Submission Title: [MICS Channel Characteristics, Preliminary Results]
Date Submitted: [14th May 2008]
Source: [Kamran Sayrafian] Company [NIST]
Address [100 Bureau Drive, Stop 8920, Gaithersburg, MD 20899]
Voice:[+1 301-975-5479], E-Mail:[ksayrafian@nist.gov]

Re: []

Abstract: [This document provides preliminary MICS band channel characteristics. The information is intended for the channel modeling subcommittee of the proposed IEEE 802.15.6 standard]

Purpose: [To present some preliminary data on MICS channel characteristics]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
MICS Channel Characteristics;
Preliminary Results

John Hagedorn, Judith Terrill
Math & Computational Science Division
NIST

Wenbin Yang
Advanced Network Tech Division
NIST

Kamran Sayrafian
Information Technology Laboratory
NIST

Kamya Yekeh Yazdandoost, Ryuji Kohno
Medical ICT Institute
NICT
Medical Implant Communication Service (MICS)

- Allocated frequency 402MHz to 405MHz
 - Total of 3 MHz spectrum

- Unlicensed band allocated for communication between an implanted medical device and an external controller

- Primary reasons for selecting these frequencies are
 - Better propagation characteristics for implants
 - Reasonable sized antenna for implants
 - Worldwide availability
 - Limited threat of interference to primary users
A 3D Immersive Platform to Study MICS Channel

As in-body measurement and experimental study is difficult (if not impossible), a 3D simulation & visualization scheme is proposed to study the propagation characteristics of MICS.
System Components

Human Body Model
- Dielectric properties of 300+ parts in a male human body
- Frequency-dependent biological material
- Properties are user-definable if changes are desired
- Accuracy of 2mm

Propagation Engine
- 3D full-wave electromagnetic field simulation (HFSS)
- Capable of calculating a variety of outputs

3D Immersive & Visualization Platform
The NIST 3D Immersive Platform

The 3D immersive & visualization platform is a system to present the user a 3D virtual world within which the user can move and interact with the virtual objects.

☑ Provides views and interaction for a qualitative experience of data
☑ Main components of the system are:
 ❖ Three screens that provide the visual display; a single 3D stereo scene
 ❖ The motion tracked stereoscope glasses; to update the scene based on the motion of the user
 ❖ Handheld motion tracked input device to allow interaction with the virtual object(s)

A User in the NIST Immersive Visualization Environment
Input Parameters

- Antenna characteristics
- Antenna Location
 - Pacemaker application
- Antenna Orientation
 - Facing toward front side of the body
- Operating Frequency
 - 403.5 MHz
- Transmit Power
- Resolution
 - 2 mm
- Range
 - 50 cm
- Output Parameter
 - Electric field magnitude
 - Magnetic field magnitude
 - SAR
Antenna

- Size: 8.2 x 8.1 x 1 mm
- Metallic Layer: Copper, \(t = 0.036 \) mm
- Substrate: D51 (NTK), \(\varepsilon_r = 30, \tan \theta = 0.000038 \), and \(t = 1 \) mm
- The metallic layer is covered by RH-5, \(\varepsilon_r = 1.0006 \), \(\tan \theta = 0 \), \(t = 1 \) mm
Return Loss of the Antenna
Electric Field Magnitude Along Four Directions

- Antenna is located at the left Pectoral muscle
- Frequency is 403.5 MHz
- We have measured the Magnitude of the E-Field & H-Field along four directions as shown here
Electric Field Magnitude Along the Front-side

![Graph showing the electric field magnitude along the front-side range (mm). The x-axis represents the range (mm) from 0 to 500, and the y-axis represents $20 \log_{10}(E_{magnitude})$. The graph includes a red arrow indicating the Body surface.]
Electric Field Magnitude Along the Backside

![Graph showing electric field magnitude along the backside with range (mm) on the x-axis and 20*log10(E magnitude) on the y-axis, with a peak at the body surface.]
Electric Field Magnitude Along the Left-side

(range (mm))

20*\text{log}_{10}(E \text{ magnitude})

Body surface
Electric Field Magnitude Along the Right-side

![Graph showing the electric field magnitude along the right-side with a logarithmic scale. The graph plots 20*log10(E magnitude) against range (mm). The body surface is indicated.]
Magnetic Field Magnitude in the 4 Directions

- **Front**
- **Back**
- **Left**
- **Right**
Horizontal Radiation Pattern
Vertical Radiation Pattern
Issues to be considered

- What frequency should be considered for implant to implant channel model?

- Are there currently any application for implant to implant communication so that we can simulate the right scenarios?

- Will there be any measurement for S6 (S7) with MICS frequency band?
Acknowledgement

The authors would like to express their gratitude to Nicholas Hirth and Ken Ferreira from Ansoft Corporation for their assistance and support in applying the body model to the 3D immersive system.