¹Ryan M. Evans David A. Edwards

University of Delaware

¹rmevans@udel.edu

Overview

- What are optical biosensors and surface-volume reactions?
- Can we develop an accurate mathematical model for multiple-component reactions in optical biosensors?
- Given a set of data, can we determine the associated reaction rates?
- How does the reacting species behave in the single ligand case, when there exists a strong nonlinearity in the governing equation.

Introduction

- Many chemical reactions in biology involve a stream of chemical reactants (*ligand*) flowing through a fluid-filled volume, over a surface to which other reactants (*receptors*) are confined.
- These surface-volume reactions occur in a number of biological processes such as blood clotting, drug absorption, DNA-damage repair.

Optical Biosensor

 Optical biosensors are a popular way to measure such reactions without disturbing the underlying system.

- This process has been well studied in the reaction limited, transport dominant (weakly nonlinear) parameter regime, when there is only a single ligand.
- What happens when there are multiple reactions on the suface?

- Having an accurate mathematical model of this process helps interpret biosensor data.
- Biosensor only measure on a weighted average of reacting species concentrations.

 Biosensor only measures on a weighted average of reacting species concentrations

$$S(t) := \frac{1}{x_{\text{max}} - x_{\text{min}}} \int_{x_{\text{min}}}^{x_{\text{max}}} B_1(x, t) + \left(1 + \frac{\rho_2}{\rho_1}\right) B_{12}(x, t) + \frac{\rho_2}{\rho_1} B_2(x, t) dx$$

Here B_i are reacting species concentrations

$$B_1(x, t) = [EL_1](x, t),$$

 $B_2(x, t) = [EL_2](x, t),$
 $B_{12}(x, t) = [EL_1L_2](x, t)$

 ρ_i are molecular weights of B_i .

Can rewrite

$$S(t) = \frac{1}{x_{\text{max}} - x_{\text{min}}} \int_{x_{\text{min}}}^{x_{\text{max}}} B_1(x, t) + \left(1 + \frac{\rho_2}{\rho_1}\right) B_{12}(x, t) + \frac{\rho_2}{\rho_1} B_2(x, t) dx$$

more compactly as:

$$S(t) = \overline{B}_1(t) + \left(1 + \frac{\rho_2}{\rho_1}\right) \overline{B}_{12}(t) + \frac{\rho_2}{\rho_2} \overline{B}_2(t),$$

$$\overline{B}_i = \frac{1}{x_{\text{max}} - x_{\text{min}}} \int_{x_{\text{max}}}^{x_{\text{max}}} B_i(x, t) dx.$$

Mathematical Model

- Convection-diffusion equations for each of the unbound ligands $C_1(x, y, t) = [L_1](x, y, t)$, $C_2(x, y, t) = [L_2](x, y, t)$.
- Coupled to a system of PDE's describing the evolution of the reacting species concentration B_i at the boundary.

Two Compartment

 High flow rate and slow diffusion results means that diffusion is only important in a layer near the boundary, e.g. several time scales and boundary layers.

Mathematical Model

$$\frac{\partial C_1}{\partial t_c} = (D_r Pe^{-1}) \left(\epsilon^2 \frac{\partial^2 C_1}{\partial x^2} + \frac{\partial^2 C_1}{\partial y^2} \right) - y(1 - y) \frac{\partial C_1}{\partial x}, \quad (1)$$

Recovering Reaction Rates

$$\frac{\partial C_2}{\partial t_c} = \text{Pe}^{-1} \left(\epsilon^2 \frac{\partial^2 C_2}{\partial x^2} + \frac{\partial C_2}{\partial y^2} \right) - y(1 - y) \frac{\partial C_2}{\partial x}. \tag{2}$$

- t_c is the convective time scale.
- Pe $\gg 1$. $\epsilon \ll 1^1$.
- \bullet D_r is the ratio of the diffusivity of the two ligands, order one.
- Parabolic velocity profile.

Initial and Boundary Data

- Initial conditions: $C_j(x, y, 0) = 0$.
- Inflow condition: $C_i(0, y, t) = 1$.
- No change in the concentration as it exits the channel $\frac{\partial C_j}{\partial x}(1, y, t) = 0$.
- No flux through the ceiling $\frac{\partial C_j}{\partial y}(x,1,t)=0.$

Bottom Boundary Condition

Diffusive flux conditions:

$$D_r D \frac{\partial C_1}{\partial y}(x, 0, t_c) = \frac{\partial B_1(x, t_c)}{\partial t_c} + \frac{\partial B_{12}(x, t_c)}{\partial t_c}$$
$$D \frac{\partial C_2}{\partial y}(x, 0, t_c) = \frac{\partial B_{12}(x, t_c)}{\partial t_c} + \frac{\partial B_2(x, t_c)}{\partial t_c}$$

- $D = \frac{\text{Diffusion rate from channel to reacting surface}}{\text{Convective Transport in Channel}}$
- $D \ll 1 \Rightarrow$ bound state governed by slower diffusive processes.
- Need another set of equations for B_i .

Reaction Kinetics

$$\frac{\partial B_1}{\partial t_c} = {}_1k_a(1 - B_{\Sigma})C_1 + {}_2^1k_dB_{12} - {}_1k_dB_1 - {}_2^1k_aB_1C_2,
\frac{\partial B_{12}}{\partial t_c} = {}_2^1k_aB_1C_2 + {}_1^2k_aB_2C_1 - {}_2^1k_dB_{12} - {}_1^2k_dB_{12},
\frac{\partial B_2}{\partial t_c} = {}_1^2k_dB_{12} + {}_2k_a(1 - B_{\Sigma})C_2 - {}_1^2k_aB_2C_1 - {}_2k_dB_2,
B_{\Sigma} = B_1 + B_{12} + B_2$$

- $1 B_{\Sigma}$ empty receptor concentration
- Initially no bound ligand $B_1(x,0) = B_{12}(x,0) = B_2(x,0) = 0$,

Reaction Kinetics

$$\frac{\partial B_1}{\partial t_c} = {}_1k_a(1 - B_{\Sigma})C_1 + {}_2^1k_dB_{12} - {}_1k_dB_1 - {}_2^1k_aB_1C_2, \tag{3}$$

$$\frac{\partial B_{12}}{\partial t_c} = \frac{1}{2} k_a B_1 C_2 + \frac{2}{1} k_a B_2 C_1 - \frac{1}{2} k_d B_{12} - \frac{2}{1} k_d B_{12}, \tag{4}$$

$$\frac{\partial B_2}{\partial t_c} = {}_{1}^{2} k_{\rm d} B_{12} + {}_{2} k_{\rm a} (1 - B_{\Sigma}) C_2 - {}_{2} k_{\rm d} B_2 - {}_{1}^{2} k_{\rm a} B_2 C_1, \tag{5}$$

$$B_{\Sigma} = B_1 + B_{12} + B_2 \tag{6}$$

- $1 B_{\Sigma}$ empty receptor concentration
- Initially no bound ligand $B_1(x,0) = B_{12}(x,0) = B_2(x,0) = 0$,

Reaction Kinetics

• Adding these three equations we find

$$\frac{\partial B_{\Sigma}}{\partial t} = {}_{1}k_{a}(1 - B_{\Sigma}) + {}_{2}k_{a}(1 - B_{\Sigma}) - {}_{1}k_{d}B_{1} - {}_{2}k_{d}B_{2}$$
 (7)

 The only change in the total ligand concentration is due to association/dissociation.

Bulk Compartment

• We can think of Pe^{-1} as a perturbation parameter and use the fact that $D \ll 1$ to arrive at the leading order equations:

$$\frac{\partial C_i}{\partial t_c} = -y(1-y)\frac{\partial C_i}{\partial x},\tag{8}$$

$$C_i(0, y, t_c) = 1,$$
 (9)

$$C_i(x, y, 0) = 0,$$
 (10)

$$0 = \frac{\partial B_1}{\partial t_c} + \frac{\partial B_{12}}{\partial t_c},\tag{11}$$

$$0 = \frac{\partial B_{12}}{\partial t_2} + \frac{\partial B_2}{\partial t_2}.$$
 (12)

Two Compartment

Compartment model

Diffusive Layers

- There may be discontinuity between the solution in the bulk compartment and the solution in the boundary layer.
- To fix this one would introduce an intermediate (diffusive layer) to smooth out any discontinuities.
- But the reaction dynamics do not occur on this time scale, so we will not concern ourselves with including such layers.

Unstirred Layer on the Reactive Time Scale

 Diffusion in the vertical direction balances with convection in the x direction.

$$D_r \frac{\partial^2 C_1}{\partial \eta^2} = \eta \frac{\partial C_1}{\partial x},$$

$$C_1(0, \eta, t) = 1.$$

- Here $\eta = Pe^{1/3}y$ is the stretched layer coordinate.
- Change completely driven by reaction at the boundary.
- As we exit the layer, the concentration in the unstirred layer must match the uniform outer concentration $C(x, \infty, t) = 1$

Unstirred Layer

Diffusive flux condition

$$D_r \frac{\partial C_1}{\partial \eta}(x, 0, t) = D_a \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right)$$
 (13)

- Da is the Damköhler Number, and represents the ratio of reaction to diffusion.
- Da $\ll 1$ for most reactions, key perturbation parameter.

Reaction Kinetics

Need to get C_i in terms of B_i.

$$\begin{split} \frac{\partial B_1}{\partial t} &= {}_1k_{\rm a}(1-B_{\Sigma})C_1 + {}_2^1k_{\rm d}B_{12} - {}_1k_{\rm d}B_1 - {}_2^1k_{\rm a}B_1C_2, \\ \frac{\partial B_{12}}{\partial t} &= {}_2^1k_{\rm a}B_1C_2 + {}_1^2k_{\rm a}B_2C_1 - {}_2^1k_{\rm d}B_{12} - {}_1^2k_{\rm d}B_{12}, \\ \frac{\partial B_2}{\partial t} &= {}_1^2k_{\rm d}B_{12} + {}_2k_{\rm a}(1-B_{\Sigma})C_2 - {}_1^2k_{\rm a}B_2C_1 - {}_2k_{\rm d}B_2. \end{split}$$

• Consider the set of PDE's for C₁

$$D_r \frac{\partial^2 C_1}{\partial n^2} = \eta \frac{\partial C_1}{\partial x} \tag{14}$$

$$D_{r} \frac{\partial C_{1}}{\partial \eta}(x, 0, t) = Da \left(\frac{\partial B_{1}}{\partial t} + \frac{\partial B_{12}}{\partial t} \right), \tag{15}$$

• Introduce a Laplace transform in x in (14) and use (15):

$$C_1(x,0,t) = 1 - \frac{\mathsf{Da}}{D_r^{2/3} 3^\frac13 \Gamma(\frac23)} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}}.$$

Convolution integral represents upstream ligand depletion

$$C_1(x,0,t) = 1 - \frac{\mathsf{Da}}{D_r^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}}$$

- Ligand concentration a perturbation away from the outer concentration.
- Defined as

$$J^{\alpha}f(x) = \int_0^x f(\nu) \frac{\mathrm{d}\nu}{(x-\nu)^{1-\alpha}},\tag{16}$$

one may recognize the integral term in C_1 as a fractional integral, with $\alpha=1/3$.

Bound State System

• The bound state system is then:

$$\begin{aligned} \frac{\partial B_1}{\partial t} &= (1 - B_{\Sigma})C_1 - {}_1K_dB_1 - {}_2^1K_aB_1C_2 + {}_2^1K_dB_{12} \\ \frac{\partial B_{12}}{\partial t} &= {}_2^1K_aB_1C_2 - {}_2^1K_dB_{12} + {}_1^2K_aB_2C_1 - {}_1^2K_dB_{12} \\ \frac{\partial B_2}{\partial t} &= {}_1^2K_dB_{12} - {}_1^2K_aB_2C_1 + {}_2K_a(1 - B_{\Sigma})C_2 - {}_2K_dB_2 \end{aligned}$$

with

$$\begin{split} &C_1(x,0,t) = 1 - \frac{\mathsf{Da}}{D_r^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}} \\ &C_2(x,0,t) = 1 - \frac{\mathsf{Da}}{3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}} \end{split}$$

Perturbation Approximation

 \bullet Da \ll 1, so we can search for a perturbation expansion of the form

$$\mathbf{B} = {}^{0}\mathbf{B} + \mathsf{Da}^{1}\mathbf{B} + O(\mathsf{Da}^{2}). \tag{17}$$

Leading order:

$$\frac{\mathrm{d}^{0}\mathbf{B}}{\mathrm{d}t} = -A^{0}\mathbf{B} + \mathbf{e}_{1} + {}_{2}K_{a}\mathbf{e}_{3} \tag{18}$$

$${}^{0}\mathbf{B}(t) = (I - e^{-At})[A^{-1}(\mathbf{e}_{1} + {}_{2}K_{\mathbf{a}}\mathbf{e}_{3})], \tag{19}$$

e.g. well mixed approximation.

• The spatial dependence in ${}^{1}\mathbf{B}(x,t) \sim x^{1/3}$.

Perturbation Approximation

• Thus we may write

$$\mathbf{B}(x,t) = (I - e^{-At})[A^{-1}(\mathbf{e}_1 + {}_2K_{\mathbf{a}} + x^{1/3}\mathsf{Da}^{\mathbf{1}}\mathbf{B}(t)] + O(\mathsf{Da}^2). \tag{20}$$

- Problem: ${}^{1}\mathbf{B}$ contains a secular term of the form $te^{-\lambda t}$ in one of its components.
- A multiple scale expansion would be unweildy, and would have to be manipulated again to obtain an expression of physical relavance.

Another Approximation

- We are really interested in $\overline{\mathbf{B}}$.
- What if we could derive a set of equations for $\overline{\mathbf{B}}$, and solve them numerically using a standard ODE Package?

Averaged Bound State System

• To do this we would integrate both sides of

$$\begin{aligned} \frac{\partial B_1}{\partial t} &= (1 - B_{\Sigma})C_1 - {}_1K_dB_1 - {}_2^1K_aB_1C_2 + {}_2^1K_dB_{12} \\ \frac{\partial B_{12}}{\partial t} &= {}_2^1K_aB_1C_2 - {}_2^1K_dB_{12} + {}_1^2K_aB_2C_1 - {}_1^2K_dB_{12} \\ \frac{\partial B_2}{\partial t} &= {}_1^2K_dB_{12} - {}_1^2K_aB_2C_1 + {}_2K_a(1 - B_{\Sigma})C_2 - {}_2K_dB_2 \end{aligned}$$

using

$$\begin{split} C_1(x,0,t) &= 1 - \frac{\mathsf{Da}}{D_r^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}}, \\ C_2(x,0,t) &= 1 - \frac{\mathsf{Da}}{3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}}. \end{split}$$

How to Deal With Convolution Integral

• We may exploit the fact that to leading order B is independent of space

$$\begin{split} &C_{1}(x,0,t) = 1 - \frac{\mathsf{Da}}{D_{r}^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_{0}^{x} \left(\frac{\partial B_{1}}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}} \\ &B_{1}(x,t) = {}^{0}B_{1}(t) + \mathsf{Da}^{1}B_{1}(x,t) + O(\mathsf{Da}^{2}) \end{split}$$

• By substituting our expansion into C_1 we arrive at

$$C_1(x,0,t) = 1 - rac{\mathsf{Da}}{D_r^{2/3} 3^{rac{1}{3}} \Gamma(rac{2}{3})} \int_0^x \left(rac{\mathrm{d}^0 B_1}{\mathrm{d} t} + rac{\mathrm{d}^0 B_{12}}{\mathrm{d} t}
ight) (t) rac{\mathrm{d}
u}{(x-
u)^{2/3}} + O(\mathsf{Da}^2)$$

How to Deal With Convolution Integral

 Since time dependence factors out of the integral, we may write

$$C_1(x,0,t) = 1 - \mathsf{Da}h(x) \left(\frac{\mathrm{d}^0 B_1}{\mathrm{d}t} + \frac{\mathrm{d}^0 B_{12}}{\mathrm{d}t} \right) + O(\mathsf{Da}^2)$$
 (21)

where,

$$h(x) = \frac{1}{3^{1/3}\Gamma(2/3)} \int_0^x (x - \nu)^{-2/3} d\nu = \frac{3^{2/3}x^{1/3}}{\Gamma(2/3)}.$$
 (22)

ERC Equations

• Using these manipulations and some algebra we can derive a set of nonlinear ODE's, *Effective Rate Constant Equations*, for $\overline{\bf B}$:

$$\frac{\mathrm{d}\overline{\mathbf{B}}}{\mathrm{d}t} = (I + \mathsf{Da}N(\overline{\mathbf{B}}))^{-1}(-A\overline{\mathbf{B}} + \mathbf{e}_1 + {}_2K_{\mathrm{a}}\mathbf{e}_3) + \mathcal{O}(\mathsf{Da}^2).$$

ERC Equation Solution

ERC Equation Solution

- Da = .01.
- Reaction rates equal to one.

Numerics

Used a finite difference algorithm

$$\begin{split} \frac{\partial B_{i,n+1}^1}{\partial t} &= (1 - B_{i,n}^{\Sigma}) C_{i,n+1}^1 - {}_1 K_d B_{i,n}^1 - {}_2^1 K_a B_{i,n}^1 C_{i,n+1}^2 + {}_2^1 K_d B_{i,n}^{12}, \\ \frac{\partial B_{i,n+1}^{12}}{\partial t} &= {}_2^1 K_a B_{i,n}^2 C_{i,n+1}^2 - {}_2^1 K_d B_{i,n}^{12} + {}_2^1 K_a B_{i,n}^2 C_{i,n+1}^1 - {}_2^1 K_d B_{i,n}^{12}, \\ \frac{\partial B_{i,n+1}^2}{\partial t} &= {}_2^1 K_d B_{i,n}^{12} - {}_2^1 K_a B_{i,n}^2 C_{i,n+1}^1 + {}_2 K_a (1 - B_{i,n}^{\Sigma}) C_{i,n+1}^2 - {}_2 K_d B_{i,n}^2. \end{split}$$

• Difficult to deal with singularity

$$C_{i,n+1}^1 = 1 - \frac{\mathsf{Da}}{\mathsf{D}_r^{2/3} 3^{\frac{1}{3}} \mathsf{\Gamma}(\frac{2}{3})} \int_0^{x_i} \left(\frac{\partial B_1}{\partial t} (x_i - \xi, t_{n+1}) + \frac{\partial B_{12}}{\partial t} (x_i - \xi, t_{n+1}) \right) (\nu, t) \, \frac{\mathrm{d} \xi}{\xi^{-2/3}}$$

• Use trapezoidal rule to discretize the integral

Subtract out the singularity

$$\begin{split} C_{i,n+1}^{1} &= 1 - \frac{\mathsf{Da}}{\mathsf{D}_{r}^{2/3} 3^{\frac{1}{3}} \mathsf{\Gamma}(\frac{2}{3})} \Bigg[\int_{0}^{x_{i}} \left(\frac{\partial B_{1}}{\partial t} (x_{i} - \xi, t_{n+1}) - \frac{\partial B_{i,n+1}^{1}}{\partial t} \right. \\ &+ \left. \frac{\partial B_{12}}{\partial t} (x_{i} - \xi, t_{n+1}) - \frac{\partial B_{i,n+1}^{12}}{\partial t} \frac{\mathrm{d}\xi}{\xi^{-2/3}} \right) + 3x_{i}^{\frac{1}{3}} \left(\frac{\partial B_{i,n+1}^{1}}{\partial t} + \frac{\partial B_{i,n+1}^{12}}{\partial t} \right) \Bigg] \end{split}$$

- Even when singularity is subtracted out, convergence is only $O(\Delta x^{2/3})$ due to functional form.
- Temporal convergence $O(\Delta t^2)$, from AB2 time-stepping scheme.

Results

Figure : Left: B_1 after 1 second. Right: B_1 after 5 seconds

- Da = 2.
- All reaction rate constants taken to be 1

Results

Error in ERC Equations

Error in ERC Equations

ERC Error vs Da

Wash Phase

- We have derived similar results for the wash phase.
- Recall in the wash phase, only the buffer fluid is flowing through the biosensor.

• In this case, we still have the same kinetics system at the boundary,

$$\begin{split} \frac{\partial B_1}{\partial t} &= (1 - B_{\Sigma})C_1 - {}_1K_dB_1 - {}_2^1K_aB_1C_2 + {}_2^1K_dB_{12}, \\ \frac{\partial B_{12}}{\partial t} &= {}_2^1K_aB_1C_2 - {}_2^1K_dB_{12} + {}_1^2K_aB_2C_1 - {}_1^2K_dB_{12}, \\ \frac{\partial B_2}{\partial t} &= {}_1^2K_dB_{12} - {}_1^2K_aB_2C_1 + {}_2K_a(1 - B_{\Sigma})C_2 - {}_2K_dB_2. \end{split}$$

Unbound ligand concentration at the surface will be different,
 i.e. only trace amounts.

• Therefore instead of

$$C_1(x,0,t) = 1 - \frac{\mathsf{Da}}{D_r^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}},$$

we have

$$C_1(x,0,t) = -\frac{\mathsf{Da}}{D_r^{2/3} 3^{\frac{1}{3}} \Gamma(\frac{2}{3})} \int_0^x \left(\frac{\partial B_1}{\partial t} + \frac{\partial B_{12}}{\partial t} \right) (\nu,t) \frac{\mathrm{d}\nu}{(x-\nu)^{2/3}},$$

• In this case $\frac{\partial B_i}{\partial t} < 0$, and $C_1 = O(\mathsf{Da})$.

Wash Phase Results

• ERC equations in this case are

$$\frac{\mathrm{d}\overline{\mathbf{B}}}{\mathrm{d}t} = (I + \mathsf{Da}N(\overline{\mathbf{B}}))^{-1}(-D\overline{\mathbf{B}}) + O(\mathsf{Da}^2)$$
 (23)

Wash Phase Results: FD Solution

Wash Phase Results: FD Solution

Wash Phase Results: ERC Error vs. Da

- Overall Goal: What are the reaction rates?
 - Can we actually find cases where different rate constants give the same signal?
 - Can we develop a curve fitting algorithm?

• Take Da = 0 and study the linear set of ODE's

$$\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}t} = -A\mathbf{B} + \mathbf{f}, \qquad \mathbf{B}(0) = \mathbf{0}. \tag{24}$$

• Use (24) as our data.

Here

$$A = \begin{pmatrix} (1 + {}_{1}K_{d} + {}_{2}^{1}K_{a}) & 1 - {}_{2}^{1}K_{d} & 1 \\ - {}_{2}^{1}K_{a} & ({}_{2}^{1}K_{d} + {}_{1}^{2}K_{d}) & - {}_{1}^{2}K_{a} \\ {}_{2}K_{a} & {}_{2}K_{a} - {}_{1}^{2}K_{d} & ({}_{2}K_{a} + {}_{2}K_{d} + {}_{1}^{2}K_{a}) \end{pmatrix}$$

and $\mathbf{f} = \mathbf{e}_1$ or $\mathbf{f} = {}_2 \mathcal{K}_{\mathrm{a}} \mathbf{e}_3$

Methodology

- First inject ligand one until the system reaches an equilibrium, then inject ligand two.
- Broke the problem up into cases based on the size of ${}_{1}K_{d}$, ${}_{2}K_{a}$, ${}_{2}K_{d}$.

•
$$_{1}K_{\rm d} = 100$$

•
$$_{1}K_{d}=100,\ _{2}K_{d}=\frac{1}{100}$$

Ambiguous Sensogram

• Left: ${}_{2}K_{d}=100, \ {}_{2}^{1}K_{a}=\frac{1}{100}$. Right: ${}_{2}K_{a}=100$. Both: $C_{1}=1$.

Ambiguous Sensogram: Case 1

Ambiguous Sensogram: Case 2

Clarified Sensogram

• Left: ${}_2K_d = \frac{1}{100}, \ {}_2^1K_a = 100$. Right: ${}_2K_a = 100$. Both: $C_1 = .1$.

Single Ligand Analysis

- When studying the single ligand process, there is only one type of reaction at the boundary.
- In this case the reacting species concentration obeys they equation

$$\frac{\partial B}{\partial t} = (1 - B) \left(1 - \frac{\mathsf{Da}}{3^{1/3} \mathsf{\Gamma}(2/3)} \int_0^x \frac{\partial B}{\partial t} (\nu, t) \frac{\mathrm{d}\nu}{(x - \nu)^{2/3}} \right) - \mathsf{K} B$$

• Can we find an analytic expression for B or \overline{B} when Da = O(1)?

A Homotopy Method

 Homotopy: a continuous deformation of one curve into another.

$$\mathcal{H}(t,s)=(1-s)\gamma_0(t)+s\gamma_1(t), \qquad s\in [0,1]$$

• Can we try the same thing with differential operators?

A Homotopy of Differential Operators

• Many differential operators $\mathcal A$ can be composed into a linear part $\mathcal L$, and nonlinear part $\mathcal N$

$$\underbrace{\mathcal{L}(B) + \mathcal{N}(B)}_{\mathcal{A}(B)} = \mathcal{F}.$$
 (25)

ullet We can draw a homotopy between ${\cal L}$ and ${\cal A}$

$$\mathcal{H}(B,p) = (1-p)\mathcal{L}(B) + p\mathcal{A}(B), \qquad p \in [0,1].$$
 (26)

• Therefore we can propose a series solution to

$$\mathcal{H}(B, p) = 1$$

 $\Leftrightarrow (1 - p)\mathcal{L}(B) + p\mathcal{A}(B) = \mathcal{F}, \qquad p \in [0, 1].$

of the form

$$B(x, t) = B_0(x, t) + pB_1(x, t) + p^2B_2(x, t) + \cdots$$

Nuts and Bolts

 $m{\circ}$ Thus when examing the $m{
ho}^{
m th}$ coefficient of our series in the equation

$$\Leftrightarrow (1-p)\mathcal{L}(B) + p\mathcal{A}(B) = \mathcal{F}, \qquad p \in [0,1]. \tag{27}$$

we will find that the nonlinearity is higher order.

• That is we will have an equation of the form

$$\mathcal{L}(B_i) = -\mathcal{N}(B_1, \dots, B_{i-1}). \tag{28}$$

 The equation governing the bound state in the single ligand case is

$$\frac{\partial B}{\partial t} = (1 - B) \left(1 - \frac{\mathsf{Da}}{3^{1/3} \mathsf{\Gamma}(2/3)} \int_0^x \frac{\partial B}{\partial t} (\nu, t) \frac{\mathrm{d} \nu}{(x - \nu)^{2/3}} \right) - \mathsf{KB}$$

• First we obtain an expression for \overline{B} by averaging each side, and rearranging some terms:

$$\underbrace{\frac{\mathrm{d}\overline{B}}{\mathrm{d}t} + (1+K)\overline{B}}_{\mathcal{L}} + \underbrace{\frac{\mathrm{Da}}{3^{1/3}\Gamma(2/3)}}_{\mathbf{C}} (B-1) \int_{0}^{x} \frac{\partial B}{\partial t} (\nu, t) \frac{\mathrm{d}\nu}{(x-\nu)^{-2/3}}_{\mathbf{C}} = 1$$

Series Solution

• Propose and substitute a series solution.

$$B(x,t) = B_0(x,t) + pB_1(x,t) + p^2B_{12}(x,t) + \cdots$$
 (29)

$$\mathcal{H}(B,p) = 1. \tag{30}$$

- Get linear ODE's for $\overline{B}_0(t)$, $\overline{B}_1(t)$, $\overline{B}_2(t)$, ...
- An approximation to \overline{B} is then given by

$$\overline{B}(t) = \overline{B}_0 + \overline{B}_1(t) + \overline{B}(t) + \cdots$$

• Doing this the first two terms are:

$$B_0(t) = \alpha^{-1}(1 - e^{-\alpha t})$$

$$B_1(t) = -\frac{\mathsf{Da}\overline{h}e^{-2t\alpha}(-1 + e^{t\alpha} - e^{t\alpha}t\alpha + e^{t\alpha}t\alpha^2)}{\alpha^2}$$

$$\alpha = (K+1)$$

$$\overline{h} = \frac{\overline{x^{1/3}}}{3^{1/3}\Gamma(2/3)}$$

Issues

- Convergence of our series.
 - When Da = O(1) or $Da \gg 1$, what guaruntees that our series will converge?
- Secular term of the form $te^{-\alpha t}$
 - This is not bad enough make our series converge, but still throws off the accuracy.

Convergence

 A standard technique is to embed a convergence control paramter q into our homotopy

$$(1-p)(\mathcal{L}(\overline{B})-\mathcal{L}(b_0))+qp\mathcal{A}(B)=1, \qquad p\in[0,1]. \quad (31)$$

• Choose q that minimizes

$$||\mathcal{A}(B) - 1||_2^2$$
 (32)

• Done numerically in Mathematica.

Time Scale

• We can fix convergence, but the time scale is still off.

• Da = 3; This is a 3 term approximation with and without the convergence parameter q

Time Scale

• The propose a strained time scale of the form:

$$\tau = (1 + p\omega_1 + p^2\omega_2 + \cdots)t, \tag{33}$$

where the ω_i are choosen to eliminate secular terms.

• The first two terms are:

$$egin{aligned} \overline{B}_0(au) &= lpha^{-1}(1-e^{-lpha au}), \ \overline{B}_1(au;q) &= rac{q \mathsf{Da} \overline{h} e^{-2lpha au}(e^{lpha au}-1)}{lpha^2}, \ au &= (1+\omega_1+\omega_2+\cdots)t, \end{aligned}$$

where
$$\alpha = (1 + K)$$
, and

$$\begin{split} &\omega_1 = -q \mathsf{Da} \overline{h} (1 - \alpha^{-1}), \\ &\omega_2 = \mathsf{Da} \overline{h} q \alpha^{-2} (\alpha - 1) (-\mathsf{Da} \overline{h} q + \alpha - q \alpha + \mathsf{Da} \overline{h} q \alpha), \\ &\overline{h} = \frac{\overline{x^{1/3}}}{3^{1/3} \Gamma(2/3)}. \end{split}$$

Two Term Expansion, Da = 1/2

• Two term expansion, Da = 1/2.

Three Term Expansion, Da = 2

• Three term Approximation, Da = 2.

Five Term Expansion, Da = 10

• Five term expansion, Da = 10.

Five Term Expansion, Da = 100

• Five term expansion, Da = 100.

Dissociation Phase

• The expansion in the dissociation phase is:

$$\begin{split} B_0(t) &= \frac{e^{-k\tau}}{\alpha}, \\ B_1(t) &= -\frac{\mathsf{Da}e^{-2k\tau} \left(-1 + e^{k\tau}\right) \overline{h} q}{\alpha^2} \\ \tau &= (1 + \omega_1 + \omega_2 + \cdots) t \\ \omega_1 &= -\mathsf{Da}\overline{h} q, \\ \omega_2 &= \mathsf{Da}\overline{h} q (-1 + q + \mathsf{Da}\overline{h} q). \end{split}$$

Two Term Expansion, Da = 1/2

• Two term expansion, Da = 1/2.

Three Term Expansion, Da = 2

• Three term Approximation, Da = 2.

Five Term Expansion, Da = 10

• Five term expansion, Da = 10.

Five Term Expansion, Da = 100

• Five term expansion, Da = 100.

Matches Up With ERC Approximation

• Left: Two term approximation vs ERC Approximation. Right: Five-Term approximation vs ERC Approximation.

Conclusions

- Modeling Multiple-Components in Optical Biosensors.
 - We must consider transport.
 - Full model simplifies to a coupled system of integrodiffential equations.
 - These equations further reduce to a set of nonlinear ODE's.
 - ullet Formally holds for Da \ll 1, numerically everywhere.
- Sensogram Issues
 - Multiple reacting species make interpreting Sensogram data difficult.
 - Can fix this in certain cases by varying of C_1 .

Conclusions

- Single-Component Reactions
 - Strongly nonlinear problem when Da = O(1).
 - Can find analytic approximations to B by applying a homotopy method.
 - Must used a strained time scale.
 - Matches up with ERC approximations.

Future Work

- Tie together multiple-receptor and multiple-ligand model.
- Nonuniform initial receptor concentration.
- Helical geometries.

References

- C. Bertucci, A. Piccoli, and M. Pistolozzi Optical biosensors as a tool for early determination of absorption of lead candidates and drugs. comb. chem. high throughput screen, 10:433:440, 2007
- D. A. Edwards. Transport effects on surface reaction arrays: biosensor applications. Mathematical Biosciences. 12-22,2007
- E.F.Grabowski, L.I. Friedman, and E.F. Leonard. Effects of shear rate on diffusion and adhesion of blood platelets to a foreign surface. *Ind. Eng. Chem. Fund*, 11:224-232, 1972
- J. He. The homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178 (3):257–262, 1999
- S.L. Rich, D. G. Myszka, Survey of the Year 2009 Commercial optical biosensor literature. J. Mol. Recognit, 24:892-914.2011

The End

Thanks for Coming! Questions?