
OOMMF
Programming Manual

September 30, 2022

This manual documents release 2.0b0.

WARNING: This document is under construction.

This manual provides source code level information on OOMMF (Object Oriented Micro-
magnetic Framework), a public domain micromagnetics program developed at the National
Institute of Standards and Technology. Refer to the OOMMF User’s Guide for an overview
of the project and end-user details.

https://www.nist.gov/
https://www.nist.gov/

Table of Contents

Disclaimer ii

1 Programming Overview of OOMMF 1

2 Platform-Independent Make Operational Details 2
2.1 Anatomy of makerules.tcl files . 2
2.2 The MakeRule command . 5

3 OOMMF Variable Types and Macros 9

4 OOMMF eXtensible Solver 12
4.1 Sample Oxs_Energy Class . 14
4.2 Writing a New Oxs_Energy Extension . 17
4.3 Writing a New Oxs_Evolver Extension . 17

5 Debugging OOMMF 18
5.1 Configuration Files . 18
5.2 Understanding pimake . 21
5.3 Bypassing the oommf.tcl bootstrap . 23
5.4 Segfaults and other asynchronous termination 24
5.5 Out-of-bounds memory access . 28
5.6 C++ source code debuggers . 29

5.6.1 Introduction to the GNU gdb debugger 30
5.6.2 Introduction to the LLVM lldb . 32
5.6.3 Debugging OOMMF in Visual Studio 34

Credits 40

Bibliography 41

Index 42

i

Disclaimer

This software was developed at the National Institute of Standards and Technology by
employees of the Federal Government in the course of their official duties. Pursuant to Title
17, United States Code, Section 105, this software is not subject to copyright protection and
is in the public domain.

OOMMF is an experimental system. NIST assumes no responsibility whatsoever for
its use by other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic.

We would appreciate acknowledgement if the software is used. When referencing OOMMF
software, we recommend citing the NIST technical report, M. J. Donahue and D. G. Porter,
“OOMMF User’s Guide, Version 1.0,” NISTIR 6376, National Institute of Standards and
Technology, Gaithersburg, MD (Sept 1999).

Commercial equipment and software referred to on these pages are identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

ii

Chapter 1

Programming Overview of OOMMF

The OOMMF1 (Object Oriented Micromagnetic Framework) project in the Information
Technology Laboratory2 (ITL) at the National Institute of Standards and Technology3

(NIST) is intended to develop a portable, extensible public domain micromagnetic pro-
gram and associated tools. This manual aims to document the programming interfaces to
OOMMF at the source code level. The main developers of this code are Mike Donahue and
Don Porter.

The underlying numerical engine for OOMMF is written in C++, which provides a
reasonable compromise with respect to efficiency, functionality, availability and portability.
The interface and glue code is written primarily in Tcl/Tk, which hides most platform specific
issues. Tcl and Tk are available for free download4 from the Tcl Developer Xchange5.

The code may actually be modified at 3 distinct levels. At the top level, individual
programs interact via well-defined protocols across network sockets. One may connect these
modules together in various ways from the user interface, and new modules speaking the
same protocol can be transparently added. The second level of modification is at the Tcl/Tk
script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,
and the top level scripts are relatively easy to modify or replace. The lowest level is the
C++ source code. The OOMMF extensible solver, OXS, is designed with modification at
this level in mind.

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “µMAG Announcement” mailing list:

https://www.ctcms.nist.gov/~rdm/email-list.html.

The OOMMF developers are always interested in your comments about OOMMF. See
the Credits (Ch. 5.6.3) for instructions on how to contact them.

1https://math.nist.gov/oommf/
2https://www.nist.gov/itl/
3https://www.nist.gov/
4http://purl.org/tcl/home/software/tcltk/choose.html
5http://purl.org/tcl/home/

1

https://math.nist.gov/%7EMDonahue
https://math.nist.gov/%7EDPorter
https://www.ctcms.nist.gov/%7Erdm/email-list.html
https://www.ctcms.nist.gov/~rdm/email-list.html
https://math.nist.gov/oommf/
https://www.nist.gov/itl/
https://www.nist.gov/
http://purl.org/tcl/home/software/tcltk/choose.html
http://purl.org/tcl/home/

Chapter 2

Platform-Independent Make Operational
Details

The OOMMF pimake application compares file timestamps to determine which libraries
and executables are out-of-date with respect to their source code, and then compiles and
links those files as necessary to make everything up to date. The design and behavior of
pimake is based on the Unix make program, but pimake is written in Tcl and so can run
on any platform where Tcl is installed. Analogous to the Makefile or makefile of make,
pimake uses makerules.tcl files that specify rules (actions) for creating or updating targets
when the targets are older than their corresponding dependencies. The makerules.tcl files
are Tcl scripts augmented by a handful of commands introduced by the pimake application.

The makerules.tcl files in the Oxs application area include rules to automatically com-
pile and link all C++ code found under the oommf/app/oxs/local/ directory, so program-
mers who are developing Oxs_Ext extension modules generally do not need to be concerned
with the intricacies of pimake beyond the instructions on running pimake presented in the
OOMMF User’s Guide1.

This chapter is intended instead for programmers who are debugging, extending, or cre-
ating new OOMMF modules outside of oommf/app/oxs/local/. The following sections pro-
vide an overview of the structure of makerules.tcl files and how they control the behavior of
pimake. Further details may be gleaned from the pimake sources in oommf/app/pimake/.

2.1 Anatomy of makerules.tcl files
As may be deduced from the file extension, makerules.tcl files are Tcl scripts and so can
make use of the usual Tcl commands. However, makerules.tcl files are run inside a Tcl
interpreter that has been augmented by pimake with a number of additional commands. We
discuss both types of commands here, beginning with some of the standard Tcl commands
commonly found in makerules.tcl files:

1https://math.nist.gov/oommf/doc/

2

https://math.nist.gov/oommf/doc/

list, llength, lappend, lsort, lindex, lsearch, concat Tcl list formation and access com-
mands.

file Provides platform independent access to the file system, including subcommands to split
and join file names by path component.

glob Returns a list of filenames matching a wildcard pattern.

format, subst Construct strings with variable substitutions.

Refer to the Tcl documentation2 for full details.
Notice that all the Tcl command names are lowercase. In contrast, commands added

by pimake have mixed-case names. The most common OOMMF commands you’ll find in
makerules.tcl files are

MakeRule Defines dependency rules, which is the principle goal of makerules.tcl files.
This command is documented in detail below (Sec. 2.2).

Platform Platform independent methods for common operations, with these subcommands:

Name Identifier for current platform, e.g., windows-x86_64, linux-x86_64, darwin.

Executables Given a file stem returns the name for the corresponding executable
on the current platform by prepending the platform directory and appending an
execution suffix, if any. For example, Platform Executables varinfo would
return windows-x86_64/varinfo.exe on Windows, and linux-x86_64/varinfo
on Linux.

Objects Similar to Platform Executables, but returns object file names; the object
file suffix is .obj on Windows and .o on Linux and macOS.

Compile Uses the compiler specified in the config/platform/<platform>.tcl to
compile the specified source code file (-src option) into the named object file
(-out option).

Link Uses the linker specified in config/platform/<platform>.tcl to link together
the specified object files (-obj option) into the named executable (-out option).

CSourceFile New Creates an instance of the CSourceFile class. The -inc option to New
specifies directories to add to the search path for header files. CSourceFile instances
support these subcommands:

Dependencies Dependency list for specified C++ source file consisting of the source
file itself, header files included by #include statements in the source code files,
and also any header files found by a recursive tracing of #include statements.
The header file search excludes system header files requested using angle-brackets,

2https://www.tcl-lang.org/man

3

https://www.tcl-lang.org/man

e.g., #include <stdio.h>. A source code file can speed the tracing process by
placing a /* End includes */ comment following the last #include statement,
as in this example from oommf/app/mmdisp/mmdispsh.cc:

/* FILE: mmdispsh.cc -*-Mode: c++-*-
*
* A shell program which includes Tcl commands needed to support a
* vector display application.
*
*/

#include "oc.h"
#include "vf.h"
#include "mmdispcmds.h"

/* End includes */
...

The /* End includes */ statement terminates the search for further #include
statements in that file.

DepPath List of directories containing files on which the specified C++ source file
depends.

Recursive Given a target, loads the makerules.tcl file in each child directory of the cur-
rent directory and executes the rule found there for the target. Primarily used with the
default targets all, configure, clean, mostlyclean, objclean, maintainer-clean,
distclean, and upgrade. The default targets have an implicit rule to do nothing ex-
cept recurse the action into the new child directories. If a makerules.tcl file found in
this manner has an explicit rule defined for the given target, then that rule is invoked
instead of the implicit rule, and, unless the explicit rule makes a Recursive call itself,
the recursion on that directory branch will stop. As an example, the makerules.tcl
file in the OOMMF root directory has the rule

MakeRule Define {
-targets all
-script {Recursive all}

}

All of makerules.tcl files one level below oommf/pkg and oommf/app have “all”
targets that compile and link their corresponding libraries or executables. So

tclsh oommf.tcl pimake all

4

run in the root OOMMF directory will build all of those libraries and applications. In
contrast, makerules.tcl files under oommf/doc do not have explicit all targets, so
the tclsh oommf.tcl pimake all call has no effect in the oommf/doc/ subtree.

On the other hand, the makerules.tcl in directories under oommf/pkg/, oommf/app/,
and oommf/doc/ do have explicit rules for the various clean targets, so

tclsh oommf.tcl pimake maintainer-clean

run from the OOMMF root directory will be active throughout all three subtrees. The
maintainer-clean rules delete all files that can be regenerated from source, mean-
ing object files, libraries, executables, and notably all the documentation files under
oommf/doc/. Building the OOMMF documentation requires a working installation of
LATEX3 and either LATEX2HTML4 or LATExml5, so don’t run the maintainer-clean
target unless you are prepared to rebuild the OOMMF documentation!

The Tcl source defining the MakeRule, Platform, CSourceFile, and Recursive commands
can be found in the oommf/app/pimake/ directory. Example use of these commands can be
found in the following section.

2.2 The MakeRule command
The makerules.tcl files consist primarily of a collection of MakeRule commands surrounded
by a sprinkling of Tcl support code. The order of the MakeRule commands doesn’t matter,
except that the first target in the file, usually all, becomes the default target. (The “default”
target is the effective target if pimake is run without specifying a target.)

The MakeRule command supports a number of subcommands, but the principle subcom-
mand appearing in makerules.tcl files is Define. This takes a single argument, which is a
list of option+value pairs, with valid options being -targets, -dependencies, and -script.
The value string for the -targets option is a list of one or more build targets. The targets
are usually files, in which case they must lie in the same directory or a directory below the
makerules.tcl file. The -dependencies option is a list of one or more files or targets that
the target depends upon. The value to the -script option is a Tcl script that is run if a
target does not exist or if any of the file dependencies have a newer timestamp than any
of the targets. The dependency checking is done recursively, that is, each dependency is
checked to see if it up to date with its own dependencies, and so on. A target is out of date
if it is older than any of its dependencies, or the dependencies of the dependencies, etc. If
any of the dependencies is out of date with respect to its own dependencies, then its script
will be run during the dependency resolution. The script associated with the original target
is only run after its dependency resolution is fully completed.

3https://www.latex-project.org
4https://www.latex2html.org
5http://dlmf.nist.gov/LaTeXML/

5

https://www.latex-project.org
https://www.latex2html.org
http://dlmf.nist.gov/LaTeXML/

The following examples from oommf/app/omfsh/makerules.tcl should help flesh out
the above description:

MakeRule Define {
-targets [Platform Name]
-dependencies {}
-script {MakeDirectory [Platform Name]}

}

Here the target is the platform name, e.g., windows-x86_64, which is a directory under the
current working directory oommf/app/omfsh/. There are no dependencies to check, so the
rule script is run if and only if the directory windows-x86_64 does not exist. In that case the
OOMMF MakeDirectory routine is called to create it. This is an important rule because
the compilation and linking commands place their output into this directory, so it must exist
before those commands are run.

Next we look at a more complex rule that is really the bread and butter of makerules.tcl,
a rule for compiling a C++ file:

MakeRule Define {
-targets [Platform Objects omfsh]
-dependencies [concat [list [Platform Name]] \

[[CSourceFile New _ omfsh.cc] Dependencies]]
-script {Platform Compile C++ -opt 1 \

-inc [[CSourceFile New _ omfsh.cc] DepPath] \
-out omfsh -src omfsh.cc

}
}

In this example the target is the object file associated with the stem omfsh. On Windows this
would be windows-x86_64/omfsh.obj. The dependencies are the platform directory (e.g.,
windows-x86_64/), the file omfsh.cc, and any (non-system) files included by omfsh.cc.
Directory timestamps do not affect the out-of-date computation, but directories will be
constructed by their MakeRule if they don’t exist.

Note that part of the -dependencies list is

[CSourceFile New _ omfsh.cc] Dependencies]

As discussed in Sec. 2.1, this command resolves to a list of all non-system #include header
files from omfsh.cc, or header files found recursively from those header files. The first part
of omfsh.cc is

/* FILE: omfsh.cc -*-Mode: c++-*-
*
* A Tcl shell extended by the OOMMF core (Oc) extension
...

6

*/

/* Header files for system libraries */
#include <cstring>

/* Header files for the OOMMF extensions */
#include "oc.h"
#include "nb.h"
#include "if.h"

/* End includes */
...

The header file cstring is ignored by the dependency search because it is specified inside
angle brackets rather than double quotes. But the oc.h, nb.h, and if.h files are all con-
sidered. These files are part of the Oc, Nb, and If package libraries, respectively, living in
subdirectories under oommf/pkg/. The file oommf/pkg/oc/oc.h, for example, will be checked
for included files in the same way, and so on. The full dependency tree can be quite extensive.
The pimake application supports a -d option to print out the dependency tree, e.g.,

tclsh oommf.tcl pimake -cwd app/omfsh -d windows-x86_64/omfsh.obj

This output can be helpful is diagnosing dependency issues.
The /* End includes */ line terminates the #include file search inside this file. It is

optional but recommended as it will speed-up dependency resolution.
If omfsh.obj is older than any of its dependent files, then the Tcl script specified by

the -script option will be triggered. In this case the script runs Platform Compile C++,
which is the C++ compiler as specified by the oommf/config/platforms/<platform>.tcl
file. In this command -opt enables compiler optimizations, -inc supplements the include
search path for the compiler, -out omfsh is the output object file with name adjusted
appropriately for the platform, and -src omfsh.cc specifies the C++ file to be compiled.

The rules for building executables and libraries from collections of object modules are of
a similar nature. See the various makerules.tcl files across the OOMMF directory tree for
examples.

In a normal rule, the target is a file and if the script is run it will create or update the
file. Thus, if pimake is run twice in succession on the same target, the second run will not
trigger the script because the target will be up to date. In contrast, a pseudo-target does not
exist as a file on the file system, and the associated script does not create the pseudo-target.
Since the pseudo-target never exists as a file, repeated runs of pimake on the target will
result in repeated runs of the pseudo-target script.

Common pseudo-targets include all, configure, help, and several clean variants. This
last example illustrates the chaining of clean pseudo-targets to remove constructed files.

MakeRule Define {

7

-targets clean
-dependencies mostlyclean

}

MakeRule Define {
-targets mostlyclean
-dependencies objclean
-script {eval DeleteFiles [Platform Executables omfsh] \

[Platform Executables filtersh] \
[Platform Specific appindex.tcl]}

}

MakeRule Define {
-targets objclean
-dependencies {}
-script {

DeleteFiles [Platform Objects omfsh]
eval DeleteFiles \

[Platform Intermediate {omfsh filtersh}]
}

}

All three of these rules have targets that are non-existent files, so all three are pseudo-
targets. The first rule, for target clean, has no script so the script execution is a no-op.
However, the dependencies are still evaluated, which in this case means the rule for the target
mostlyclean is checked. This rule has both a dependency and a script. The dependencies
are evaluated first, so the objclean script is called to delete the omfsh object file and also
any intermediate files created as side effects of building the omfsh and filtersh executables.
Next the mostlyclean script is run, which deletes the omfsh and filtersh executables and
also the platform-specific appindex.tcl file. Note that none of the scripts create their target,
so the targets will all remain pseudo-targets.

8

Chapter 3

OOMMF Variable Types and Macros

The following typedefs are defined in the oommf/pkg/oc/platform/ocport.h header file; this
file is created by the pimake build process (see oommf/pkg/oc/procs.tcl), and contains
platform and machine specific information.

• OC_BOOL Boolean type, unspecified width.

• OC_BYTE Unsigned integer type exactly one byte wide.

• OC_CHAR Character type, may be signed or unsigned.

• OC_UCHAR Unsigned character type.

• OC_SCHAR Signed character type. If signed char is not supported by a given com-
piler, then this falls back to a plain char, so use with caution.

• OC_INT2, OC_INT4 Signed integer with width of exactly 2, respectively 4, bytes.

• OC_INT2m, OC_INT4m Signed integer with width of at least 2, respectively 4, bytes.
A type wider than the minimum may be specified if the wider type is handled faster
by the particular machine.

• OC_UINT2, OC_UINT4, OC_UINT2m, OC_UINT4m Unsigned integer versions of the pre-
ceding.

• OC_REAL4, OC_REAL8 Four byte, respectively eight byte, floating point variable. Typ-
ically corresponds to C++ “float” and “double” types.

• OC_REAL4m, OC_REAL8m Floating point variable with width of at least 4, respectively
8, bytes. A type wider than the minimum may be specified if the wider type is handled
faster by the particular machine.

• OC_REALWIDE Widest type natively supported by the underlying hardware. This is
usually the C++ “long double” type, but may be overridden by the

9

program_compiler_c++_typedef_realwide

option in the oommf/config/platform/platform.tcl file.

The oommf/pkg/oc/platform/ocport.h header file also defines the following macros for
use with the floating point variable types:

• OC_REAL8m_IS_DOUBLE True if OC_REAL8m type corresponds to the C++ “double”
type.

• OC_REAL8m_IS_REAL8 True if OC_REAL8m and OC_REAL8 refer to the same type.

• OC_REAL4_EPSILON The smallest value that can be added to a OC_REAL4 value of “1.0”
and yield a value different from “1.0”. For IEEE 754 compatible floating point, this
should be 1.1920929e-007.

• OC_SQRT_REAL4_EPSILON Square root of the preceding.

• OC_REAL8_EPSILON The smallest value that can be added to a OC_REAL8 value of “1.0”
and yield a value different from “1.0”. For IEEE 754 compatible floating point, this
should be 2.2204460492503131e-016.

• OC_SQRT_REAL8_EPSILON, OC_CUBE_ROOT_REAL8_EPSILON Square and cube roots of
the preceding.

• OC_FP_REGISTER_EXTRA_PRECISION True if intermediate floating point operations use
a wider precision than the floating point variable type; notably, this occurs with some
compilers on x86 hardware.

Note that all of the above macros have a leading “OC_” prefix. The prefix is intended to
protect against possible name collisions with system header files. Versions of some of these
macros are also defined without the prefix; these definitions represent backward support for
existing OOMMF extensions. All new code should use the versions with the “OC_” prefix,
and old code should be updated where possible. The complete list of deprecated macros is:

BOOL, UINT2m, INT4m, UINT4m, REAL4, REAL4m, REAL8, REAL8m,
REALWIDE, REAL4_EPSILON, REAL8_EPSILON, SQRT_REAL8_EPSILON,
CUBE_ROOT_REAL8_EPSILON, FP_REGISTER_EXTRA_PRECISION

Macros for system identification:

• OC_SYSTEM_TYPE One of OC_UNIX or OC_WINDOWS.

• OC_SYSTEM_SUBTYPE For unix systems, this is either OC_VANILLA (general unix) or
OC_DARWIN (Mac OS X). For Windows systems, this is generally OC_WINNT, unless one
is running out of a Cygwin shell, in which case the value is OC_CYGWIN.

10

Additional macros and typedefs:

• OC_POINTERWIDTH Width of pointer type, in bytes.

• OC_INDEX Typedef for signed array index type; typically the width of this (integer)
type matches the width of the pointer type, but is in any event at least four bytes wide
and not narrower than the pointer type.

• OC_UINDEX Typedef for unsigned version of OC_INDEX. It is intended for special-
purpose use only. In general, use OC_INDEX where possible.

• OC_INDEX_WIDTH Width of OC_INDEX type.

• OC_BYTEORDER Either “4321” for little endian machines, or “1234” for big endian.

• OC_THROW(x) Throws a C++ exception with value “x”.

• OOMMF_THREADS True for threaded (multi-processing) builds.

• OC_USE_NUMA If true, then NUMA (non-uniform memory access) libraries are avail-
able.

11

Chapter 4

OOMMF eXtensible Solver

The OOMMF eXtensible Solver (OXS) top level architecture is shown in Fig. 4.1. The
“Tcl Control Script” block represents the user interface and associated control code, which
is written in Tcl. The micromagnetic problem input file is the content of the “Problem
Specification” block. The input file should be a valid MIF 2.0 file (see the OOMMF User’s
Guide for details on the MIF file formats), which also happens to be a valid Tcl script. The
rest of the architecture diagram represents C++ classes.

All interactions between the Tcl script level and the core solver are routed through the
Director object. Aside from the Director, all other classes in this diagram are examples
of Oxs_Ext objects—technically, C++ child classes of the abstract Oxs_Ext class. OXS is
designed to be extended primarily by the addition of new Oxs_Ext child classes.

The general steps involved in adding an Oxs_Ext child class to OXS are:

1. Create a subdirectory under oommf/app/oxs/local, and add source code files with
class definitions into this subdirectory. The C++ non-header source code file(s) must
be given the .cc or .cpp extension. (Header files are typically denoted with the .h
extension, but this is not mandatory.)

2. Run pimake to compile your new code and link it in to the OXS executable.

3. Add the appropriate Specify blocks to your input MIF 2.0 files.

The source code can usually be modeled after an existing Oxs_Ext object. Refer to the Oxsii
section of the OOMMF User’s Guide for a description of the standard Oxs_Ext classes, or
Sec. 4.1 for an annotated example of an Oxs_Energy class. Base details on adding a new
energy term are presented in Sec. 4.2.

The pimake application automatically detects all files in the oommf/app/oxs/local
directory with the .cc or .cpp extensions, and searches them for #include requests to
construct a build dependency tree. Then pimake compiles and links them together with
the rest of the OXS files into the oxs executable. Because of the automatic file detection,
no modifications are required to any files of the standard OOMMF distribution in order to
add local extensions.

12

Figure 4.1: OXS top-level class diagram.

13

Local extensions are then activated by Specify requests in the input MIF 2.0 files. The
object name prefix in the Specify block is the same as the C++ class name. All Oxs_Ext
classes in the standard distribution are distinguished by an Oxs_ prefix. It is recommended
that local extensions use a local prefix to avoid name collisions with standard OXS objects.
(C++ namespaces are not currently used in OOMMF for compatibility with some older C++
compilers.) The Specify block initialization string format is defined by the Oxs_Ext child
class itself; therefore, as the extension writer, you may choose any format that is convenient.
However, it is recommended that you follow the conventions laid out in the MIF 2.0 file
format section of the OOMMF User’s Guide.

4.1 Sample Oxs_Energy Class
This sections provides an extended dissection of a simple Oxs_Energy child class. The
computational details are kept as simple as possible, so the discussion can focus on the C++
class structural details. Although the calculation details will vary between energy terms, the
class structure issues discussed here apply across the board to all energy terms.

The particular example presented here is for simulating uniaxial magneto-crystalline en-
ergy, with a single anisotropy constant, K1, and a single axis, axis, which are uniform across
the sample. The class definition (.h) and code (.cc) are displayed in Fig. 4.2 and 4.3,
respectively.

/* FILE: exampleanisotropy.h
*
* Example anisotropy class definition.
* This class is derived from the Oxs_Energy class.
*
*/

#ifndef _OXS_EXAMPLEANISOTROPY
#define _OXS_EXAMPLEANISOTROPY

#include "energy.h"
#include "threevector.h"
#include "meshvalue.h"

/* End includes */

class Oxs_ExampleAnisotropy:public Oxs_Energy {
private:

double K1; // Primary anisotropy coeficient
ThreeVector axis; // Anisotropy direction

public:

14

virtual const char* ClassName() const; // ClassName() is
/// automatically generated by the OXS_EXT_REGISTER macro.
virtual BOOL Init();
Oxs_ExampleAnisotropy(const char* name, // Child instance id

Oxs_Director* newdtr, // App director
Tcl_Interp* safe_interp, // Safe interpreter
const char* argstr); // MIF input block parameters

virtual ~Oxs_ExampleAnisotropy() {}

virtual void GetEnergyAndField(const Oxs_SimState& state,
Oxs_MeshValue<REAL8m>& energy,
Oxs_MeshValue<ThreeVector>& field
) const;

};

#endif // _OXS_EXAMPLEANISOTROPY

Figure 4.2: Example energy class definition. (description)

/* FILE: exampleanisotropy.cc -*-Mode: c++-*-
*
* Example anisotropy class implementation.
* This class is derived from the Oxs_Energy class.
*
*/

#include "exampleanisotropy.h"

// Oxs_Ext registration support
OXS_EXT_REGISTER(Oxs_ExampleAnisotropy);

/* End includes */

#define MU0 12.56637061435917295385e-7 /* 4 PI 10^7 */

// Constructor
Oxs_ExampleAnisotropy::Oxs_ExampleAnisotropy(

const char* name, // Child instance id
Oxs_Director* newdtr, // App director

15

Tcl_Interp* safe_interp, // Safe interpreter
const char* argstr) // MIF input block parameters
: Oxs_Energy(name,newdtr,safe_interp,argstr)

{
// Process arguments
K1=GetRealInitValue("K1");
axis=GetThreeVectorInitValue("axis");
VerifyAllInitArgsUsed();

}

BOOL Oxs_ExampleAnisotropy::Init()
{ return 1; }

void Oxs_ExampleAnisotropy::GetEnergyAndField
(const Oxs_SimState& state,
Oxs_MeshValue<REAL8m>& energy,
Oxs_MeshValue<ThreeVector>& field
) const

{
const Oxs_MeshValue<REAL8m>& Ms_inverse = *(state.Ms_inverse);
const Oxs_MeshValue<ThreeVector>& spin = state.spin;
UINT4m size = state.mesh->Size();

for(UINT4m i=0;i<size;++i) {
REAL8m field_mult = (2.0/MU0)*K1*Ms_inverse[i];
if(field_mult==0.0) {

energy[i]=0.0;
field[i].Set(0.,0.,0.);
continue;

}
REAL8m dot = axis*spin[i];
field[i] = (field_mult*dot) * axis;
if(K1>0) {

energy[i] = -K1*(dot*dot-1.0); // Make easy axis zero energy
} else {

energy[i] = -K1*dot*dot; // Easy plane is zero energy
}

}
}

Figure 4.3: Example energy class code. (description)

16

4.2 Writing a New Oxs_Energy Extension
Under construction.

4.3 Writing a New Oxs_Evolver Extension
Using the templated Runge-Kutta class. Under construction.

17

Chapter 5

Debugging OOMMF

This chapter provides an introduction to debugging OOMMF and OOMMF extension source
code, providing background to the OOMMF build architecture and detailing some tools and
techniques for uncovering programming errors. It begins with a look at the OOMMF pimake
application used for compiling and linking OOMMF programs, followed by some considera-
tions involving the oommf.tcl bootstrap wrapper. Then configuration files governing build
and runtime behavior are detailed. After this methods for identifying and locating run-
time errors are presented, including a brief introduction on using debugger applications with
OOMMF. Although the primary focus of this chapter is on errors in C++ code, the interface
and glue code linking the various OOMMF applications rely on Tcl script. An example of
working with Tcl in OOMMF is provided in Fig. 5.1

Throughout this chapter, unless otherwise stated, commands are implicitly assumed to
be run from the OOMMF root directory (i.e. the directory containing the file oommf.tcl),
and directory paths are taken relative to this directory (e.g., app/oxs/ refers to the directory
<oommf_root>/app/oxs/).

In text blocks containing command statements and program output, command state-
ments are indicated with a leading character representing the shell command prompt. On
Windows this character is typically “>”, whereas the Unix and macOS shells more commonly
use “$” with bash shells or “%” with zsh. All three are used below, but “%” is limited to
macOS specific examples to minimize confusion with the Tcl command prompt, which is also
“%”. For additional visibility shell commands are colored cyan and program commands (Tcl
and debugger) are colored red. (Computer responses remain in black text.)

Some details in what follows may vary depending on the particular operating system and
application version, but hopefully the differences are sufficiently small that this description
remains a useful guide.

5.1 Configuration Files
There are several OOMMF configuration settings that impact debug operations. The con-
trolling files are config/options.tcl and config/platforms/<platform>.tcl, where the

18

<platform> is windows-x86_64, linux-x86_64, or darwin for Windows, Linux, or macOS
operating systems respectively. In practice, rather than modifying the default distribution
files directly, you should place your modifications in local files config/local/options.tcl
and config/platforms/local/<platform>.tcl. The local/ directories and files are not
part of the OOMMF distribution; you will need to create them manually. The files can be
empty initially, and then populated as desired.

The options.tcl file contains platform-agnostic settings that are stored in the Oc_Option
database. Some of these settings affect the build process, while others control post-build run-
time behavior. All are set using the Oc_Option command, which takes name+value pairs.
The cflags and optlevel settings control compiler options. The default setting for cflags
is

Oc_Option Add * Platform cflags {-def NDEBUG}

which causes the C macro “NDEBUG” to be defined. If this is not set then various run-time
checks such as assert statements and some array index checks are activated. These checks
slow execution but may be helpful in diagnosing errors. Other cflag options include -warn,
which enables compiler warning messages, and -debug, which tells the compiler to generate
debugging symbols. A good cflags setting for debugging is

Oc_Option Add * Platform cflags {-warn 1 -debug 1}

There is also an lflags option, similar to cflags, that controls options to the linker. The
default is an empty string (no options), and you generally don’t need to change this.

The optlevel option sets the compiler optimization level, with an integer value between
0 and 3. The default value is 2, which selects for a high but reliable level of optimizations.
Some optimizations may reorder and combine source code statements, making it harder to
debug code, so you may want to use

Oc_Option Add * Platform optlevel 0

to disable all optimizations.
The config/platforms/<platform>.tcl files set default platform and compiler specific

options. For example, config/platforms/windows-x86_64.tcl is the base platform file
for 64-bit Windows. There are separate sections inside this file for the various supported
compilers. You can make local changes to the default settings by creating a subdirectory of
config/platforms/ named local/, and creating there an initially empty file with the same
name as the base platform file. Inside the base platform file is a code block labeled LOCAL
CONFIGURATION, which lists all the available local modifications. You can copy some or all
of this Tcl code block to your new config/platforms/local/ file, and then uncomment
and modify options as desired. For example, if you are using the Visual C++ compiler on
Windows, you may want to include the /RTCus compiler flag to enable some run-time error
checks. You can do that with these lines in your local/windows-x86_64.tcl file:

19

$config SetValue program_compiler_c++_remove_flags {/O2}
$config SetValue program_compiler_c++_remove_valuesafeflags {/O2}
$config SetValue program_compiler_c++_add_flags {/RTCus}
$config SetValue program_compiler_c++_add_valuesafeflags {/RTCus}

The *_valuesafeflags options are for code with sensitive floating-point operations that
must be evaluated exactly as specified. This pertains primarily to the double-double rou-
tines in pkg/xp/. The *_flags options are for everything else. The *_remove_* controls
remove options from the default compile command. This can be a (Tcl) list, with each el-
ement matching as a regular expression. (Refer to the Tcl documentation1 on the regexp
command for details.) The *_add_* controls append options. OOMMF sets /O2 optimiza-
tion by default, but /O2 is incompatible with /RTCus, so in this example /O2 is removed to
allow /RTCus to be added. (Setting optlevel 0 in the config/local/options.tcl file, as
explained above, replaces /O2 with /Od. So strictly speaking it is not necessary to remove
/O2 in that case, but it doesn’t hurt either.)

You can run the command “oommf.tcl +platform +v” to see the effects of your current
options.tcl and <platform>.tcl settings. For example,

$ tclsh oommf.tcl +platform +v
[...]
--- Local config options ---
[...]

Oc_Option Add * Platform cflags -debug 1 -warn 1
Oc_Option Add * Platform optlevel 0

[...]
--- Local platform options ---

$config SetValue program_compiler_c++_remove_flags /O2
$config SetValue program_compiler_c++_remove_valuesafeflags /O2
$config SetValue program_compiler_c++_add_flags /RTCus
$config SetValue program_compiler_c++_add_valuesafeflags /RTCus

--- Compiler options ---
Standard options: /Od /D_CRT_SECURE_NO_DEPRECATE /RTCus

Value-safe options: /Od /fp:precise /D_CRT_SECURE_NO_DEPRECATE /RTCus

To see the exact, full platform-specific compile and link commands, you can delete and
rebuild individual executables in the OOMMF package. Two examples, one using the stan-
dard build options (pkg/oc/<platform>/varinfo) and one using the value-safe options
(pkg/xp/<platform>/build_port) are presented below. (The response lines have been
edited for clarity.)

% cd pkg/oc

1https://www.tcl-lang.org/man/

20

https://www.tcl-lang.org/man/

% tclsh ../../oommf.tcl pimake clean
% tclsh ../../oommf.tcl pimake darwin/varinfo
clang++ -c -DNDEBUG -m64 -std=c++11 -Ofast -o darwin/varinfo.o varinfo.cc
clang++ -m64 darwin/varinfo.o -o darwin/varinfo

% cd ../..
% cd pkg/xp
% tclsh ../../oommf.tcl pimake clean
% tclsh ../../oommf.tcl pimake darwin/build_port
clang++ -c -DNDEBUG -m64 -std=c++11 -O3 -DXP_USE_MPFR=0

-o darwin/build_port.o build_port.cc
clang++ -m64 darwin/build_port.o -o darwin/build_port

The above is for macOS. Adjust the <platform> field as appropriate, and on Windows
append .exe to the executable targets (varinfo and build_port).

You can also use this method to manually compile and/or link individual files: (1) Change
to the relevant build directory (always one level below either pkg or app), (2) delete the file
you want to rebuild from the <platform> directory, (3) run pimake as above to build the
file, (4) copy and paste the compile/link command to the shell prompt, edit as desired, and
rerun.

The varinfo and build_port executables are used to construct the platform-specific
header files pkg/oc/<platform>/ocport.h and pkg/xp/<platform>/xpport.h. These files
contain C++ macro definitions, typedefs, and function wrappers, and are an important
adjunct when reading the OOMMF source code.

For in-depth investigations Tcl can be used to directly query and debug OOMMF ini-
tialization scripts. Start a Tcl shell, and from inside the shell append the OOMMF pkg/oc
directory to the Tcl global auto_path variable. Next run package require Oc to load
the Tcl-only portion of the OOMMF Oc library into the shell. Then you can check any
and all Oc_Option values from config/options.tcl, platform configuration settings from
config/platforms/<platform>.tcl, and perform various other types of introspection from
the Tcl shell. See Fig. 5.1 for a sample session.

5.2 Understanding pimake
The OOMMF pimake application controls the compiling and linking of OOMMF’s C++
components. Based broadly on the Unix make utility, pimake is a platform independent
tool written in Tcl. Each of the source code directories in the OOMMF distribution tree
has a makerules.tcl file that specifies build targets and dependencies. A dependency tree
is build from this information augmented with recursive tracking of #include statements
inside the referenced source code files. Each time pimake is run it compares file timestamps
against the dependency tree, and compiles and links any object and executable files that are
older than any of their dependencies.

21

$ pwd
/Users/barney/oommf
$ tclsh
% set env(OOMMF_BUILD_ENVIRONMENT_NEEDED) 1
% lappend auto_path [file join [pwd] pkg oc]
% package require Oc

% # Miscellaneous utilities from Oc_Main (oommf/pkg/oc/main.tcl)
% Oc_Main GetOOMMFRootDir ;# OOMMF root directory
/Users/barney/oommf
% Oc_Main GetPid ;# Process id
17423

% # Oc_Option database (oommf/config/options.tcl)
% # Code details in oommf/pkg/oc/option.tcl
% Oc_Option Get * ;# Registered Option classes (glob-match)
Net_Link Oc_Url Platform Menu Nb_InputFilter Net_Server Oc_Class Color
Net_Host MIFinterp OxsLogs
% Oc_Option Get Platform * ;# All options for class Platform (glob-match)
cflags lflags optlevel
% Oc_Option GetValue Platform cflags ;# Platform,cflags value
-def NDEBUG

% # Configuration values (oommf/config/platforms/<platform>.tcl)
% # Code details in oommf/pkg/oc/config.tcl
% set config [Oc_Config RunPlatform]
% $config GetValue platform_name ;# Platform name
darwin
% $config GetValue program_compiler_c++_name ;# C++ compiler
clang++
% $config GetValue program_compiler_c++_typedef_realwide ;# realwide typedef
long double
% $config Features program_linker* ;# GetValue names (glob-match)
program_linker_option_lib program_linker program_linker_rpath
program_linker_uses_-L-l program_linker_option_out program_linker_option_obj

% exit ;# Exit Tcl shell

Figure 5.1: Sample Tcl-level OOMMF introspection session. Shell commands are colored
cyan (with $ prompt) and Tcl commands are colored red (with % prompt). (description)

22

After editing *.h or *.cc files in OOMMF, you should run pimake to propagate your
changes to the associated OOMMF executable(s). If you run tclsh oommf.tcl pimake
in a directory below the OOMMF root directory, then only changes at that directory and
lower are affected. You can use the -cwd option to pimake to change the effective starting
directory. Changes to the OOMMF configuration files (Sec. 5.1) do not trigger dependency
updates, so if you make changes affecting the build process in these files you should manually
run

$ tclsh oommf.tcl pimake distclean
$ tclsh oommf.tcl pimake

from the OOMMF root directory to delete and then rebuild the full OOMMF project.

5.3 Bypassing the oommf.tcl bootstrap
When an application is launched by clicking a button in mmLaunch or from the command
shell like

> tclsh oommf.tcl mmdisp

the application (here mmDisp) is not executed directly but rather through the “bootstrap”
program oommf.tcl. The bootstrap constructs a list linking application names to commands
using the appindex.tcl files in the various application (oommf/app/) directories, and then
runs the command associated with the given name. This is convenient for normal use, but
the additional execution layer can obfuscate the debugging process. You can obtain the
direct command from the bootstrap program itself with the +command option

> tclsh oommf.tcl mmdisp +command
app/mmdisp/windows-x86_64/mmdispsh.exe app/mmdisp/scripts/mmdisp.tcl &

The response is the command as used inside a Tcl shell to launch the application. You may
need to make minor edits to run the application at your shell command prompt. For example,
the trailing ampersand runs the program in the background, which is not what one usually
wants when debugging, so you would omit this. On Windows you may want to change the for-
ward slash path separators to backslashes. Another Windows-specific modification involves
the first component of this command, app/mmdisp/windows-x86_64/mmdispsh.exe. This is
an executable containing an embedded Tcl interpreter that processes the Tcl script specified
as the second command component. If you examine the app/mmdisp/windows-x86_64/ di-
rectory you’ll find two executables, mmdispsh.exe and condispsh.exe. On Unix and macOS
these two programs are the same, but on Windows the first is linked as a native Windows
application and the second as a console application. The importance of this is that only
the second provides the usual C++ standard channels stdin, stdout, and stderr. In case
of abnormal operation programs will sometimes write error messages to stdout or stderr,
which will be lost if the program is not running as a console application. The upshot is

23

that for debugging purposes you would probably want to run mmDisp (for example) from
a Windows command console as

> app\mmdisp\windows-x86_64\condispsh.exe app/mmdisp/scripts/mmdisp.tcl

It is worth noting that on the bootstrap command line, arguments starting with ‘+’ (for
example, “+command”) are options to oommf.tcl itself. Run “tclsh oommf.tcl +h” to see
the bootstrap help message. Options to the OOMMF application follow the application
name and start with ‘-’. For example, to see the help message for a particular application,
run “tclsh oommf.tcl <appName> -h”.

5.4 Segfaults and other asynchronous termination
If an OOMMF application suddenly aborts without displaying an error message, the most
likely culprit is a segfault caused by attempted access to memory outside the program’s
purview. If this occurs while running oxsii or boxsi, the first thing to check is the oxsii.log
and boxsi.log log files in the OOMMF root directory. If there are no hints there, and the
error is repeatable, then you can enable core dumps and re-run the program until the crash
repeats. You can then obtain a stack trace from the core dump to determine the origin of
the failure.

On Linux, enable core dumps with the shell command ulimit -Sc unlimited, and then
run ulimit -Sc to check that the request was honored. If not, then ask your sysadmin about
enabling core dumps. (Core dumps can be rather large, so after analysis is complete you
should disable core dumps by running ulimit -Sc 0 in the affected shell, or else exit that
shell altogether.) Once core dumps are enabled, run the offending application from the
core-dumped enabled shell prompt. When the application aborts an image of the program
state at the time of termination is written to disk. The name and location of the core dump
varies between Linux distributions. On older systems the core file will be written to the
current working directory with a name of the form core.<pid>, where <pid> is the pid of
the process. (If the process is oxsii or boxsi then the working directory will be the directory
containing the .mif file.) Otherwise, use the command sysctl kernel.core_pattern to
determine the pattern used to create core files. If the pattern begins with a | “pipe” symbol,
then the core is piped through the indicated program, and you will have to check the system
documentation for that program to figure out where the core went!

If the core was piped through systemd-coredump, then you can use the coredumpctl
utility to gain information about the process. (More on this below.) Some Linux variants,
for example Ubuntu, use apport, but may configure it to effectively disable core dumps for
executables outside the system package management system. In this case you might want
to install the systemd-coredump package to replace apport, or else use sysctl to change
kernel.core_pattern to a simple file pattern (e.g., /tmp/core-%e.%p.%h.%t).

If you have a core dump, you can run the GNU debugger gdb on the executable and core
dump to determine where the fault occurred:

24

$ cd app/oxs
$ gdb linux-x86_64/oxs /tmp/core.12345
Program terminated with signal 11, Segmentation fault.
#0 0x00000000005a40da in Oxs_UniaxialAnisotropy::RectIntegEnergy

(Oxs_SimState const&, Oxs_ComputeEnergyDataThreaded&,
Oxs_ComputeEnergyDataThreadedAux&, long, long) const ()

(gdb) bt
#0 0x00000000005a40da in Oxs_UniaxialAnisotropy::RectIntegEnergy

(Oxs_SimState const&, Oxs_ComputeEnergyDataThreaded&,
Oxs_ComputeEnergyDataThreadedAux&, long, long) const ()

#1 0x00000000005a6fed in Oxs_UniaxialAnisotropy::ComputeEnergyChunk
(Oxs_SimState const&, Oxs_ComputeEnergyDataThreaded&,
Oxs_ComputeEnergyDataThreadedAux&, long, long, int) const ()

#2 0x000000000040ce44 in Oxs_ComputeEnergiesChunkThread::Cmd(int,
void*) ()

#3 0x00000000004697bd in _Oxs_Thread_threadmain(Oxs_Thread*) ()
#4 0x00007f90ea7fb330 in ?? () from /lib64/libstdc++.so.6
#5 0x00007f90ea019ea5 in start_thread () from /lib64/libpthread.so.0
#6 0x00007f90e9d42b0d in clone () from /lib64/libc.so.6
(gdb) quit

(For visibility, shell commands are colored cyan, and gdb commands are red. The gdb
commands are also prefixed with the (gdb) prompt. For example, “bt” above invokes the gdb
“backtrace” command.) We see that the segmentation fault occurred in the member routine
RectIntegEnergy of class Oxs_UniaxialAnisotropy, called by ComputeEnergyChunk, and
so on. If oxs had been built with debugging symbols (cf. configuration files, Sec. 5.1), then
the stack trace would include the corresponding source code files and line numbers.

If the core dump was journaled by systemd-coredump, then the command coredumpctl
list will list all available core dumps, including a timestamp, the pid, and the name of the
executable. You can get a stack trace with coredumpctl info <pid>, or load the core
dump directly into gdb with coredumpctl gdb <pid>. (Some versions of coredumpctl
want “debug” in place of “gdb” in that command; check your system documentation for
details.)

On macOS, crash reports are automatically generated and can be viewed from the macOS
Console app. Select “User Reports” or “Crash Reports” from the left hand sidebar, and select
the crashed process. The report provides details about the run, including a stack trace.

You can also create core files on macOS in a very similar way as on Linux. Set ulimit
-Sc unlimited and run the application. Core files are written to the directory /cores/,
with naming convention core.<pid>. If you built OOMMF with g++, then you can obtain
a stack trace with gdb as above. (Note that in MacPorts the gdb executable is named
ggdb.) If you built with clang++ then you may want to use the LLVM lldb debugger,
which should be included with the clang++ package. Here is an example lldb session, for
an oxs executable built with debugging symbols:

25

% cd app/oxs
% lldb -c /cores/core.54416 darwin/oxs
(lldb) target create "darwin/oxs" --core "/cores/core.54416"
Core file '/cores/core.54416' (x86_64) was loaded.
(lldb) bt
* thread #1, stop reason = signal SIGSTOP
* frame #0: 0x0000000103cfc188 oxs`Oxs_UniaxialAnisotropy::RectIntegEnergy
(this=0x00007ff0f4801000, state=0x00007ff0f350e830, ocedt=0x00007ffeec35a9a8,
ocedtaux=0x00007ff0f350e6a0, node_start=16384, node_stop=20000) const at
uniaxialanisotropy.cc:246

frame #1: 0x0000000103cfd864 oxs`Oxs_UniaxialAnisotropy::ComputeEnergyChunk
(this=0x00007ff0f4801000, state=0x00007ff0f350e830, ocedt=0x00007ffeec35a9a8,
ocedtaux=0x00007ff0f350e6a0, node_start=16384, node_stop=20000, (null)=0)
const at uniaxialanisotropy.cc:454

frame #2: 0x00000001038a1739 oxs`Oxs_ComputeEnergiesChunkThread::Cmd
(this=0x00007ffeec35b440, threadnumber=0, (null)=0x0000000000000000) at
chunkenergy.cc:199

frame #3: 0x00000001039eabaf oxs`Oxs_ThreadTree::LaunchTree
(this=0x0000000103ef3860, runobj=0x00007ffeec35b440, data=0x0000000000000000)
at oxsthread.cc:856

[...]
(lldb) quit

Similar to the gdb example, the debugger prompt is “(lldb)”, and “bt” requests a stack trace.
To create and examine core dumps on Windows, download and install ProcDump and

either WinDbg or Visual Studio applications from Microsoft. To get symbols in the
process dump file you will need to build OOMMF with symbols, i.e., include

Oc_Option Add * Platform cflags {-debug 1}

in the config/local/options.tcl. Also, since -def NDEBUG is not included on this line,
the C macro NDEBUG will not be defined, which enables code assert statements and other
consistency checks, including in particular array bound checks for Oxs_MeshValue arrays.

You can create an oxs process dump by

> cd app\oxs
> procdump -ma -t -e -x . windows-x86_64\oxs.exe boxsi.tcl foo.mif

On program exit (termination, -t) or unhandled exception (-e) procdump will write a full
dump file (-ma) to oxs.exe_YYMMDD_HHMMSS.dmp in the app/oxs directory.

Follow this procedure to examine the dump file in WinDbg:

1. Launch WinDbg.

2. Use the menu item File|Open Crash Dump... to load the .dmp file.

26

Figure 5.2: WinDbg screenshot displaying call stack, source code, and local variables read
from a crash dump generated by procdump.

3. Then View|Call Stack will open a call stack window.

4. Double-clicking on a call stack frame will highlight the corresponding line of code in
the C++ source. By default only the upper portion of the call stack is displayed, which
may be just system exit handling code. You may need to click the “More” control in
the toolbar one or more times and scroll down to reach OOMMF routines. Enable the
“Source” toolbar option to include filenames and line references in the stack list.

5. You can examine variable values at the time of the crash by opening the View|Locals
window. Referring to the the source code and local variable windows in Fig. 5.2, we
see that the index variable i has value 40000, but the size of the Ms_inverse array
only has size 40000. Thus the access into Ms_inverse on line 241 (highlighted) is one
element beyond the end of the array.

An alternative to WinDbg is to use the debugger built into Visual Microsoft’s Visual
Studio:

27

1. Launch Visual Studio.

2. Select the Continue without code option (below the “Get started” column).

3. Select File|Open|File ..., and load the *.dmp file.

4. Under “Actions” in the “Minidump File Summary” window, select Debug with Native
Only.

5. If not automatically displayed, bring up Debug|Windows|Call Stack.

6. Double-clicking in the call stack will bring up and highlight the corresponding line of
code in the C++ source.

7. Use the Debug|Windows|Autos and Debug|Windows|Locals menu items to display
variable values.

5.5 Out-of-bounds memory access
One of the more common coding errors is allowing array access outside the allocated range
of an array. This error can be insidious because the program may continue to run past the
point of invalid access, but plant a seed that grows into a seemingly unrelated fatal error
later on. There are a number of tools designed to uncover this problem, but an especially
easy one to use that is common on Linux systems is the venerable Electric Fence, original
written by Bruce Perens in 1987. If the libefence.so shared library is installed, then from
the bash prompt in the oommf/app/oxs directory you can run

$ LD_PRELOAD=libefence.so linux-x86_64/oxs boxsi.tcl foo.mif

(On some installations there may also be an equivalent shell wrapper ef.) This will abort
with a segfault if an invalid memory reference (read or write) is detected. One nice feature
is that you don’t have to rebuild OOMMF to use this debugger—the efence shared library
transparently replaces the standard system memory allocator with the instrumented Electric
Fence version at runtime. If you enable core dumps as explained above, then on Linux
systems even without debug symbols a stack trace on the core dump will provide the function
call list. If you build OOMMF with debugging symbols (Oc_Option cflags option -debug
in config/local/options.tcl), then the core stack trace will give the source file and line
number where the invalid memory access occurred. Also, OOMMF runs at normal speed
with Electric Fence enabled, so you can use it to check for errors in large simulations.

One caveat is that for performance reasons, OOMMF sometimes allocates larger memory
blocks than needed. Electric Fence detects memory accesses outside the requested memory
range, so OOMMF accesses of memory outside its proper range but inside the requested
range will not be flagged. You can have OOMMF request tight blocks by putting these lines
in your local/<platform>.tcl file:

28

$config SetValue program_compiler_c++_property_cache_linesize 1
$config SetValue program_compiler_c++_property_pagesize 1
$config SetValue sse_no_aligned_access 1

and rebuilding OOMMF (pimake distclean plus pimake).
Normally Electric Fence detects accesses to memory locations above the allocated range

(index too high), but you can have it check instead for memory accesses preceding the
allocated range (index too low) by setting the environment variable EF_PROTECT_BELOW to
1.

The Electric Fence documentation warns that core dumps of Electric Fence enabled runs
can be significantly larger than core dumps without Electric Fence, and so recommends
running Electric Fence with the selected executable (here oxs) from inside a debugger rather
than creating a core dump. This does not appear to be a problem when used with OOMMF
however, as the core dumps with Electric Fence tend to be only modestly larger than those
without.

A similar tool on macOS is the gmalloc (Guard Malloc) package, which is included with
Xcode. Run it from the oommf/app/oxs bash or zsh command line with

% DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib darwin/oxs boxsi.tcl foo.mif

See the documentation from Apple for full details.

5.6 C++ source code debuggers
If you know roughly where a bug is occurring in the code, you can often debug it by tem-
porarily inserting printf or std::cout << statements in the code. But for more complex
problems it can be more informative and quicker in the long run to create a debugging build
(i.e., one with debugging symbols and perhaps with compiler optimizations disabled) and run
the program in a debugger. This section provides general information on running OOMMF
in a debugger, including short examples in three common debuggers: gdb, lldb, and Visual
Studio Debugger.

First edit the configuration files for debugging, as explained in Sec. 5.1. Then run

$ tclsh oommf.tcl pimake distclean
$ tclsh oommf.tcl pimake

to create a build of OOMMF with debugging symbols. After this you can load an OOMMF
executable into a debugger, run the program, and examine its execution. (Remember to
bypass the oommf.tcl bootstrap as explained in Sec. 5.3.) There are many debuggers avail-
able, some with multiple front-ends. But one overriding criterion in selecting a debugger is
to choose one that supports the debugging symbol format output by your C++ compiler.
To provide a brief taste of this subject, we will look at three debuggers: GNU’s venerable
gdb for use with g++, the lldb debugger packaged with Xcode/clang++ on macOS, and
the debugger built into Microsoft’s Visual Studio for use with Visual C++ cl binaries.

29

5.6.1 Introduction to the GNU gdb debugger

This section provides a brief overview on using gdb for debugging OOMMF programs. For
a more thorough background you can refer to the extensive documentation available from
the GNU Project or the many online tutorials.

In the following examples, the (bash) shell prompt is indicated by $, and the gdb prompt
with (gdb). You launch gdb from the command line with the name of the executable file.
You can provide arguments to the executable when you run the program inside gdb. For
example, to debug a problem with an Oxs extension, we would run Boxsi with a sample
troublesome .mif file, say

$ cd oommf/app/oxs
$ gdb linux-x86_64/oxs
(gdb) run boxsi.tcl local/foo/foo.mif -threads 1

Subsequent run commands will reuse the same arguments unless you specify new ones. In
this example the -threads 1 option to Boxsi is used to simplify the debugging process. If
you need or want to debug with multiple threads, then read up on the “thread” command in
the gdb documentation.

The program run will automatically terminate and return to the (gdb) prompt if the
program exits or aborts. Alternately you can Ctrl-C at any time to manually halt. To exit
gdb type quit at the (gdb) prompt.

gdb has a large collection of commands that you can use to control program flow and
inspect program data. An example we saw before is backtrace, which can be abbreviated
as bt. Fig. 5.3 lists a few of the more common commands, and Figs. 5.4 and 5.5 provide an
example debugging session illustrating their use.

$ cd app/oxs
$ gdb linux-x86_64/oxs
(gdb) run boxsi.tcl examples/stdprob1.mif -threads 1
Starting program: oommf/app/oxs/linux-x86_64/oxs boxsi.tcl examples/stdp...
oxs: oommf/app/oxs/base/meshvalue.h:319: const T& Oxs_MeshValue<T>::oper...

Assertion `0<=index && index<size' failed.

Thread 1 "oxs" received signal SIGABRT, Aborted.
0x00007ffff65d837f in raise () from /lib64/libc.so.6
(gdb) bt
#0 0x00007ffff65d837f in raise () from /lib64/libc.so.6
[...]
#4 0x000000000041012a in Oxs_MeshValue<double>::operator[]

(this=0xcbeb58, index=40000) at oommf/app/oxs/base/meshvalue.h:319
#5 0x000000000061e88a in Oxs_UniaxialAnisotropy::RectIntegEnergy

(this=0x1307d60, state=..., ocedt=..., ocedtaux=..., node_start=36864,
node_stop=40000) at oommf/app/oxs/ext/uniaxialanisotropy.cc:241

[...]

30

Shellcommand: gdb linux-x86_64/oxs [corefile (opt)]

Command Abbr. Description
Process control
run [args] run executable with args
run run executable with last args
show args display current args
set env FOO bar set envr. variable FOO to “bar”
unset env FOO unset environment variable FOO
Ctrl-C stop and return to (gdb) prompt
kill terminate current run
quit exit gdb

Introspection
backtrace bt stack trace
frame 7 f 7 change to stack frame 7
list 123 l 123 list source about line 123
list foo.cc:50 list source about line 50 of foo.cc
list - l - list preceding ten lines
list foo::bar list first ten lines of function foo::bar()
set listsize 20 change list output length to 20 lines
info locals i lo print local variables
info args print function arguments
print foo p foo write info on variable foo
printf "%g", foo print foo with format %g (note comma)

Flow control
break bar.cc:13 b bar.cc:13 set breakpoint at line 13 of bar.cc
break foo::bar b foo::bar break on entry to C++ routine foo::bar()
info breakpoints i b list breakpoints
delete 4 d 4 delete breakpoint 4
delete d delete all breakpoints
ignore 3 100 skip breakpoint 3 100 times
watch -location foo break when foo changes value
condition 2 foo>10 break if foo>10 at breakpoint 2
continue c continue running
step [#] s [#] take # steps, follow into subroutines
next [#] n [#] take # steps, step over subroutines
finish run to end of current subroutine (step out)

Threads
info threads i th list threads
thread 4 t 4 switch context to thread 4

Figure 5.3: gdb Debugger Cheatsheet (description)
31

(gdb) frame 5
#5 0x000000000061e88a in Oxs_UniaxialAnisotropy::RectIntegEnergy...
241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
(gdb) set listsize 5
(gdb) list
239 if(aniscoeftype == K1_TYPE) {
240 if(!K1_is_uniform) k = K1[i];
241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
242 } else {
243 if(!Ha_is_uniform) field_mult = Ha[i];
(gdb) print i
$1 = 40000
(gdb) print Ms_inverse
$2 = (const Oxs_MeshValue<double> &) @0xcbeb58: {arr = 0x7ffff7ebf000,

size = 40000, arrblock = {datablock = 0x7ffff7ebe010 "",
arr = 0x7ffff7ebf000, arr_size = 40000, strip_count = 1,
strip_size = 320000, strip_pos = std::vector of length 2,
capacity 2 = {0, 320000}}, static MIN_THREADING_SIZE = 10000}

(gdb) kill
Kill the program being debugged? (y or n) y
[Inferior 1 (process 1309854) killed]

Figure 5.4: Sample gdb session, part 1: Locating the error (description)

Two notes concerning gdb on macOS: First, as mentioned earlier, if you install gdb
through MacPorts, the executable name is ggdb. Second, debuggers operate outside the
normal end-user program envelope and may run afoul of the OS security system. In particular
to use gdb you may need to set up a certificate in the macOS System Keychain for it; details
on this process can be found online. This issue might be resolved for lldb (next section)
as part of the installation process if it and clang++ were installed as part of the Xcode
package.

This introduction only scratches the surface of gdb commands and capabilities. You can
find tutorials and additional information online, or else refer to the gdb documentation from
GNU for full details.

5.6.2 Introduction to the LLVM lldb

If you are working on macOS, you may be building OOMMF with g++ or clang++. The
native debugger for clang++ is lldb, which is included as part of the Xcode package. Both
g++ and clang++ use the same debugging symbol format, so in principle you should be
able to use either debugger with either compiler, but if you have problems with one try the
other.

32

(gdb) break uniaxialanisotropy.cc:239
Breakpoint 1 at 0x61e811: file ext/uniaxialanisotropy.cc, line 239.
(gdb) run
Starting program: oommf/app/oxs/linux-x86_64/oxs boxsi.tcl examples/s...
[...]
Thread 1 "oxs" hit Breakpoint 1, Oxs_UniaxialAnisotropy::RectIntegEne...
239 if(aniscoeftype == K1_TYPE) {
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000000061e811 in Oxs_UniaxialAni...

breakpoint already hit 1 time
(gdb) ignore 1 39999
Will ignore next 39999 crossings of breakpoint 1.
(gdb) continue

Thread 1 "oxs" hit Breakpoint 1, Oxs_UniaxialAnisotropy::RectIntegEne...
239 if(aniscoeftype == K1_TYPE) {
(gdb) print i
$3 = 39991
(gdb) condition 1 i>=40000
(gdb) c

Thread 1 "oxs" hit Breakpoint 1, Oxs_UniaxialAnisotropy::RectIntegEne...
239 if(aniscoeftype == K1_TYPE) {
(gdb) l
237
238 for(OC_INDEX i=node_start;i<=node_stop;++i) {
239 if(aniscoeftype == K1_TYPE) {
240 if(!K1_is_uniform) k = K1[i];
241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
(gdb) next
240 if(!K1_is_uniform) k = K1[i];
(gdb) n
241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
(gdb) step
Oxs_MeshValue<double>::operator[] (this=0xcbeb58, index=40000)

at oommf/app/oxs/base/meshvalue.h:319
319 assert(0<=index && index<size);
(gdb) printf "%d,%d\n", index, size
40000,40000
(gdb) quit

Figure 5.5: Sample gdb session, part 2: Bug details (description)

33

The lldb debugger is a command-line debugger very similar in concept to gdb, and
although the command syntax is somewhat different, lldb provides a fair number of aliases
to ease the transition for veteran gdb users. Fig. 5.6 lists a few of the more common lldb
commands, and Figs. 5.7 and 5.8 illustrate an lldb debugging session analogous to the gdb
session presented in Figs. 5.4 and 5.5.

5.6.3 Debugging OOMMF in Visual Studio

The debugger built into Microsoft’s Visual Studio provides largely similar functionality to
gdb and lldb, but with a GUI interface. It understands the debugging symbol files produced
by the Visual C++ cl compiler, namely “Program DataBase” files having the .pdb extension.
Other debugger options for this symbol file format include the GUI WinDbg mentioned
earlier, and the related command line tool CDB.

Visual Studio is an integrated development environment, and normal usage involves build-
ing “projects” that specify all the source code files and rules for building them into an ex-
ecutable program. OOMMF does not follow this paradigm, but rather maintains similar
information in a collection of Tcl makerules.tcl files distributed across the development
tree. Thus there is no OOMMF project file to load into Visual Studio. Instead, to debug an
OOMMF application in Visual Studio you need to load the application executable directly,
along with some supplemental run information. The following details the process for Visual
Studio 2022; specifics may differ somewhat for other releases.

1. Launch Visual Studio

2. Select Open a project or solution from the Getting started pane and then nav-
igate to and select the executable.

3. In the Solution Explorer pane, right click on the executable and select Properties.

4. Under Parameters, fill in the Arguments and Working Directory fields as appropri-
ate. You may also have to modify the Environment setting, in particular if the Tcl
and Tk .dll’s are not on the default path used by Visual Studio. In this case click on
the ellipsis at the right of the Environment row, and then click the Fetch button at
the bottom of the Environment pop-up to load the current environment. Scroll down
to variable path and edit as necessary. Close when complete.

5. Select Start from the toolbar or Debug|Start Debugging from the top-level menu
bar.

6. Debug! You can use the drop-down menus to perform actions analogous to those
described above for the gdb and lldb debuggers. If you get a message that no symbols
were loaded, then most likely either the /Zi switch was missing from the compile
command or else the /DEBUG option was missing from the link command. In this case
review the OOMMF configuration file settings (Sec. 5.1)) and rebuild OOMMF. The
symbols for the executable should be stored in a *.pdb file next to the executable file.

34

Shell command: lldb [-c corefile (opt)] darwin/oxs

Command Abbr. Description

Process control
process launch -- [args] r [args] run executable with args
process launch r run executable with last args
settings show target.run-args display current args
settings set target.env-vars env FOO=bar set envr. variable FOO to “bar”FOO=bar
Ctrl-C stop and return to (lldb) prompt
process kill kill terminate current run
quit exit lldb

Introspection
thread backtrace bt stack trace of current thread
frame select 5 f 5 change to stack frame 5
frame variable print args & vars for current frame
frame variable foo p foo print value of variable foo
source list -f foo.cc -l 50 l foo.cc:50 list source after line 50 of foo.cc
source list l list next ten lines
source list -r l - list preceding ten lines
source list -c 20 list 20 lines

Flow control
breakpoint set set breakpoint at line 99 of foo.cc
--file foo.cc --line 99

breakpoint set break at C++ routine foo::bar()
--name foo::bar

breakpoint list br l list breakpoints
breakpoint delete 4 br del 4 delete breakpoint 4
breakpoint delete br del delete all breakpoints
breakpoint modify -i 100 3 skip breakpoint 3 100 times
breakpoint modify -c i>7 3 break if i>7 at breakpoint 3
watchpoint set variable foo break when foo changes value

thread continue c continue running
thread step-in s take one step, into subroutines
thread step-over n take one step, over subroutines
thread step-out finish run to end of current subroutine

Threads
thread list list all threads
thread select 2 switch context to thread 2

Figure 5.6: lldb Debugger Cheatsheet (description)

35

% cd app/oxs
% lldb darwin/oxs
(lldb) target create "darwin/oxs"
Current executable set to 'oommf/app/oxs/darwin/oxs' (x86_64).
(lldb) process launch -- boxsi.tcl examples/stdprob1.mif -threads 1
Process 36662 launched: 'oommf/app/oxs/darwin/oxs' (x86_64)
Assertion failed: (0<=index && index<size) [...] file meshvalue.h, line 319.
Process 36662 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = hit program assert

frame #4: 0x00000001000065cc oxs [...] at meshvalue.h:319:3
316 template<class T>
317 const T& Oxs_MeshValue<T>::operator[](OC_INDEX index) const
318 {

-> 319 assert(0<=index && index<size);
320 return arr[index];
321 }
322

Target 0: (oxs) stopped.
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = hit program assert

frame #0: 0x00007fff207ba91e libsystem_kernel.dylib`__pthread_kill + 10
[...]

* frame #4: 0x00000001000065cc oxs`Oxs_MeshValue<double>::operator[](th...
frame #5: 0x0000000100350fa8 oxs`Oxs_UniaxialAnisotropy::RectIntegEne...

[...]
(lldb) frame select 5
frame #5: 0x0000000100350fa8 oxs`Oxs_UniaxialAnisotropy::RectIntegEnergy(...

238 for(OC_INDEX i=node_start;i<=node_stop;++i) {
239 if(aniscoeftype == K1_TYPE) {
240 if(!K1_is_uniform) k = K1[i];

-> 241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
242 } else {
243 if(!Ha_is_uniform) field_mult = Ha[i];
244 k = 0.5*MU0*field_mult*Ms[i];

(lldb) frame variable i
(OC_INDEX) i = 40000
(lldb) frame variable Ms_inverse
(const Oxs_MeshValue<double> &) Ms_inverse = 0x0000000102b77928: {

arr = 0x0000000101da4000
size = 40000

[...]
(lldb) process kill
Process 36662 exited with status = 9 (0x00000009)

Figure 5.7: Sample lldb session, part 1: Locating the error (description)

36

(lldb) breakpoint set --file uniaxialanisotropy.cc --line 239
Breakpoint 1: where = oxs`Oxs_UniaxialAnisotropy::RectIntegEnergy(Oxs_Sim...
(lldb) process launch
Process 36718 launched: 'oommf/app/oxs/darwin/oxs' (x86_64)
[...]
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

238 for(OC_INDEX i=node_start;i<=node_stop;++i) {
-> 239 if(aniscoeftype == K1_TYPE) {

240 if(!K1_is_uniform) k = K1[i];
241 field_mult = (2.0/MU0)*k*Ms_inverse[i];

(lldb) breakpoint list
Current breakpoints:
1: file = 'uniaxialanisotropy.cc', line = 239, exact_match = 0, locations...

1.1: where = oxs`Oxs_UniaxialAnisotropy::RectIntegEnergy(Oxs_SimState c...
(lldb) breakpoint modify -i 39999 1
(lldb) thread continue
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 239 if(aniscoeftype == K1_TYPE) {
(lldb) p i
(OC_INDEX) $0 = 39991
(lldb) breakpoint modify -c i>=40000
(lldb) c
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 239 if(aniscoeftype == K1_TYPE) {
(lldb) thread step-over
* thread #1, queue = 'com.apple.main-thread', stop reason = step over
-> 240 if(!K1_is_uniform) k = K1[i];
(lldb) n
* thread #1, queue = 'com.apple.main-thread', stop reason = step over
-> 241 field_mult = (2.0/MU0)*k*Ms_inverse[i];
(lldb) thread step-in
* thread #1, queue = 'com.apple.main-thread', stop reason = step in

317 const T& Oxs_MeshValue<T>::operator[](OC_INDEX index) const
318 {

-> 319 assert(0<=index && index<size);
(lldb) print (void) printf("%d,%d\n", index, size)
40000,40000
(lldb) quit

Figure 5.8: Sample lldb session, part 2: Bug details (lldb output edited for space) (descrip-
tion)

37

7. The call stack should automatically appear when you start debugging. If not, you can
manually call it up through the menu option Debug|Windows|Call Stack. A curious
feature of Visual Studio is that the call stack window disappears when execution exits.
This happens even when the exit is caused by an abnormal event, for example via
an assertion failure. In default OOMMF builds many types of fatal errors are routed
through the Oc_AsyncError::CatchSignal(int) routine in pkg/oc/ocexcept.cc. If
you set a breakpoint in this function then the debugger will stop if it hits this function,
but will not exit the debugger, so you can still examine the call stack. Do this be-
fore you start the debugging run by pulling up the Debug|New Breakpoint|Function
Breakpoint... dialog, enter Oc_AsyncError::CatchSignal(int) in the “Function
Name” box, and click “OK”.

8. Double-clicking on a row in the Call Stack window will bring up the relevant line of
source code. Menu option Debug|Windows|Locals will open a window showing the
variable values accessible at this point in the code. An example is shown in Fig. 5.9,
where we see that the index variable i at line 241 of uniaxialanisotropy.cc has
value 40000, but the size of Ms_inverse is 40000, meaning the maximum valid index
into Ms_inverse is only 39999.

9. When you exit the debugger you will be asked if you want to save the .sln (solution)
file. If you do, it will be written in the same directory as the executable and .pdb files.
In later debugging sessions you can load the solution file in step 2 above and bypass
steps 3 and 4.

38

Figure 5.9: Visual Studio Debugger screenshot displaying call stack, source code, and
local variables from a debugging session.

39

Credits

The main contributors to this document are Michael J. Donahue (michael.donahue@nist.gov)
and Donald G. Porter (donald.porter@nist.gov), both of ITL/NIST.

If you have bug reports, contributed code, feature requests, or other comments for the
OOMMF developers, please send them in an e-mail message to <michael.donahue@nist.gov>
or <donald.porter@nist.gov>.

40

https://www.nist.gov/itl/
https://www.nist.gov/
mailto:michael.donahue@nist.gov
mailto:donald.porter@nist.gov

Bibliography

[1] W. F. Brown, Jr., Micromagnetics (J. Wiley, New York, 1963).

[2] M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0, Tech. Rep. NISTIR
6376, National Institute of Standards and Technology, Gaithersburg, MD (1999).

41

Index

announcements, 1
application

make, 2
pimake, 2

contact information, 40

e-mail, 1, 40

license, ii

network socket, 1

pimake
pseudo-target, 7

reporting bugs, 40

42

	Disclaimer
	Programming Overview of OOMMF
	Platform-Independent Make Operational Details
	Anatomy of makerules.tcl files
	The MakeRule command

	OOMMF Variable Types and Macros
	OOMMF eXtensible Solver
	Sample Oxs_Energy Class
	Writing a New Oxs_Energy Extension
	Writing a New Oxs_Evolver Extension

	Debugging OOMMF
	Configuration Files
	Understanding pimake
	Bypassing the oommf.tcl bootstrap
	Segfaults and other asynchronous termination
	Out-of-bounds memory access
	C++ source code debuggers
	Introduction to the GNU gdb debugger
	Introduction to the LLVM lldb
	Debugging OOMMF in Visual Studio

	Credits
	Bibliography
	Index

