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Abstract. We have developed a method to rapidly test the quality of a
biological image, to identify appropriate segmentation methods that will
render high quality segmentations for cells within that image. The key
contribution is the development of a measure of the clarity of a biologi-
cal cell within an image that can be quickly and directly used to select
a segmentation method during a high content screening process. This
method is based on the gradient of the pixel intensity field at cell edges
and on the distribution of pixel intensities just inside cell edges. We have
developed a technique to synthesize biological cell images with varying
qualities to create standardized images for testing segmentation meth-
ods. Differences in quality indices reflect observed differences in resulting
masks of the same cell imaged under a variety of conditions.

1 Introduction

High content screening (HCS) has become a critical method for large scale cell
biology and is often used for drug discovery. HCS is the automation of cell bio-
logical investigation using automated microscopes and sample preparation and
includes the acquisition and analysis of cellular images without human interven-
tion. Quantitative fluorescent microscopy plays a key role in HCS as it does in
cell biology in general. Typical HCS-based experiments can involve the analysis
of more than a million cells [1][2][3][4][5].

Image segmentation is the most important part of analyzing biological image
data [4]. Consequently, many segmentation methods have been published, in-
cluding histogram-based, edge-detection-based, watershed, morphological, and
stochastic techniques [4]. However, segmenting the same image with different
methods can lead to different masks for a given cell, and hence different esti-
mates of cell characteristics (e.g, area, perimeter, etc.). We refer to a mask as
the set of pixels that are used to define an object within an image.

Accurate segmentation is one of the challenges facing high content screening
[5]. Given the large number of images and the consequent impracticalities of
human supervision, high content screening can be expected to pose additional
0 This contribution of NIST, an agency of the U.S. government, is not subject to
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challenges to ensuring reliable and accurate cell image segmentation. Indeed, the
handling and analysis of large image sets has been identified as an impediment
to the wider use of HCS [4]. Therefore it is important to obtain some predictive,
objective and efficient measure of the segmentation quality resulting from a
particular method, on a cell-by-cell basis, for different cells. Not all cells in the
same image will lead to segmentations with the same accuracy. Certain clinically
relevant cell lines are also known to be particularly difficult to segment, making
the automated analysis of image data unreliable. For example, in one study,
the dose response of morphological features varied significantly between well
segmented and poorly segmented cells taken from high content screening data
[6].

Fig. 1. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right)
lead to the same summed estimate at xs. This shows a figure consisting of different
types of lines. Elements of the figure described in the caption should be set in italics,
in parentheses, as shown in this sample caption. The last sentence of a figure caption
should generally end without a period

The goal of this project is to provide a simple, yet reasonably faithful, mea-
sure of the quality of an individual cell in an image, to be used to facilitate the
choice of a segmentation method and for the choice of focus setting for the cell
image. To define a quality index for a cell image, we first examine a series of
images and their ranges in quality (albeit subjective), revealing types of features
associated with low/high quality. Section 2 describes the data images considered
in this project. Examination of these images leads to the definition of the qual-
ity index in Section 3. We then illustrate in Section 4 our method of creating
synthetic images with a given quality index. While our measure is shown to be-
have as expected (i.e., poor images associated with low quality indices), a field
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study is needed to validate this measure for more general cases. We propose the
investigation of this issue and others in the concluding Section 5.

2 Data description

We examined 16 sets of fixed cell images prepared by our biological collaborators
at NIST. These images consist of A10 rat smooth vascular muscle cells and 3T3
mouse fibroblasts stained with Texas Red cell body stain [7]. For each set, we
compared six different images for a total of 96 images. Each image comprises
multiple cells. Five of the six images are repeated acquisitions under five sets of
imaging conditions. The first three sets were acquired using three different expo-
sure times with Chroma Technology’s Texas Red filter set (Excitation 555/28,
#32295; dichroic beamsplitter #84000; Emission 630/60, #41834). This filter
is matched to the cell body stain used and allows us to compare the effect of
exposure time on acquired cell images. We used non-optimal filters to reduce in-
tensity signal to noise and introduce blurring: Chroma Technology’s GFP filter
set (Excitation 470/40, #51359; dichroic beamsplitter #84000; Emission 525/50,
#42345). 4 The resulting images were blurred in a fashion similiar to the Gaus-
sian blurring operation found in many image processing systems. These five
image sets were acquired using 2x2 binning in which the output of four CCD
image elements are averaged to produce one image pixel. Binning is typically
used to trade image resolution for acquisition speed and sensitivity [2].

The sixth image is a higher-resolution 1x1 binned image, using the full image
range to define pixel intensities. We use this image to create a ground truth mask
for each cell; the pixels are characterized (background, edge, cell interior) via ex-
pert manual segmentation to assure a “gold standard” image. The five conditions
that generated the five images to be compared with the “gold standard” image
are a combination of filter type (optimal or non-optimal) and illumination level
(low, medium, high), and are given in Table 1. We visualize the overall quality
of the image by color-coding the pixels. Figure 2 provides a visual rendition of
the five conditions for cell number 4 from image set 1.

Each series of five color-coded images revealed differences in the implied
masks representing a particular cell under the five imaging conditions. The ap-
parent cell edges vary widely in clarity and sharpness across the five different
images of the same cells. In particular, the images vary in terms of the number
of pixel lengths (distance between pixels) needed to represent the thickness of
the edge regions of the cells. We will attempt to quantify this feature in the next
section.

4 Certain trade names are identified in this report in order to specify the experimental
conditions used in obtaining the reported data. Mention of these products in no way
constitutes endorsement of them. Other manufacturers may have products of equal
or superior specifications.
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Table 1. The five sets of imaging conditions.

Image Illumination Exposure Filter type
Level time(s)

1 low 0.015 optimal filter (Texas Red filter set)
2 medium 0.08 optimal filter (Texas Red filter set)
3 high 0.3 optimal filter (Texas Red filter set)
4 low 1.0 non-optimal filter (GFP filter set)
5 medium 5.0 non-optimal filter (GFP filter set)
6 (gold standard)

Fig. 2. Individual pixel intensities are color-coded over the range in each image, to
show differences in edge sharpness. The ground truth mask is shown for comparison.

3 Quality Calculation

For each cell in an image, we look at pixel intensities within an isolated region
containing the cell. We fit this distribution using a 3-component Gaussian mix-
ture via the EM (Expectation-Maximization) algorithm. A 2-component mixture
model, with a cell component and a background component, resulted in estimates
for means, standard deviations, and component fractions significantly different
from the actual data. Thus we reasoned that the edge pixels, whose intensities
span a wide range of pixels, form their own third distribution. The 3-component
model is illustrated in Figure 3 for the second and fifth cells of Figure 2 and bet-
ter reflects the actual data. We provide the equations for fitting the 3-component
model (described in general terms in [8] [9]) in [10]. As illumination is increased,
the overall range of pixel intensities increases, giving a better separation of the
background and edge peaks. At high illumination, however, the center of the
cell is flooded with light, and the edge distribution is very thin and pushed back
towards the background distribution. In the discussion below, xp and sp denote
the estimated mean and standard deviation, respectively, of the intensities from
pixels of type p from the EM algorithm, where p corresponds to B (background
pixels), E (edge pixels), or C (cell interior pixels).

We examined 16 sets of data in detail. For each set of imaging conditions in
Table 1, we find a consistent background distribution. Data for the background
mean, xB , and standard deviation, sB , as well as for the edge pixel mean, xE ,
and standard deviation, sE , for the first image of each of the 16 sets, taken at low
illumination with the optimal filter (set 1 in Table 1), are given in Table 2. The
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Table 2. Background and Edge values for all low illumination, optimal filter images

Set Cell number Background Background Edge Edge
Mean, xB SD, sB Mean, xE SD, sE

1 1 115 4 141 19
2 5 119 4 193 42
3 2 117 4 178 36
4 1 115 4 188 50
5 2 116 4 238 85
6 1 119 4 195 40
7 1 119 4 202 38
8 2 116 3 131 12
9 1 119 5 152 24
10 1 113 4 156 33
11 1 115 4 141 20
12 1 116 3 158 31
13 1 113 3 152 25
14 1 117 5 190 59
15 1 114 4 178 48
16 1 117 4 171 31

Mean 116 3.94 173 37
SD 0.51 0.14 7.0 4.45

N.B. Pooled sB = 3.98 (mean(sB) = 3.94); pooled sE = 40.87 (mean(sE) = 37.06)

overall Gaussian shapes of the edge and cell distributions are similar in each of
the 16 sets, although there is more variation in the edge distributions. The data
for Table 2 refer to estimates from the 3-component model for the distribution
of pixel intensities (background, cell, edge) for a single cell chosen from each
image. We choose the first cell of each image for this table, unless a particular
cell in the image was used consistently in another part of this analysis.

For each pixel intensity between xB and xE (i.e., between the mean of the
background distribution and the mean of the edge distribution), we also calculate
an average value for the magnitude of the gradient at that intensity. We look
at the gridded data within a bounding box on the image that contains a single
cell in an image. At each pixel location, pij , with pixel intensity, Iij , we find a
local derivative of that intensity and its magnitude, using a Sobel mask. In the
i direction, a numerical estimate for the directional derivative at each pij is:

∂I/∂i|pij
= [2·I(i+1)j−2·I(i−1)j+I(i+1)(j−1)−I(i−1)(j−1)+I(i+1)(j+1)−I(i−1)(j+1)]/8.

(1)
In the j direction, we find the numerical estimate at each pij :

∂I/∂j|pij = [2·Ii(j+1)−2·Ii(j−1)+I(i−1)(j+1)−I(i−1)(j−1)+I(i+1)(j+1)−I(i+1)(j−1)]/8.
(2)
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Fig. 3. Normalized curves of the 3 components of pixel intensities, as an example, for
the second and fifth cells of Figure 1, background(blue), edge(green), and cell(purple).

The total derivative gives the magnitude of the gradient of the intensity at pij ,
which we denote by g(i, j):

g(i, j) ≡ dI(i, j) =
√

(∂I/∂i)2|pij
+ (∂I/∂j)2|pij . (3)

We find a gradient magnitude value g(i, j) at each location pij . The average
value of the gradient magnitude at those locations where the measured intensity
level is a given value, say I∗, is given by:

G(I∗) = ave{g(i, j) : I(i, j) = I∗}. (4)

If Imin is the lowest intensity value found within the cell bounding box, and Imax

is the largest intensity, then for each intensity I between Imin and Imax, we find
the average gradient magnitude for that intensity. If, for example, a particular
intensity value, Iv, occurs 3 times within the bounding box, at positions pab, pcd,
and pef , the average magnitude of the gradient at intensity = Iv is:

Gv = (gab + gcd + gef )/3. (5)

We will refer to this average gradient function as G(I), where I is an intensity in
the region of the edge. Recall that our 3-component model classified intensities as
background, edge, and cell, so values of I near the edge likely lie between xB and
xE+2sE . We denote by A the intensity for which G(I) is largest for xB ≤ I ≤ xE ;
i.e., A = argmaxxB≤I≤xE

G(I). In Figure 4, we show the locations of the pixels,
pij , whose intensities are equal to Intensity A. Using our visualization tools, we
see that these pixels lie within one or two pixel lengths of the apparent edge of
the cell, which we see in accompanying images of more detailed contouring of
the pixel intensities. Because the data are discretized, we can only approximate
the position within 1-2 grid points in all directions.

The average gradient magnitude curve, G(I) vs. intensity I, reflects two cell
characteristics. The initial slope of the curve directly indicates the sharpness of
the edge: the steeper the slope, the sharper the edge. The shape of this curve
also indicates a feature of the cell edges. For very sharp edges, the average



A Quality Pre-Processor for Biological Cell Images 7

Fig. 4. Cell 2, set 1, imaging conditions 1-5: pixel intensities above Intensity A are
red, Intensity A (+/- 1 unit), green, and below A, blue. Green pixels fall close to the
apparent cell edge. Below, each cell is color-coded in 40 equally-spaced pixel ranges.

gradient magnitude increases monotonically across the range from the mean
of the background, xB , to the mean of the edge distribution, xE , as is seen
for all high illumination images (type 3 in Table 1). For the low and medium
illumination images, the gradient increases from xB , reaches a maximum, and
then falls. The graphs for the gradient magnitude for cell 5, image set 2, under
low, medium, and high illumination with the optimal filter are shown in Figure
5a, and for low illumination for both filters in Figure 5b.

Fig. 5. Cell 5, set 2: a.)Averaged magnitudes of the pixel gradient for imaging condi-
tions 1(red), 2(blue), 3(purple); b.)for imaging conditions 1(red), 4(blue).

For the type 3, high illumination images, the gradient magnitude continually
increases between xB and xE , so we set the maximum gradient value in this
region, Intensity A, to be the magnitude of the gradient at xE . The edge distri-
bution is very close to the background distribution for these images, and we do
not expect a rise and fall in the plot of the gradient magnitude within this small
part of the curve (see the purple curve of Figure 5).

We assume that the quality of the image is a function of both the pixel inten-
sities and their gradients at the edge of a cell. To assign a quality value to a cell,
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we first analyze the background pixel distribution and edge pixel distribution,
and compute the average gradient magnitude as a function of pixel intensity in
the range between the means of these two distributions.

We measure the quality of an image in terms of an index that measures how
rapidly the pixel intensities fall from the intensity at the maximum gradient at
the edge (Intensity A) to the background mean value (xB). In particular, we
calculate the expected fraction of this range that should lie on the image within
two physical pixel lengths of intensity A = argmaxxB≤I≤xE

G(I). We look at
the quality indices QI of cells from several sets of images taken from two cell
lines to illustrate the calculations of QI.

Consider the set of images from cell 5 in set 2, which yielded the gradient
curves in Figure 5. The intensity range between xB and Intensity A is divided
into 10 equal-pixel-length ranges, and each range is displayed in Figure 6, en-
larged pictures of the lower right corner of each of the five images in the region
containing the cell pseudopodia. This example is chosen because the pseudopodia
are connected to the rest of the cell over a very narrow region, of approximately
the same size as the boundary edge region we use to define the quality measure.

Fig. 6. The mask for cell 5 of set 2, and enlarged pictures of the lower right hand
portion of the cell containing the pseudopodia, under the five imaging conditions.

From the magnitude of the gradient, we calculate the expected fraction of
the cell edge that lies within two pixel lengths of the maximum gradient at the
edge. We use the following sequence of steps:
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1. Find the 3-component pixel intensity distribution; denote means of the com-
ponents by xB , xE , xC .

2. Find the average gradient magnitude at each intensity between xB and xE .
3. Smooth the gradient in this region to fill in any gaps, and denote the resulting

function by G(Intensity).
4. Find the intensity, Intensity A, at which the smoothed gradient magnitude

is maximized.
5. Find the expected neighboring pixel to a pixel with Intensity A and denote

this intensity as B; i.e., Intensity B = A - G(A)*(1 pixel unit).
6. Find the expected neighboring pixel to a pixel with Intensity B; i.e., Intensity

C = B - G(B)*(1 pixel unit) = A - G(A)*(1 pixel unit) - G(A-G(A)*(1 pixel
unit))*(1 pixel unit).

7. Compute the quality index as QI = (A - C)/(A - xB).

We perform the above calculations for the five different images of cell 5, im-
age set 2. The results of each of the steps are given in Table 3. Comparing these
qualities with the images of these cells, the quality index appears to describe how
well the very thinnest geometry of the cell, the place where the pseudopodia are
attached, are apparent in the image. For the optimal filter images, increasing the
illumination increases the range of pixel intensities in the image, separating the
background and edge distributions from each other and from the pixel intensity
distribution that represents the cell and its pseudopodia. The sharper the edge,
the higher the quality index. The thin connection (2 to 3 pixel lengths) between
the main part of the cell and the pseudopodia is clearly seen for the medium and
high illumination figures, and pixel intensities between the two parts of the pseu-
dopodia decrease to levels near xB . For the images taken with the non-optimal
filter, the connection between the main part of the cell and the pseudopodia is
lost in the images, and the pixel intensities between the two parts of the pseu-
dopodia do not approach xB . It is clear from these figures that the decrease in
pixel intensity between the inside of the cell and the background covers much
more than two pixel lengths. In the medium illumination, non-optimal filter im-
age, type 5, much less noise appears than in the corresponding low illumination
image, type 4, but the edge of the cell covers, on average, about 4 to 5 pixel
lengths, so no connection appears between the lower portion of the pseudopodia
and the main portion of the cell.

Table 3. Quality calculation for cell 5 of image set 2 for the five test images.

Type xB A G(A) B G(B) C Quality

1 119 146 16.06 130 7.91 123 0.852
2 165 319 109.13 210 45.23 165 1.000
3 321 799 480.50 319 5.38 314 1.015
4 192 222 7.87 215 7.02 208 0.467
5 524 692 39.92 653 33.67 620 0.429
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4 Data Creation

To compare cell segmentation techniques with one another, we use the quality
index we defined above to create sets of test images over a specified range of
qualities. We assume that a given segmentation method will have some quality
range over which the segmentation provides a given measure of accuracy. A
quality index permits a quick assessment of the accuracy of the cell area from
a particular segmentation method. To illustrate the creation of sets of synthetic
cells with a specified range of qualities, we describe and show a set created from
a ground truth mask of one of the cells in the 16 sets described above, cell 2
from set 10.

The five images of the cell of interest from that set have qualities equal to
0.842, 0.910, 1.137, 0.563, and 0.636. The images of those cells are shown in
Figure 7. To test our method, we will construct a cell with pixel distributions
and gradients that correspond with the second image, and compare its quality
index to the index for that cell, 0.910. We now construct the new cell from
the mask, such that its distribution has three components whose means and
standard deviations agree with those of the original cell. Then we use the other
characteristics of that cell, namely the intensity of maximum gradient at the edge
and the cell quality, to compare with the new cell to ensure a match between the
set values and the calculated values on the synthetic image. To begin, we read
in the mask from Figure 7, and assign each pixel of the new image a “0” if it is
part of the background of the mask, a “2” if it is part of the inside of the cell on
the mask, and a “1” if it is part of the mask, but has a neighboring pixel that is
not part of the mask. We build our cell edge by starting at pixels coded as “1”.

Fig. 7. The five different images of the cell whose mask is used for the cell synthesis
and the corresponding mask.

We assemble a pixel distribution for the new cell using the three components
of the original cell. For cell 2 of image 10, the type 2 image, xB , xE , and xC

respectively are 132, 225, and 826, and the sB , sE , and sC values are 5, 80, and
817. The fractional components are 0.800, 0.103, and 0.096. We calculate the
expected number of pixels at each intensity by adding the contributions of each
component at each intensity. If the total number of pixels in this region is T,
then the expected number of pixels with intensity I is:

pE = 0.800T ; pB = 0.103T ; pC = 0.096T ; (6)

#pixels(I) = pBφ(I;xB , sB) + pEφ(I;xE , sE) + pCφ(I;xC , sC), (7)
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where φ(I;µ, σ) denotes the Gaussian density function with mean µ and standard
deviation σ at a particular value of the intensity, I. For each pixel intensity, we
compute the difference between the raw data and the data computed from the
3-component distribution above to determine the standard deviation in the raw
data. We compute the standard deviation over different pixel intensity ranges.
Larger standard deviations are expected with more data in the range of the
background pixel intensities.

We collect two sets of pixel intensities from the 3-component distribution.
One set contains intensities at or below Intensity A, the intensity where the
gradient is maximized. One set lies above Intensity A. For each pixel intensity
in each set, we modify the actual pixel intensity by changing it to the Gaussian
variate determined by N(xp,s2

p), where p corresponds to B (background), E
(edge), or C (cell interior) pixels. The pixels in the first set are placed outside of
the mask according to their distances from the pixels marked with a 1. The pixels
in the second set are placed inside of the mask according to their distances from
the pixels marked with a 1. Figure 8b shows the resulting new cell alongside
the original cell, 8a, from which it is made. We then test the new image by
recalculating the 3-component analysis, pixel intensity gradient, and quality to
ensure that it retained the same features. The means of the 3-component analysis
are only slightly different, as would be expected by imposing random noise: xB

= 134, xE = 214, and xC = 770. The intensity of maximum gradient at the edge
occurs at Intensity A = 181, and the quality is 0.915. So we have created a cell
with the same basic features as the original.

Fig. 8. a.)The original cell imaged with medium illumination, optimal filter.
b.)Synthesized cell of the same type as (a), made as a test case. c,d.)Two cells identi-
cal except for the spread of the background pixels: standard deviations are 10 and 12
compared to original 5. e,f)Two cells identical except that the edge distribution has
been shifted from a mean of 225 to a mean of 215 and 205.

Now we can change some of the characteristics of this synthetic cell and
monitor the corresponding change in quality. First, we create a set of cells in the
same way as the cell above, but change the standard deviation of the background
peak. The original background peak has a standard deviation of 5, and we create
two new cells with backgrounds of mean xB = 132 as before, but with standard
deviations, sB equal to 10 and 12 instead of 5 (see Figure 8c,d). The quality
indices of these new cells change from 0.910 to 0.766 and 0.667, respectively.

Next we modify the edge distribution without changing the magnitude of the
pixel intensity gradient. We shift the value of xE from its original value of 225
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to either 215 or 205, so that the modified edge distribution overlaps more closely
with the background distribution. The results for these two examples are shown
in Figure 8e,f. The image qualities for these two examples change from 0.910 to
0.878 and 0.825, respectively. As one would expect, the quality index decreases
as the overlap between the background and edge distributions increases.

We can use these techniques to look at the effect of using a less optimal
filter for cell imaging. We focus on the type 5 image of this same series, imaged
with medium illumination and a non-optimal filter. If we try to reconstruct this
cell, using the original cell’s 3-component mean and standard deviation values,
the same pixel gradient, and the same value of pixel intensity for the maximum
gradient at the cell edge, we create a cell with basically the same quality as the
original cell (0.59 compared with 0.58 for the original), but the shape of the cell
looks very different, shown in Figure 9. Clearly the precise shape of the cell is
influenced by the optical effects introduced with different filter sets, leading to
different segmentation results, and hence the masks for the two cells in Figure 9
will be different. Thus this index appears to describe only the clarity of the cell
edge, which will differ from the true mask as the quality decreases.

Fig. 9. Original cell imaged with medium illumination, non-optimal filter; cell synthe-
sized with the same characteristics, starting from the ground truth mask.

5 Conclusions and future work

The features of a biological cell image are complex. The accuracy of a cell segmen-
tation by any given method can depend on many different factors: the magnitude
of the pixel gradient at the cell edges, the background pixel intensity distribu-
tion: the overlap between the background pixel intensity distribution and the
edge pixel intensity distribution, and spreads in these distributions. It can also
depend upon other geometric features of a cell, such as roundness of the cell and
jaggedness of the edges of the cell.

The goal of this quality index is to provide an indication of the segmentation
method that should be used to yield the highest accuracy in derived cell quanti-
ties (e.g., area, perimeter, etc.). Ideally, we would like to be able to distinguish
between those segmentation methods that over- or under-estimate cell area from
those that provide unbiased estimates of cell area, based on the quality of the
edge of the cell. Because our quality index as defined here measures only edge
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clarity, we may need to modify it to better capture cell image features. Our fu-
ture work includes a more thorough investigation of the properties of this quality
index, particularly its relation to accuracy of cell area. We plan to create sets of
images with a very wide range of quality indices and cell geometries, to use as
test images for a wide variety of segmentation methods. From them we hope to
use this quality index (possibly modified) to choose segmentation techniques for
very rapid analysis of large numbers of biological images.
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