) in the estimate.
The values in column 9 of the Table indicate that this
minimum is approximately obtained when A = 110.0.
But this estimate does not satisfy any of the three cri-
teria in Section 2. While this is disturbing, one must
remember that for a real problem one could not com-
pute this rms error. And for the “optimal” estimate this
error is acceptable even if it is not minimal.

9 Truncating the Singular Value
Decomposition

Another method for stabilizing the solution to (5) is to
truncate the singular value decomposition (SVD). The
matrix A has a unique factorization

b))

asu(3

> VT ) Ezdiag(015027"'7gn) ) (31)
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where 01 > 09 > -+ > 0, > 0 are the singular values of
A, and

v'u=1,=0U0", VIv=1,=VVl. (32

Substituting (31) into (5) and premultiplying by U7
gives

UTloz(2

P )VTX*—i-UTn, U'n~N(0,1,),

(33)

with the distribution of the U”'n vectors unchanged be-

cause premultiplication by an orthogonal matrix simply

rotates all the vectors in the distribution through the
same angle.

If A has full rank, then it is easy to see that the least

squares estimate (10) can be written

x=V (=", 0)UDp, (34)

where L1 )
> = diag (-,—,...,—> . (35)

g1 09 On

It is instructive to rewrite these two equations in the
form

(UTb).
A

(V'x), , (36)

05
and to note that the minimum sum of squared residuals
can be written

- 2
_ o2 — T
b A% = Y (UTD)] .
1=n+1

2

Tmin (37)

Since the least squares estimate contains spurious large
oscillations, and since its sum of squared residuals is un-
acceptably small, it appears that Egs. (36) capture some
of the variance that properly belongs in the sum (37).
If A has less than full rank, then a minimum length
least squares estimate X can be computed by using Eq.

(34) with
1 1
szdiag(—,...,—,o...,O) , (38)
g1 Op
where p = rank(A) < n. In this case Egs. (36) are
replaced by
- 0. , t=1L1,4,--,pD,
(Vix), = i (39)
0 ) i:p+17"'7n7
and Eq. (37) is replaced by
P =|b-Ax[?= 3 (UTb)’ (40)
i=p+1
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Figure 9: Diagnostic Plots for Spline-y Regularization with A = 77.5

Since real computer calculations never give exact zero
singular values, and since the ill-conditioning gives o1 >
on, a natural hypothesize was that the wild oscillations
in the least squares estimate are caused by inverting
small, inaccurately determined o; whose values should
properly be zero. If so, the estimate could be stabilized
by setting o; = 0 for all singular values below some
threshold ¢, and computing x from Egs. (39) rather
than Eqs. (36).

The above idea was first suggested by Golub and Ka-
han [2], and further developed by Hanson [8]. The con-
ventional view held that A was rank deficient, and that
the truncation should determine its “numerical rank.”
Most methods (e.g., [3]) attempted to find a clear gap in
the singular value distribution and to zero all those on
the low side. Many years elapsed before it was widely ap-
preciated [4] that, even though truncation stabilizes the
estimate, the matrices for real-world problems almost
never display such a gap. The dilemma is illustrated by
Figure 10 where the singular values for the test problem
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are plotted as discrete squares. There is no gap where
the values plunge precipitously. The largest and smallest
are 01 (A) = 3.39 x 107 and 0121 (A) = 1.16 x 1072 which
give cond(A) = 2.92 x 10%, but the relative accuracy of
the calculation was €mqecn = 2.22 X 10716, s0 0191 is 7
orders of magnitude greater than the effective zero level.
Thus, there is no reason to assume that rank(A) < n,
but some truncation is needed to prevent the estimate
from capturing variance that belongs in the residuals.
Fortunately, this result can be obtained by leaving the
singular values unchanged and truncating the rotated
right hand side vector UT'b.

10 Truncating the Vector U'b

Figure 10 also shows the first n elements of the vec-
tor |[UTb| plotted as small circles connected by straight
line segments. There is a sharp break in the distribu-
tion at j = 36. Before the break, the upper envelope is
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Figure 10: Singular Values and First n Elements of Vector [UZb| for the Test Problem

decreasing more rapidly than the corresponding singu-
lar values. After the break, the distribution is flat with
all values below the line |[UTb| = 3. That line is, by
Equations (33), just the 3-o level for the magnitudes of
the errors (UTn);. Thus, the flat segment contains ele-
ments of UTb that are dominated by measuring errors.
In 1998 Rust [11] suggested a criterion for truncating the
SVD by altering the transformed measurements, which
contain random errors, rather than the matrix, which is
assumed to be exact. Rather than zeroing some of the
singular values, one should instead zero those elements
of UTb that are dominated by the random errors. The
idea is to pick a truncation level 7 and require X(7) to
satisty

UTb).
% , if [UTB]; > 7,
(VIx(7)), = i=1,2,...n, (41)
0 , otherwise .
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The sum of squared residuals is then given by

- - 2 “ 2
7 =|b—Ax(r)|>=>_(U'b); + Y (U™b);,
1€l 1=n—+1
(42)
where the indexing set for the first sum is
I={i|[U'b;<7,i=1,2,...,n} . (43)

The success of the proposed method depends crucially
on the choice of the truncation level 7. A safe and ef-
fective approach is to try several values, and use the cri-
teria in Section 2 to make the final choice. A guideline
for choosing a lower bound for the value of 7 is the fact
that most experimentalists would be reluctant to claim
that a measured value is significantly different from zero
if its magnitude does not exceed 3 standard deviations
for the error in the measurement. Since each [UTb|; is
scaled in units of one standard deviation of its own ran-
dom error, it suffices to choose 7 = 3.0. Of course, to be



Table 2: Diagnostics for the Truncated U”b and Truncated SVD Methods

(1] 3 I 5 6 7 89 0 |
| [ Method T/p Sor? x> ndf  Prob  wn [Az|ms Fig. |
1 | Lst. Sqr. 7= 0.0 25.4  479.08 8 0.0000 no 30.24400 3

2 | Trial 7 T= 23 104.6 17.87 12 0.1196 no 17.23000
3 | Trial 7 T= 2.5 121.3 12.77 13 0.4661 yes .04360 11
4 | Trial 7 7= 3.0 129.3 13.88 13 0.3823 yes .00153 12
5 | Trial 7 7= 4.0 141.8 16.19 12 0.1826 yes .00220
6 | Trial 7 7= 9.0 2114 17.27 12 0.1398 yes .00406
7 | Trial 7 7=20.0 589.1 11531 16 0.0000 no .00797
8 | L-curve p=70 75.0 18190 10 0.0000 yes .32000
9 | Min. GCV p=35 1124 17.67 14 0.2224 yes .00156

All Columns the same as in Table 1 except Column 3 which here contains the truncation parameter.

Rows 1-7 are for the truncated UTb method. Rows 8-9 are for the conventional truncated SVD method.

safe, it might be wise to also try even smaller values like
7 = 2.5. The choice for an upper bound for 7 might sim-
ilarly be guided by the fact that most experimentalists
would readily belive that a measured value greater than
the 6-0 level is statistically significant. Since there are
only n discrete |[UTb|;, there are only n possible trun-
cated estimates X(7), and, in genreral, only a few of them
will correspond to truncation levels between 7 = 3.0 and
7 =06.0.

Table 2 gives, for the test problem, the diagnostics for
all possible truncated estimates with 2.3 < 7 < 20.0.
The two extreme values and the least squares (7 = 0.0)
estimate are included only for the sake of comparisons.
The judicious application of a straight edge and pen-
cil to Figure 10 reveals that the difference between the
7 = 20.0 and the 7 = 9.0 estimates was caused by
the exclusion from the former of the single element
(UTb)3; = 19.4342. The 7 = 9.0 estimate, which satis-
fies only the first two of the three criteria in Section 2,
differs from the 7 = 4.0 estimate because it also excludes
the element (UTb)33 = 8.34205. The 7 = 4.0 estimate
satisfies all of the three criteria as do the estimates for
7=3.0and 7 =2.5. The 7 =4.0 and 7 = 3.0 estimates
differ because the latter includes one additional element
(UTb)ss = 3.53193. The 7 = 2.5 estimate includes
one other additional element (UTb)s5 = —2.82565, and
the 7 = 2.3 contains still one further additional element
(UTb)119 = 2.39588. The latter estimate satisfies only
the first of the three criteria.

Only the 7 = 2.5, 3.0, and 4.0 estimates satisfy all
three of the criteria in Section 2. The 7 = 2.5 estimate
and the true solution are plotted in Figure 11. Some of
the spurious oscillations persist, so this estimate can be

Trunc. SVD, |UTb[;>2.5

.0

Figure 11: Truncated U”Tb Estimate for 7 = 2.5

rejected. This assumes an a priori knowledge that the
solution should not contain oscillations, but such judge-
ments are common in solving ill-posed problems. The
7 = 3.0 and 7 = 4.0 estimates are both graphically in-
distinguishable from the true solution, and the numeri-
cal diagnostics indicate that either would be acceptable.
The 7 = 4.0 estimate gives a better sum of squared resid-
uals, but the 7 = 3.0 estimate gives a markedly better
X2 probability. It is probably best to choose the alterna-
tive that makes the smallest change in the given data, so
7 = 3.0 was taken to be the optimal value. The plotted
diagnotics are given in Figure 12. Note that 7 = 3.0
minimizes |Ax|,,,s whose value was slightly better than
the best obtained by spline-y regularization (cf., Table
1, row 18).
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Figure 12: Diagnostic Plots for the Truncated UTb Estimate with 7 = 3.0

11 Comparison with the Stan-

dard SVD Truncation

The conventional method for truncating the SVD effec-
tively alters the matrix, which is assumed to be known
exactly, or at least to greater accuracy than the data
vector, in order to accommodate the errors in the latter.
Thus, the same matrix may be assigned different “nu-
merical ranks” for different measurement vectors. Nev-
ertheless, the method can give good results and has en-
joyed much success even though some of the strategies
for picking the truncation order p have been somewhat
muddled.

The two strategies given in Sections 6 and 7 have both
been adapted [6] to pick the order p. It is straightforward
to pick the minimal GCV value, by replacing Eqn. (26)
with

- ARp) P
trace (I, — AAT)?

) p:1727"'7n7 (44)
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where x(p) is the estimate computed from Eqs. (39), and
evaluating G(1), G(2),...,G(n). The L-curve method is
somewhat trickier, because the plot of log,,(||X(p)]|) ver-
sus log,(||lb — Ax(p)||) contains n discrete points in a
L-shaped pattern. To find the maximum curvature, it is
necessary to fit a smoothing spline to those points and
determine where the curvature of that spline is maxi-
mized. It is then necessary to choose which of those
points is closest to the point on the spline where the
curvature is maximized.

The numerical diagnostics for the L-curve and mini-
mum GCV estimates are given in rows 8 and 9 of Table
2. The L-curve method gives p = 70 which corresponds
to an element far out in the noise dominated, flat seg-
ment of the [UTb| plot in Figure 10. The consequence of
including the noise dominated elements to the left of this
point is an oscillatory estimate similar to the one plotted
in Figure 5 and residuals which satisfy only the second
of the three criterion in Section 2. The minimum GCV
method does much better, giving p = 35, which is just



before the onset of the flat segment of the [UTb| plot.
The set of elements used in the estimate is similar to the
one used in the 7 = 3.0 truncated |U”b| estimate. Both
estimates reject all of the elements with j > 35. They
differ only in that the truncated SVD method retains all
of the elements with j < 35, but the truncated |[U”b|
method rejects the subset of 15 elements which also sat-
isfy [U”b|; < 3.0. Since their corresponding singular
values are about 3 orders of magnitude greater than the
|UTb|;, the inclusion of the extra 15 ratios in Eqgs. (39)
does not change the truncated SVD estimate very much.
Thus its |Ax|,ms is almost as good as the one for the
7 = 3.0 estimate. But, its sum of squared residual falls
just below the acceptable interval (17), so even though
the residuals satisfy the other two criteria from Section
2, the estimate would, in the absence of a knowledge of
the true solution, have to be rejected.

12 Discussion and Conclusions
The ill-conditioning of the linear regression model ob-
tained by discretizing an ill-posed problem produces, in
the least squares estimate, a huge magnification of the
measurement errors. Minimizing the sum of squared
residuals allows the estimate to capture variance that
properly belongs in the residuals. Therefore it is neces-
sary to seek biased estimates which either append side
constraints (regularization) or which discard some com-
ponents of the variance in the measurements (truncating
the SVD). In the first case it is necessary to choose a
free parameter which determines the relative weightings
of the regression equations and the side constraints, and
in the second case it is necessary to choose a cut-off pa-
rameter which determines how much of the measurement
variance to discard. The guiding principle adopted here
for making such choices is that a good estimate should
produce a residual vector that resembles a sample from
the measurement error distribution.

For normally distributed measurement errors, with
known variance matrix, the regression model can be
rescaled to give errors that are independently distributed
with the standard normal distribution. The above guid-
ing principle can then be used to specify three statistical
criteria which should be satisfied by the residuals for an
acceptable estimate. These criteria were quantified and
applied to estimates obtained by both methods for a test
problem designed to resemble a real instrument correc-
tion problem. They were used both to test previously
suggested strategies for picking the free parameters and
to choose optimal values for them.

The regulatization method used here applied side con-
straints to bias the solution toward an initial estimate
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obtained by fitting a spline to the measurement vector.
Two widely used strategies for choosing the regulariza-
tion parameter gave residuals satisfying only one of the
three statistical criteria. The L-curve method failed be-
cause it kept the sum of squared residuals too small while
minimizing the length of the estimate vector. The tight
constraint on the length of the residual vector must be re-
laxed so that it can capture the variance that causes the
wild oscillations in the estimate. The minimum GCV
estimate was better than the L-curve estimate, but it
did not produce acceptable residuals either. The prob-
lem seems to be that the minimum of the GCV function
occurred in a relatively flat segment of the curve that
allows large deviations from the minimum point without
changing the cross validation index very much.

An acceptable regularized solution was found by cal-
culating estimates for a range of parameter values, all
larger than the L-curve and minimum GCYV values. Each
of the three statistical criteria was satisfied in a different
subinterval of the range, but the intersection of the three
subintervals defined a narrow range which gave residu-
als satisfying all three criteria. The optimal value was
chosen to be the one that gave the residual histogram
best fitting the standard normal distribution. The cor-
responding estimate gave a good root mean square av-
erage error, but the smallest value of that quantity was
obtained at a parameter value on the high side of all
three subintervals. This behavior has been observed for
two other test problems, so it may be a universal prop-
erty of regularization methods. If so, it may be possible
to find some indicator for the parameter value which
isolates this minimum error, but until such an indicator
is found, prudence recommends the value which gives
residuals best satisfying the three statistical criteria.

Traditionally the SVD was truncated by zeroing the
smaller singular values and transferring the correspond-
ing components of UTb from the estimate to the resid-
uals. Early ideas associating the truncation with the
“numerical rank” of the matrix could not be sustained
because the matrix is seldom rank deficient. Since the
instability of the estimate is caused by errors in the right
hand side vector rather than from any deficiencies in the
matrix, it is more logical to truncate the former rather
than the latter. Scaling the model to give errors that
are independently normally distributed and substitut-
ing the SVD for the scaled matrix rotates the problem
into a coordinate system in which it is easy, using rea-
soning familiar to any experimental scientist, to identify
the components of U”b that are completely dominated
by measurement errors. There are only n possible trun-
cations, and only a few of these fall in the acceptable
range 2.5 < 7 < 6.0. Ambiguities in the choice of 7 can



be resolved by using the three statistical criteria for ac-
ceptable residuals. When this approach was applied to
the test problem, only two possible truncations were ac-
ceptable. The optimal 7 was taken to be the one whose
residual distribution gave the best fit to the appropri-
ately rescaled standard normal distribution. This esti-
mate was also the one which minimized the root mean
square average error.

Although “numerical rank” did not prove to be useful
for truncating the SVD, the order truncation approach
has some merit. Both the L-curve and minimum GCV
strategies have been adapted to choose the truncation
order p [6], but for the test problem, both methods gave
residuals which satisfied only one of the three statistical
criteria. The L-curve estimate failed to suppress all of
the spurious oscillations because it did not sufficiently
relax the constraint on the length of the residual vec-
tor. The minimum GCV estimate was quite good even
though its residuals failed to satisfy two of the three cri-
teria. Its root mean square average error was almost as
small as the one for the optimal 7-truncation, mainly
because all of its discarded elements were also discarded
by the latter method. Unfortunately, it retained a few
elements discarded by the latter which did not change
the estimate very much but did render the residuals sta-
tistically unacceptable. It might be possible to use the
GCYV function for automatically choosing the truncation
parameter by considering (44) as a function of 7 rather
than p.

There are circumstances in which it is necessary to
use order truncation in conjunction with 7-truncation.
For the test problem, the flat segment of the UTb plot
contained only 86 elements, all of them smaller in magni-
tude than 3.0. For larger problems, with longer flat seg-
ments, it becomes increasingly probable that normally
distributed random errors will produce larger elements
in this noise saturated segment of the plot. Choosing
7 large enough to suppress such rare values may also
discard some earlier elements that are not mostly noise.
Therefore, to keep the value of T reasonable, it is neces-
sary to impose an additional order truncation in the flat
segment. But this approach could also prove disasterous
if the true solution has highly oscillatory components
corresponding to higher order singular vectors. In such
cases, the 7-truncation alone might be vital for isolating
those components.

Finally it should be noted that even though 7-
truncation can stabilize the estimate, it cannot guar-
antee that it will be close to the true solution because
the noise in the measurements might be large enough
to overwhelm important components of the signal being
measured. The only way to retrieve such components
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would be to repeat the measurements with more preci-
sion.
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