Uncertainty quantification of Molecular Dynamics Simulations for Crosslinked Polymers

Paul Patrone (IMA / NIST)

Andrew Dienstfrey (NIST Boulder) Steve Christensen, Andrea Browning, Sam Tucker (Boeing)

IMA Institute for Mathematics and its Applications

Backstory: Macro-economics of materials science

Advent of composites dramatically altered design space in aerospace engineering.

Example: Boeing 787

1st aircraft with majority carbon-composite structural components

Lighter aircraft —> fuel savings (20%)

Scale of economics

(~ 1000 orders) x (~ \$250 Million / order) = \$250 Billion

Impact of advanced materials

Cumulative orders of 787 (blue) and deliveries (green)

2006 Seattle Times headline Airplane kingpin tells Airbus: Overhaul A350

"That's probably an \$8 billion to \$10 billion decision."

Impact of advanced materials

Cumulative orders of 787 and A350

2006 Seattle Times headline

Airplane kingpin tells Airbus: Overhaul A350

"That's probably an \$8 billion to \$10 billion decision."

Accelerating market insertion: materials by design

<u>Assume</u>

"Design space" of ingredients Finite simulation resources

(Very) Few experiments

<u>Goal</u>

Find chemistry with, e.g. highest T_g

Roles of UQ in modeling workflows

Verification

Check math, remove bugs

> Does data look like I expect?

> > Data of sufficient quality to make predictions?

Compute uncertainties arising **from within model**.

Calibrate model

Estimate uncertainties arising from

calibration parameters missing physics model form error

Validation

Otherwise assume model is valid at this stage

Test "real-world" predictive power

Roles of UQ in modeling workflows

Verification

Check math, remove bugs

> Does data look like I expect?

> > Data of sufficient quality to make predictions?

Compute uncertainties arising **from within model**.

Today's focus on verification

Helps modelers to be precise about what they mean

Improves reproducibility

Streamlines validation

Otherwise assume model is valid at this stage

Some complicating issues for Tg

Incomplete list

1. Can we extract meaningful T_g from simulated data

2. How to combine data?

3. How to work within nonanalytic design space?

Hardened & verified workflow to assess simulations

Assessing ability to extract T_g Consistency with underlying definitions

T_q defined as hyperbola center 11.33 (same as asymptote intersection) Hyperbola Derivative perbola center 100-1,25 Asymptote Asymptotic Asymptotic $tanh(\mu)$ Regime Regime Automatically finds 1.15 Bensity "asymptotic regimes" angen Transition 11.11 Region Transmon region 0 2 -4 -7 11.005 Transition regio $\frac{\mu}{1000}$ 0 Transition region Data inconsistent with T_{a} if 100 200 300 400 500 600 700 800 asymptotic regimes far away Temperatures (in K)

Assessing ability to extract Tg Convergence to bulk limit

An industry oxymoron: high-throughput, bulk-scale, atomistic-detail MD

This is not bulk...?

How do we know?

Observations from statistical mechanics

As # of particles $N \rightarrow \infty$

measurable quantities are independent of N
 variances of measurable scale as 1/N

Analytically:
$$T_g = H(T, \rho)$$
 density data
temperatures

As
$$N \to \infty$$
, $T_g \approx H(T, \overline{\rho}) + \delta \rho(N) \cdot \nabla_{\rho} H|_{(T, \overline{\rho})} + O(||\delta \rho||^2)$

buy persona fit approximately lineatuations

Observations from statistical mechanics

Assessing ability to extract Tg Is hyperbola fit biasing results?

Test for bias (pooling)

Construct $\binom{M}{m}$ average $T_{g,i}$ from \tilde{T}_{46}^{σ} every combination of *m* data sets chosen from a total of *M*

$$\tilde{T} = \begin{pmatrix} M \\ m \end{pmatrix}^{-1} \sum_{i} T_{g,i} = \text{constant}$$

$$\sigma^{2} = \frac{1}{M - m} \sum_{i} \left(T_{g,i} - \tilde{T} \right)^{2} \propto \frac{1}{m}$$

IF linearity holds

Assessing ability to extract T_g Is average density converged? 10^{2} Pooled standard deviation of T_G (in K) 10^{1} 2400 atom systems 3800 atom systems 7600 atom systems 16500 atom systems 10⁰

Number of atoms

 10^{5}

 10^{4}

 10^{3}

 10^{6}

Assessing ability to extract T_g Did we extract a "precise" T_g value from the fit?

Combining data Should all data sets be treated equally?

Two simulations may yield different within-uncertainties

Worse, predictions may not overlap

How do we account for missing physics?

Combining data Should all data sets be treated equally?

Solve for y using maximum likelihood analysis (MLE)

Combining data

Final uncertainty estimate:

$$\delta^{2} = \left[\frac{1}{\sum_{i} y^{2} + \zeta_{i}^{2}}\right]^{-2} \sum_{i} \frac{\left(T_{g,i} - \tau\right)^{2}}{\left(y^{2} + \zeta_{i}^{2}\right)^{2}}$$

Data set

Open problems: yield strain

Strain at which material no longer resists a load

Identified as maximum of stress-strain curve

How do we deal with noisy data?

Analysis using convex functions.

Open problems: understanding statistics of "realistic" crosslinked networks

What is mean number of edges at a given vertex?

Depends on x-link algorithm: e.g. random bonding, nearest neighbor....

Analytical (probabilistic) models to describe simulated predictions

Conclusions

MD is driving development of materials & other disruptive technologies

UQ can help industry assess usefulness of their simulations

Lots of open problems