Press
here
to get the full document in PostScript format.
Press
here
to get this subdocument in PostScript format.
Numerical Evaluation of Special Functions
D. W. Lozier and F. W. J. Olver
4.4. Gamma, Psi, and Polygamma Functions
.
4.4.1. Gamma Function of Real Argument.
Algorithms:
[ CH67]
,
[ Cle62]
,
[ Luk69b]
,
[ Luk75]
.
Software Packages:
[ CMW63, Algol]
,
[ CT85, Fortran]
,
[ FS67, Algol]
,
[ Mac89, Fortran]
,
[ Tem94, Pascal]
.
Intermediate Libraries:
[ Bak92]
,
[ Mos89]
,
[ ULI90]
.
Comprehensive Libraries:
IMSL,
NAG,
Numerical Recipes,
Scientific Desk,
SLATEC.
4.4.2. Psi and Polygamma Functions of Real Argument.
Algorithms:
[ CST73]
,
[ Luk69b]
,
[ Luk75]
.
Software Packages:
[ Amo83b, Fortran]
,
[ Bow84, Fortran]
.
Intermediate Libraries:
[ Bak92]
,
[ Mos89]
,
[ ULI90]
.
Comprehensive Libraries:
IMSL,
NAG,
Scientific Desk,
SLATEC.
4.4.3. Complex Arguments.
Algorithms:
[ Luk69b]
.
Software Packages:
[ BD80, Fortran]
,
[ Kol72a, Fortran]
,
[ Kuk72a, Fortran]
.
Intermediate Libraries:
[ Bak92]
.
Comprehensive Libraries:
IMSL,
Scientific Desk,
SLATEC.
Interactive Systems:
Maple,
Mathematica.
4.4.4. Articles.
[ AB87b]
,
[ Cha80]
,
[ Cod91, includes survey]
,
[ FW80]
,
[ Kat78]
,
[ Kra90]
,
[ Kuk72b]
,
[ Luk70a]
,
[ McC81]
,
[ Ng75, includes survey]
,
[ vdLT84]
.
References
- AB87
-
G. Allasia and R. Besenghi, Numerical computation of Tricomi's psi
function by the trapezoidal rule, Computing 39 (1987), 271--279.
- Amo83
-
D. E. Amos, Algorithm 610. A portable Fortran subroutine for
derivatives of the psi function, ACM Trans. Math. Software 9 (1983),
494--502.
- Bak92
-
L. Baker, C mathematical function handbook, McGraw-Hill, Inc., New
York, 1992, includes diskette.
- BD80
-
A. Bañuelos and R. A. Depine, A program for computing the Riemann
zeta function for complex argument, Comput. Phys. Comm. 20 (1980),
441--445.
- Bow84
-
K. O. Bowman, Computation of the polygamma functions, Comm. Statist.
B---Simulation Comput. 13 (1984), 409--415.
- CH67
-
W. J. Cody and K. E. Hillstrom, Chebyshev approximations for the natural
logarithm of the gamma function, Math. Comp. 21 (1967), 198--203.
- Cha80
-
B. W. Char, On Stieltjes' continued fraction for the gamma function,
Math. Comp. 34 (1980), 547--551.
- Cle62
-
C. W. Clenshaw, Chebyshev series for mathematical functions, National
Physical Laboratory Mathematical Tables, vol. 5, Her Majesty's Stationery
Office, London, 1962.
- CMW63
-
C. W. Clenshaw, G. F. Miller, and M. Woodger, Algorithms for special
functions I, Numer. Math. 4 (1963), 403--419.
- Cod91
-
W. J. Cody, Performance evaluation of programs related to the real gamma
function, ACM Trans. Math. Software 17 (1991), 46--54.
- CST73
-
W. J. Cody, A. J. Strecok, and H. C. Thacher, Jr., Chebyshev
approximations for the psi function, Math. Comp. 27 (1973), 123--127.
- CT85
-
M. Carmignani and A. Tortorici Macaluso, Calcolo delle funzioni speciali
,
,
,
,
alle
alte precisioni, Atti Accad. Sci. Lett. Arti Palermo (5) 2 (1981--82)
(1985), no. 1, 7--25.
- FS67
-
A. M. S. Filho and G. Schwachheim, Algorithm 309. Gamma function with
arbitrary precision, Comm. ACM 10 (1967), 511--512.
- FW80
-
A. Fransén and S. Wrigge, High-precision values of the gamma function
and of some related coefficients, Math. Comp. 34 (1980), 553--566, for
addendum and corrigendum see same journal v. 37 (1981), pp. 233--235.
- Kat78
-
C. R. Katholi, On the computation of values of the psi function from
rapidly converging power series expansions, J. Statist. Comput. Simulation
8 (1978), 25--42.
- Köl72
-
K. S. Kölbig, Programs for computing the logarithm of the gamma
function, and the digamma function, for complex argument, Comput. Phys.
Comm. 4 (1972), 221--226.
- Krä90
-
W. Krämer, Berechnung der Gammafunktion
für reelle
Punkt- und Intervallargumente, Z. Angew. Math. Mech. 70 (1990),
T581--T584.
- Kuk72a
-
H. Kuki, Algorithm 421. Complex gamma function with error control,
Comm. ACM 15 (1972), 271--272.
- Kuk72b
-
H. Kuki, Complex gamma function with error control, Comm. ACM 15
(1972), 262--267.
- Luk69
-
Y. L. Luke, The special functions and their approximations, vol. 2,
Academic Press, New York, 1969.
- Luk70
-
Y. L. Luke, Evaluation of the gamma function by means of Padé
approximations, SIAM J. Math. Anal. 1 (1970), 266--281.
- Luk75
-
Y. L. Luke, Mathematical functions and their approximations, Academic
Press, New York, 1975.
- Mac89
-
A. J. MacLeod, Algorithm AS 245. A robust and reliable algorithm for
the logarithm of the gamma function, Appl. Statist. 38 (1989),
397--402.
- McC81
-
P. McCullagh, A rapidly convergent series for computing
and its
derivatives, Math. Comp. 36 (1981), 247--248.
- Mos89
-
S. L. B. Moshier, Methods and programs for mathematical functions, Ellis
Horwood Limited, Chichester, 1989, separate diskette.
- Ng75
-
E. W. Ng, A comparison of computational methods and algorithms for the
complex gamma function, ACM Trans. Math. Software 1 (1975), 56--70.
- Tem94
-
N. M. Temme, A set of algorithms for the incomplete gamma functions,
Probab. Engrg. Inform. Sci. (1994), in press.
- ULI90
-
Mathematical function library for Microsoft--C, United Laboratories,
Inc., John Wiley & Sons, 1990, includes diskettes. Edition also
exists in Fortran (1989).
- vdLT84
-
C. G. van der Laan and N. M. Temme, Calculation of special functions
: The gamma function, the exponential integrals and error-like functions,
CWI Tract, vol. 10, Centrum voor Wiskunde en Informatica, Amsterdam, 1984.
Abstract:
This document is an excerpt from the current hypertext version of
an article that appeared in Walter Gautschi (ed.),
Mathematics of Computation 1943--1993: A Half-Century of
Computational Mathematics, Proceedings of Symposia in
Applied Mathematics 48, American Mathematical Society,
Providence, RI 02940, 1994.
The symposium was held at the University of British Columbia
August 9--13, 1993, in honor of the fiftieth anniversary of
the journal Mathematics of Computation.
The original abstract follows.
Higher transcendental functions continue to play varied and
important roles in investigations by engineers, mathematicians,
scientists and statisticians.
The purpose of this paper is to assist in locating useful approximations
and software for the numerical generation of these functions, and to
offer some suggestions for future developments in this field.
Applied and Computational Mathematics Division,
National Institute of Standards and Technology,
Gaithersburg, Md 20899
E-mail address: [email protected]
Institute for Physical Science and Technology,
University of Maryland,
College Park, MD 20742
E-mail address: [email protected]
The research of the second author has been supported by NSF
Grant CCR 89-14933.
1991 Mathematics Subject Classification. Primary 65D20;
Secondary 33-00.
Daniel W Lozier
Fri Apr 7 13:52:51 EDT 1995