OOMMF
Programming Manual

May 29, 2001

This manual documents release 1.2a2.

WARNING: In this alpha release, the documentation
may not be up to date.

WARNING: This document in under construction.

Abstract

This manual provides source code level information on OOMMF (Object Oriented
Micromagnetic Framework), a public domain micromagnetics program developed at
the National Institute of Standards and Technology. Refer to the OOMME User’s
Guide for an overview of the project and end-user details.

http://www.nist.gov/

Contents

Disclaimer
1 Programming Overview of OOMMF
2 Platform-Independent Make
3 OOMMF eXtensible Solver
3.1 Sample Oxs_Energy Class
3.2 Writing a New Oxs_Energy Extension
4 References
5 Credits

ii

Disclaimer

This software was developed at the National Institute of Standards and Technology by
employees of the Federal Government in the course of their official duties. Pursuant to Title
17, United States Code, Section 105, this software is not subject to copyright protection and
is in the public domain.

OOMMEF is an experimental system. NIST assumes no responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic. We would appreciate acknowledgement if the software
is used.

Commercial equipment and software referred to on these pages are identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

11

1 Programming Overview of OOMMF

The OOMMF! (Object Oriented Micromagnetic Framework) project in the Information
Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST)
is intended to develop a portable, extensible public domain micromagnetic program and
associated tools. This manual aims to document the programming interfaces to OOMMEF at
the source code level. The main developers of this code are Mike Donahue and Don Porter.

The underlying numerical engine for OOMMEF is written in C+4++, which provides a
reasonable compromise with respect to efficiency, functionality, availability and portability.
The interface and glue code is written primarily in Tcl/Tk, which hides most platform specific
issues. Tcl and Tk are available for free download ? from the Tcl Developer Xchange® hosted
by Ajuba Solutions® .

The code may actually be modified at 3 distinct levels. At the top level, individual
programs interact via well-defined protocols across network sockets. One may connect these
modules together in various ways from the user interface, and new modules speaking the
same protocol can be transparently added. The second level of modification is at the Tecl/Tk
script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,
and the top level scripts are relatively easy to modify or replace. The lowest level is the
C++ source code. The OOMMEF extensible solver, OXS, is designed with modification at
this level in mind.

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “4MAG Announcement” mailing list:

http://www.ctcms.nist.gov/ rdm/email-list. html.

The OOMMEF developers are always interested in your comments about OOMMF. See
the Credits (Sec. 5) for instructions on how to contact them.

Thttp: //math.nist.gov/oommf/
2http://dev.scriptics.com/software/tcltk /choose.html
3http://dev.scriptics.com/

4http:/ /www.ajubasolutions.com /

http://www.itl.nist.gov/
http://www.itl.nist.gov/
http://www.nist.gov/
http://math.nist.gov/~{}MDonahue
http://math.nist.gov/~{}DPorter
http://www.ctcms.nist.gov/~{}rdm/email-list.html
http://math.nist.gov/oommf/
http://dev.scriptics.com/software/tcltk/choose.html
http://dev.scriptics.com/
http://www.ajubasolutions.com/

2 Platform-Independent Make

UNDER CONSTRUCTION

Details on pimake go here.
Somewhere we should have documentation on feeding and breeding makerules.tcl files.

Should that be here, or in a separate section? If the former, then should this section be
renamed?

.“-) -.- - I“- -
', Problem " ', Tel Control

]
Specification . : Script . - -
L} - J‘ e
"'»‘- : ::‘ -
—am-T * L]
3 LLG Evolver
N PR
:
. ‘W’-._ e
---“ T
- PEDR SRR
- Driver —7 .
L]
. : ‘ - Evolver s
N - R P AT ; H ¢
. RN Treaes e amip. .
------ . i
. —
r
Mesh :
1 - -
D/ ------------ . ;\—O‘--“.- L .-‘

' Un|a>-:|al [Minimization 3
3 Anlsotropy PPt CN AT Tt i Ewvolver ¢
X - - e 1
» v rtabie T ..y T N e e T e i

Veraaee - Cubic . Rectangular e

! .

+ 'l
R N L I

" - - 4
RS Y e Ngbr - KON . }

. Exchange *"-.-""ﬁ-‘“'[/ —_

[et 3
* -

) Demag ¢

.....
........
-

Figure 1: OXS top-level class diagram.

3 OOMMF eXtensible Solver

The OOMMEF eXtensible Solver (OXS) top level architecture is shown in Fig. 1. The “Tecl
Control Script” block represents the user interface and associated control code, which is
written in Tcl. The micromagnetic problem input file is the content of the “Problem Speci-
fication” block. The input file should be a valid MIF 2.0 file (see the OOMMEF User’s Guide
for details on the MIF file formats), which also happens to be a valid Tcl script. The rest of
the architecture diagram represents C++ classes.

All interactions between the Tcl script level and the core solver are routed through the
Director object. Aside from the Director, all other classes in this diagram are examples
of Oxs_Ext objects—technically, C4++ child classes of the abstract Oxs_Ext class. OXS is
designed to be extended primarily by the addition of new Oxs_Ext child classes.

The general steps involved in adding an Oxs_Ext child class to OXS are:

1. Add new source code files to oommf/app/oxs/local containing your class definitions.
The C++ non-header source code file(s) must be given the .cc extension. (Header
files are typically denoted with the .h extension, but this is not mandatory.)

2. Run pimake to compile your new code and link it in to the OXS executable.
3. Add the appropriate Specify blocks to your input MIF 2.0 files.

The source code can usually be modeled after an existing Oxs_Ext object. Refer to the Oxsii
section of the OOMMEF User’s Guide for a description of the standard Oxs_Ext classes, or
Sec. 3.1 for an annotated example of an Oxs_Energy class. Base details on adding a new
energy term are presented in Sec. 3.2.

The pimake application automatically detects all files in the oommf/app/oxs/local
directory with the .cc extension, and searches them for #include requests to construct a
build dependency tree. Then pimake compiles and links them together with the rest of the
OXS files into the oxs executable. Because of the automatic file detection, no modifications
are required to any files of the standard OOMMEF distribution in order to add local extensions.

Local extensions are then activated by Specify requests in the input MIF 2.0 files. The
object name prefix in the Specify block is the same as the C++ class name. All Oxs_Ext
classes in the standard distribution are distinguished by an Oxs_ prefix. It is recommended
that local extensions use a local prefix to avoid name collisions with standard OXS objects.
(C++ namespaces are not currently used in OOMMEF for compatibility with some older
C++compilers.) The Specify block initialization string format is defined by the Oxs Ext
child class itself; therefore, as the extension writer, you may choose any format that is
convenient. However, it is recommended that you follow the conventions laid out in the
MIF 2.0 file format section of the OOMMEF User’s Guide.

3.1 Sample 0xs_Energy Class

This sections provides an extended dissection of a simple Oxs_Energy child class. The com-
putational details are kept as simple as possible, so the discussion can focus on the C++-class
structural details. Although the calculation details will vary between energy terms, the class
structure issues discussed here apply across the board to all energy terms.

The particular example presented here is for simulating uniaxial magneto-crystalline en-
ergy, with a single anisotropy constant, K1, and a single axis, axis, which are uniform
across the sample. The class definition (.h) and code (.cc) are displayed in Fig. 2 and 3,
respectively.

/* FILE: exampleanisotropy.h

* %

Example anisotropy class definition.
This class is derived from the Oxs_Energy class.

* ¥

*/

#ifndef _OXS_EXAMPLEANISOTROPY
#define _O0XS_EXAMPLEANISOTROPY

#include "energy.h"
#include "threevector.h"
#include "meshvalue.h"

/* End includes */

class Oxs_ExampleAnisotropy:public Oxs_Energy {

private:
double K1; // Primary anisotropy coeficient
ThreeVector axis; // Anisotropy direction

public:

virtual const char* ClassName() const; // ClassName() is
/// automatically generated by the O0XS_EXT_REGISTER macro.
virtual BOOL Init();
Oxs_ExampleAnisotropy(const char* name, // Child instance id
Oxs_Director* newdtr, // App director
Tcl_Interp* safe_interp, // Safe interpreter
const char* argstr); // MIF input block parameters

virtual “Oxs_ExampleAnisotropy() {}
virtual void GetEnergyAndField(const Oxs_SimState& state,
Oxs_MeshValue<REAL8m>& energy,

Oxs_MeshValue<ThreeVector>& field
) const;

};

#endif // _OXS_EXAMPLEANISOTROPY

Figure 2: Example energy class definition.

/* FILE: exampleanisotropy.cc —*-Mode: ct++—*-
*

* Example anisotropy class implementation.

* This class is derived from the Oxs_Energy class.

*

*/

#include "exampleanisotropy.h"

// Oxs_Ext registration support
OXS_EXT_REGISTER(Oxs_ExampleAnisotropy) ;

/* End includes */
#define MUO 12.56637061435917295385e-7 /* 4 PI 1077 x/

// Constructor

Oxs_ExampleAnisotropy: :0xs_ExampleAnisotropy(
const char* name, // Child instance id
Oxs_Director* newdtr, // App director
Tcl_Interp* safe_interp, // Safe interpreter
const char*x argstr) // MIF input block parameters
: Oxs_Energy(name,newdtr,safe_interp,argstr)

// Process arguments
Ki=GetRealInitValue ("K1");
axis=GetThreeVectorInitValue("axis");
VerifyAllInitArgsUsed();

BOOL Oxs_ExampleAnisotropy::Init()
{ return 1; }

void Oxs_ExampleAnisotropy::GetEnergyAndField
(const Oxs_SimState& state,
Oxs_MeshValue<REAL8m>& energy,
Oxs_MeshValue<ThreeVector>& field
) const
{
const 0Oxs_MeshValue<REAL8Sm>& Ms_inverse = *(state.Ms_inverse);
const Oxs_MeshValue<ThreeVector>&% spin = state.spin;
UINT4m size = state.mesh->Size();

for (UINT4m i=0;i<size;++i) {
REALSm field_mult = (2.0/MUO)*K1*Ms_inversel[i];
if (field_mult==0.0) {
energy[i]=0.0;
field[i] .Set(0.,0.,0.);
continue;

3

REAL8m dot = axis*spin[i];
field[i] = (field_mult*dot) * axis;

if (K1>0) {
energy[i] = -K1*(dot*dot-1.0); // Make easy axis zero energy
} else {
energy[i] = -Kilxdot*dot; // Easy plane is zero energy
}
}
}

Figure 3: Example energy class code.

3.2 Writing a New 0xs Energy Extension

Under construction.

4 References

[1] W. F. Brown, Jr., Micromagnetics (Krieger, New York, 1978).

[2] M. J. Donahue and D. G. Porter, “OOMMEF User’s Guide, Version 1.0,” Technical Report
No. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD
(1999) .

5 Credits

The main contributors to this document are Michael J. Donahue (michael.donahue@nist.gov)
and Donald G. Porter (donald.porter@nist.gov), both of ITL/NIST.

If you have bug reports, contributed code, feature requests, or other comments for the
OOMMF developers, please send them in an e-mail message to <michael.donahue®@nist.gov>.

http://www.itl.nist.gov/
http://www.nist.gov/
mailto:michael.donahue@nist.gov

Index

Ajuba Solutions, 1
announcements, 1

contact information, 9
e-mail, 1, 9

license, ii

network socket, 1

reporting bugs, 9

10

	Programming Overview of OOMMF
	Platform-Independent Make
	OOMMF eXtensible Solver
	Sample Oxs_Energy Class
	Writing a New Oxs_Energy Extension

	References
	Credits

