- 1
-
A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford, New
York, 1996).
- 2
-
A. Aharoni, “Demagnetizing factors for rectangular ferromagnetic
prisms,” J. App. Phys., 83, 3432–3434 (1998).
doi: 10.1063/1.367113
- 3
-
D. V. Berkov, K. Ramstöck, and A. Hubert, “Solving micromagnetic
problems: Towards an optimal numerical method,” Phys. Stat. Sol. (a), 137, 207–222 (1993).
doi: 10.1002/PSSA.2211370118
- 4
-
W. F. Brown, Jr., “Theory of the approach to magnetic saturation,”
Physical Review, 58, 736–743 (1940).
doi: 10.1103/PhysRev.58.736
- 5
-
W. F. Brown, Jr., Micromagnetics (J. Wiley, New York, 1963).
- 6
-
M. J. Donahue and R. D. McMichael, “Exchange energy representations in
computational micromagnetics,” Physica B, 233, 272–278
(1997).
doi: 10.1016/S0921-4526(97)00310-4
- 7
-
M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0, Tech.
Rep. NISTIR 6376, National Institute of Standards and Technology,
Gaithersburg, MD (1999).
doi: 10.6028/NIST.IR.6376
- 8
-
J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., 6, 19–26 (1980).
doi: 10.1016/0771-050X(80)90013-3
- 9
-
J. R. Dormand and P. J. Prince, “A reconsideration of some embedded
Runge-Kutta formulae,” J. Comp. Appl. Math., 15,
203–211 (1986).
doi: 10.1016/0377-0427(86)90027-0
- 10
-
J. Fidler and T. Schrefl, “Micromagnetic modelling — the current
state of the art,” J. Phys. D: Appl. Phys., 33, R135–R156
(2000).
doi: 10.1088/0022-3727/33/15/201
- 11
-
L. Garcia-Palacios and F. Lazaro, “Langevin-dynamics study of the
dynamical properties of small magnetic particles,” Physical Review B,
58, 14937–14958 (1998).
doi: 10.1103/PhysRevB.58.14937
- 12
-
T. L. Gilbert, “A Lagrangian formulation of the gyromagnetic equation
of the magnetization field,” Phys. Rev., 100, 1243 (1955).
- 13
-
P. R. Gillette and K. Oshima, “Magnetization reversal by rotation,”
J. Appl. Phys., 29, 529–531 (1958).
doi: 10.1063/1.1723211
- 14
-
A. Hubert, “muMAG standard problem no. 3,” (1998), [Online;
accessed 17-Oct-2023].
URL https://www.ctcms.nist.gov/~rdm/results3.html
- 15
-
T. Koehler, H. N. Bertram, A. Liu, C. Seberino, and R. D. McMichael,
“muMAG standard problem no. 2,” (1998), [Online; accessed
17-Oct-2023].
URL https://www.ctcms.nist.gov/~rdm/std2/results.html
- 16
-
A. E. LaBonte, “Two‐dimensional Bloch‐type domain walls in
ferromagnetic films,” Journal of Applied Physics, 40,
2450–2458 (1969).
doi: 10.1063/1.1658014
- 17
-
L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic
permeability in ferromagnetic bodies,” Physik. Z. Sowjetunion,
8, 153–169 (1935).
doi: 10.1016/B978-0-08-036364-6.50008-9
- 18
-
K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic boundary
conditions for demagnetization interactions in micromagnetic simulations,”
J. Phys. D: Appl. Phys., 41, 175005 (2008).
doi: 10.1088/0022-3727/41/17/175005
- 19
-
R. D. McMichael and M. J. Donahue, “Head to head domain wall structures
in thin magnetic strips,” IEEE Trans. Mag., 33, 4167–4169
(1997).
doi: 10.1109/20.619698
- 20
-
R. D. McMichael, R. Koch, T. Schrefl, and J. Eicke, “muMAG standard
problem no. 4,” (2000), [Online; accessed 17-Oct-2023].
URL https://www.ctcms.nist.gov/~rdm/std4/results.html
- 21
-
M. Najafi and D. G. Porter, “muMAG standard problem no. 5,” (2014),
[Online; accessed 17-Oct-2023].
URL https://www.ctcms.nist.gov/~rdm/std5/results.html
- 22
-
L. Néel, “Some theoretical aspects of rock magnetism,” Adv. Phys., 4, 191–242 (1955).
doi: 10.1080/00018735500101204
- 23
-
A. J. Newell, W. Williams, and D. J. Dunlop, “A generalization of the
demagnetizing tensor for nonuniform magnetization,” J. Geophysical
Research - Solid Earth, 98, 9551–9555 (1993).
doi: 10.1029/93JB00694
- 24
-
D. G. Porter and M. J. Donahue, “Generalization of a two-dimensional
micromagnetic model to non-uniform thickness,” Journal of Applied
Physics, 89, 7257–7259 (2001).
doi: 10.1063/1.1363606
- 25
-
M. R. Scheinfein, J. Unguris, J. L. Blue, K. J. Coakley, D. T. Pierce, and
R. J. Celotta, “Micromagnetics of domain walls at surfaces,”
Phys. Rev. B, 43, 3395–3422 (1991).
doi: 10.1103/PhysRevB.43.3395
- 26
-
J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,”
Journal of Magnetism and Magnetic Materials, 159, L1–L2
(1996).
doi: 10.1016/0304-8853(96)00062-5
- 27
-
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer,
New York, 1993), 2nd edn.
- 28
-
E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis
in heterogeneous alloys,” Phil. Trans. Royal Soc. London,
A240, 599–642 (1948).
doi: 10.1098/rsta.1948.0007
- 29
-
A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, “Micromagnetic
understanding of current-driven domain wall motion in patterned nanowires,”
Europhys. Lett., 69, 990–996 (2005).
doi: 10.1209/epl/i2004-10452-6
- 30
-
A. Thiaville, S. Rohart, É. Jué, V. Cros, and A. Fert,
“Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic
films,” Europhys. Lett., 100, 57002 (2012).
doi: 10.1209/0295-5075/100/57002
- 31
-
P.-E. Weiss, “La variation du ferro-magnétisme avec la
température,” Comptes Rendus, 143, 1136–1149 (1906).
- 32
-
B. B. Welch, Practical Programming in Tcl and Tk (Prentice Hall,
Upper Saddle River, New Jersey USA, 2000), 3rd edn.
- 33
-
J. Xiao, A. Zangwill, and M. D. Stiles, “Boltzmann test of
Slonczewski's theory of spin-transfer torque,” Phys. Rev. B,
70, 172405 (pages 4) (2004).
doi: 10.1103/PhysRevB.70.172405
- 34
-
S. Zhang and Z. Li, “Roles of nonequilibrium conduction electrons on
the magnetization dynamics of ferromagnets,” PhysṘev. Lett.,
93, 127204 (2004).
doi: 10.1103/PhysRevLett.93.127204
OOMMF Documentation Team
September 27, 2024