
OOMMF

Programming Manual

September 27, 2019

This manual documents release 1.2b3.

WARNING: In this release, the documentation may not be up to
date.

WARNING: This document is under construction.

Abstract

This manual provides source code level information on OOMMF (Object Oriented
Micromagnetic Framework), a public domain micromagnetics program developed at
the National Institute of Standards and Technology. Refer to the OOMMF User’s
Guide for an overview of the project and end-user details.

http://www.nist.gov/

Contents

Disclaimer ii

1 Programming Overview of OOMMF 1

2 Platform-Independent Make 2

3 OOMMF Variable Types and Macros 3

4 OOMMF eXtensible Solver 6
4.1 Sample Oxs Energy Class . 7
4.2 Writing a New Oxs Energy Extension . 10

5 References 11

6 Credits 12

i

Disclaimer

The research software described in this manual (“software”) is provided by NIST as a public
service. You may use, copy and distribute copies of the software in any medium, provided
that you keep intact this entire notice. You may improve, modify and create derivative works
of the software or any portion of the software, and you may copy and distribute such modifi-
cations or works. Modified works should carry a notice stating that you changed the software
and should note the date and nature of any such change. Please explicitly acknowledge the
National Institute of Standards and Technology as the source of the software.

The software is expressly provided ”AS IS.” NIST MAKES NO WARRANTY OF ANY
KIND, EXPRESS, IMPLIED, IN FACT OR ARISING BY OPERATION OF LAW, IN-
CLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA
ACCURACY. NIST NEITHER REPRESENTS NOR WARRANTS THAT THE OPER-
ATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE, OR
THAT ANY DEFECTS WILL BE CORRECTED. NIST DOES NOT WARRANT OR
MAKE ANY REPRESENTATIONS REGARDING THE USE OF THE SOFTWARE OR
THE RESULTS THEREOF, INCLUDING BUT NOT LIMITED TO THE CORRECT-
NESS, ACCURACY, RELIABILITY, OR USEFULNESS OF THE SOFTWARE.

You are solely responsible for determining the appropriateness of using and distributing
the software and you assume all risks associated with its use, including but not limited to
the risks and costs of program errors, compliance with applicable laws, damage to or loss
of data, programs or equipment, and the unavailability or interruption of operation. This
software is not intended to be used in any situation where a failure could cause risk of injury
or damage to property. The software was developed by NIST employees. NIST employee
contributions are not subject to copyright protection within the United States.

We would appreciate acknowledgement if the software is used. When referencing OOMMF
software, we recommend citing the NIST technical report, M. J. Donahue and D. G. Porter,
“OOMMF User’s Guide, Version 1.0,” NISTIR 6376, National Institute of Standards and
Technology, Gaithersburg, MD (Sept 1999).

Commercial equipment and software referred to on these pages are identified for informa-
tional purposes only, and does not imply recommendation of or endorsement by the National
Institute of Standards and Technology, nor does it imply that the products so identified are
necessarily the best available for the purpose.

ii

1 Programming Overview of OOMMF

The OOMMF1 (Object Oriented Micromagnetic Framework) project in the Information
Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST)
is intended to develop a portable, extensible public domain micromagnetic program and
associated tools. This manual aims to document the programming interfaces to OOMMF at
the source code level. The main developers of this code are Mike Donahue and Don Porter.

The underlying numerical engine for OOMMF is written in C++, which provides a
reasonable compromise with respect to efficiency, functionality, availability and portability.
The interface and glue code is written primarily in Tcl/Tk, which hides most platform specific
issues. Tcl and Tk are available for free download 2 from the Tcl Developer Xchange3.

The code may actually be modified at 3 distinct levels. At the top level, individual
programs interact via well-defined protocols across network sockets. One may connect these
modules together in various ways from the user interface, and new modules speaking the
same protocol can be transparently added. The second level of modification is at the Tcl/Tk
script level. Some modules allow Tcl/Tk scripts to be imported and executed at run time,
and the top level scripts are relatively easy to modify or replace. The lowest level is the
C++ source code. The OOMMF extensible solver, OXS, is designed with modification at
this level in mind.

If you want to receive e-mail notification of updates to this project, register your e-mail
address with the “µMAG Announcement” mailing list:

http://www.ctcms.nist.gov/˜rdm/email-list.html.

The OOMMF developers are always interested in your comments about OOMMF. See
the Credits (Sec. 6) for instructions on how to contact them.

1http://math.nist.gov/oommf/
2http://purl.org/tcl/home/software/tcltk/choose.html
3http://purl.org/tcl/home/

1

http://www.itl.nist.gov/
http://www.itl.nist.gov/
http://www.nist.gov/
http://math.nist.gov/%7EMDonahue
http://math.nist.gov/%7EDPorter
http://www.ctcms.nist.gov/%7Erdm/email-list.html
http://math.nist.gov/oommf/
http://purl.org/tcl/home/software/tcltk/choose.html
http://purl.org/tcl/home/

2 Platform-Independent Make

UNDER CONSTRUCTION
Details on pimake go here.

Somewhere we should have documentation on feeding and breeding makerules.tcl files.
Should that be here, or in a separate section? If the former, then should this section be
renamed?

2

3 OOMMF Variable Types and Macros

The following typedefs are defined in the oommf/pkg/oc/platform/ocport.h header file; this
file is created by the pimake build process (see oommf/pkg/oc/procs.tcl), and contains
platform and machine specific information.

• OC BOOL Boolean type, unspecified width.

• OC BYTE Unsigned integer type exactly one byte wide.

• OC CHAR Character type, may be signed or unsigned.

• OC UCHAR Unsigned character type.

• OC SCHAR Signed character type. If signed char is not supported by a given compiler,
then this falls back to a plain char, so use with caution.

• OC INT2, OC INT4 Signed integer with width of exactly 2, respectively 4, bytes.

• OC INT2m, OC INT4m Signed integer with width of at least 2, respectively 4, bytes. A
type wider than the minimum may be specified if the wider type is handled faster by
the particular machine.

• OC UINT2, OC UINT4, OC UINT2m, OC UINT4m Unsigned integer versions of the pre-
ceding.

• OC REAL4, OC REAL8 Four byte, respectively eight byte, floating point variable. Typ-
ically corresponds to C++ “float” and “double” types.

• OC REAL4m, OC REAL8m Floating point variable with width of at least 4, respectively
8, bytes. A type wider than the minimum may be specified if the wider type is handled
faster by the particular machine.

• OC REALWIDE Widest type natively supported by the underlying hardware. This is
usually the C++ “long double” type, but may be overridden by the

program compiler c++ typedef realwide

option in the oommf/config/platform/platform.tcl file.

The oommf/pkg/oc/platform/ocport.h header file also defines the following macros for
use with the floating point variable types:

• OC REAL8m IS DOUBLE True if OC REAL8m type corresponds to the C++ “double” type.

• OC REAL8m IS REAL8 True if OC REAL8m and OC REAL8 refer to the same type.

3

• OC REAL4 EPSILON The smallest value that can be added to a OC REAL4 value of “1.0”
and yield a value different from “1.0”. For IEEE 754 compatible floating point, this
should be 1.1920929e-007.

• OC SQRT REAL4 EPSILON Square root of the preceding.

• OC REAL8 EPSILON The smallest value that can be added to a OC REAL8 value of “1.0”
and yield a value different from “1.0”. For IEEE 754 compatible floating point, this
should be 2.2204460492503131e-016.

• OC SQRT REAL8 EPSILON, OC CUBE ROOT REAL8 EPSILON Square and cube roots of
the preceding.

• OC FP REGISTER EXTRA PRECISION True if intermediate floating point operations use
a wider precision than the floating point variable type; notably, this occurs with some
compilers on x86 hardware.

Note that all of the above macros have a leading “OC ” prefix. The prefix is intended to
protect against possible name collisions with system header files. Versions of some of these
macros are also defined without the prefix; these definitions represent backward support for
existing OOMMF extensions. All new code should use the versions with the “OC ” prefix,
and old code should be updated where possible. The complete list of deprecated macros is:

BOOL, UINT2m, INT4m, UINT4m, REAL4, REAL4m, REAL8, REAL8m, REALWIDE,

REAL4 EPSILON, REAL8 EPSILON, SQRT REAL8 EPSILON, CUBE ROOT REAL8 EPSILON,

FP REGISTER EXTRA PRECISION

Macros for system identification:

• OC SYSTEM TYPE One of OC UNIX or OC WINDOWS.

• OC SYSTEM SUBTYPE For unix systems, this is either OC VANILLA (general unix) or
OC DARWIN (Mac OS X). For Windows systems, this is generally OC WINNT, unless one
is running out of a Cygwin shell, in which case the value is OC CYGWIN.

Additional macros and typedefs:

• OC POINTERWIDTH Width of pointer type, in bytes.

• OC INDEX Typedef for signed array index type; typically the width of this (integer)
type matches the width of the pointer type, but is in any event at least four bytes wide
and not narrower than the pointer type.

• OC UINDEX Typedef for unsigned version of OC INDEX. It is intended for special-
purpose use only. In general, use OC INDEX where possible.

• OC INDEX WIDTH Width of OC INDEX type.

4

• OC BYTEORDER Either “4321” for little endian machines, or “1234” for big endian.

• OC THROW(x) Throws a C++ exception with value “x”.

• OOMMF THREADS True threaded (multi-processing) builds.

• OC USE NUMA If true, then NUMA (non-uniform memory access) libraries are available.

5

Figure 1: OXS top-level class diagram.

4 OOMMF eXtensible Solver

The OOMMF eXtensible Solver (OXS) top level architecture is shown in Fig. 1. The “Tcl
Control Script” block represents the user interface and associated control code, which is
written in Tcl. The micromagnetic problem input file is the content of the “Problem Speci-
fication” block. The input file should be a valid MIF 2.0 file (see the OOMMF User’s Guide
for details on the MIF file formats), which also happens to be a valid Tcl script. The rest of
the architecture diagram represents C++ classes.

All interactions between the Tcl script level and the core solver are routed through the
Director object. Aside from the Director, all other classes in this diagram are examples
of Oxs Ext objects—technically, C++ child classes of the abstract Oxs Ext class. OXS is
designed to be extended primarily by the addition of new Oxs Ext child classes.

The general steps involved in adding an Oxs Ext child class to OXS are:

1. Add new source code files to oommf/app/oxs/local containing your class definitions.
The C++ non-header source code file(s) must be given the .cc extension. (Header
files are typically denoted with the .h extension, but this is not mandatory.)

6

2. Run pimake to compile your new code and link it in to the OXS executable.

3. Add the appropriate Specify blocks to your input MIF 2.0 files.

The source code can usually be modeled after an existing Oxs Ext object. Refer to the Oxsii
section of the OOMMF User’s Guide for a description of the standard Oxs Ext classes, or
Sec. 4.1 for an annotated example of an Oxs Energy class. Base details on adding a new
energy term are presented in Sec. 4.2.

The pimake application automatically detects all files in the oommf/app/oxs/local

directory with the .cc extension, and searches them for #include requests to construct a
build dependency tree. Then pimake compiles and links them together with the rest of the
OXS files into the oxs executable. Because of the automatic file detection, no modifications
are required to any files of the standard OOMMF distribution in order to add local extensions.

Local extensions are then activated by Specify requests in the input MIF 2.0 files. The
object name prefix in the Specify block is the same as the C++ class name. All Oxs Ext

classes in the standard distribution are distinguished by an Oxs prefix. It is recommended
that local extensions use a local prefix to avoid name collisions with standard OXS objects.
(C++ namespaces are not currently used in OOMMF for compatibility with some older C++
compilers.) The Specify block initialization string format is defined by the Oxs Ext child
class itself; therefore, as the extension writer, you may choose any format that is convenient.
However, it is recommended that you follow the conventions laid out in the MIF 2.0 file
format section of the OOMMF User’s Guide.

4.1 Sample Oxs Energy Class

This sections provides an extended dissection of a simple Oxs Energy child class. The com-
putational details are kept as simple as possible, so the discussion can focus on the C++
class structural details. Although the calculation details will vary between energy terms, the
class structure issues discussed here apply across the board to all energy terms.

The particular example presented here is for simulating uniaxial magneto-crystalline en-
ergy, with a single anisotropy constant, K1, and a single axis, axis, which are uniform
across the sample. The class definition (.h) and code (.cc) are displayed in Fig. 2 and 3,
respectively.

/* FILE: exampleanisotropy.h

*

* Example anisotropy class definition.

* This class is derived from the Oxs_Energy class.

*

*/

#ifndef _OXS_EXAMPLEANISOTROPY

#define _OXS_EXAMPLEANISOTROPY

7

#include "energy.h"

#include "threevector.h"

#include "meshvalue.h"

/* End includes */

class Oxs_ExampleAnisotropy:public Oxs_Energy {

private:

double K1; // Primary anisotropy coeficient

ThreeVector axis; // Anisotropy direction

public:

virtual const char* ClassName() const; // ClassName() is

/// automatically generated by the OXS_EXT_REGISTER macro.

virtual BOOL Init();

Oxs_ExampleAnisotropy(const char* name, // Child instance id

Oxs_Director* newdtr, // App director

Tcl_Interp* safe_interp, // Safe interpreter

const char* argstr); // MIF input block parameters

virtual ~Oxs_ExampleAnisotropy() {}

virtual void GetEnergyAndField(const Oxs_SimState& state,

Oxs_MeshValue<REAL8m>& energy,

Oxs_MeshValue<ThreeVector>& field

) const;

};

#endif // _OXS_EXAMPLEANISOTROPY

Figure 2: Example energy class definition.

/* FILE: exampleanisotropy.cc -*-Mode: c++-*-

*

* Example anisotropy class implementation.

* This class is derived from the Oxs_Energy class.

*

*/

#include "exampleanisotropy.h"

8

// Oxs_Ext registration support

OXS_EXT_REGISTER(Oxs_ExampleAnisotropy);

/* End includes */

#define MU0 12.56637061435917295385e-7 /* 4 PI 10^7 */

// Constructor

Oxs_ExampleAnisotropy::Oxs_ExampleAnisotropy(

const char* name, // Child instance id

Oxs_Director* newdtr, // App director

Tcl_Interp* safe_interp, // Safe interpreter

const char* argstr) // MIF input block parameters

: Oxs_Energy(name,newdtr,safe_interp,argstr)

{

// Process arguments

K1=GetRealInitValue("K1");

axis=GetThreeVectorInitValue("axis");

VerifyAllInitArgsUsed();

}

BOOL Oxs_ExampleAnisotropy::Init()

{ return 1; }

void Oxs_ExampleAnisotropy::GetEnergyAndField

(const Oxs_SimState& state,

Oxs_MeshValue<REAL8m>& energy,

Oxs_MeshValue<ThreeVector>& field

) const

{

const Oxs_MeshValue<REAL8m>& Ms_inverse = *(state.Ms_inverse);

const Oxs_MeshValue<ThreeVector>& spin = state.spin;

UINT4m size = state.mesh->Size();

for(UINT4m i=0;i<size;++i) {

REAL8m field_mult = (2.0/MU0)*K1*Ms_inverse[i];

if(field_mult==0.0) {

energy[i]=0.0;

field[i].Set(0.,0.,0.);

continue;

}

9

REAL8m dot = axis*spin[i];

field[i] = (field_mult*dot) * axis;

if(K1>0) {

energy[i] = -K1*(dot*dot-1.0); // Make easy axis zero energy

} else {

energy[i] = -K1*dot*dot; // Easy plane is zero energy

}

}

}

Figure 3: Example energy class code.

4.2 Writing a New Oxs Energy Extension

Under construction.

10

5 References

[1] W. F. Brown, Jr., Micromagnetics (Krieger, New York, 1978).

[2] M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0, Tech. Rep. NISTIR
6376, National Institute of Standards and Technology, Gaithersburg, MD (1999).

11

6 Credits

The main contributors to this document are Michael J. Donahue (michael.donahue@nist.gov)
and Donald G. Porter (donald.porter@nist.gov), both of ITL/NIST.

If you have bug reports, contributed code, feature requests, or other comments for the
OOMMF developers, please send them in an e-mail message to <michael.donahue@nist.gov>.

12

http://www.itl.nist.gov/
http://www.nist.gov/
mailto:michael.donahue@nist.gov

Index

announcements, 1

contact information, 12

e-mail, 1, 12

network socket, 1

reporting bugs, 12

13

	Disclaimer
	Programming Overview of OOMMF
	Platform-Independent Make
	OOMMF Variable Types and Macros
	OOMMF eXtensible Solver
	Sample Oxs_Energy Class
	Writing a New Oxs_Energy Extension

	References
	Credits

