Multiple-Component Reactions in Optical
Biosensors

!Ryan M. Evans
David A. Edwards

University of Delaware

1rmevans@udel.edu



Overview

@ What are optical biosensors and surface-volume reactions?

Can we develop an accurate mathematical model for
multiple-component reactions in optical biosensors?

Given a set of data, can we determine the associated reaction
rates?

How does the reacting species behave in the single ligand
case, when there exists a strong nonlinearity in the governing
equation.



Introduction

@ Many chemical reactions in biology involve a stream of
chemical reactants (/igand) flowing through a fluid-filled
volume, over a surface to which other reactants (receptors)
are confined.

@ These surface-volume reactions occur in a number of
biological processes such as blood clotting, drug absorption,
DNA-damage repair.



Optical Biosensors

Optical Biosensor

@ Optical biosensors are a popular way to measure such
reactions without disturbing the underlying system.
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Optical Biosensors

Multiple-Component Reactions

@ This process has been well studied in the reaction limited,
transport dominant (weakly nonlinear) parameter regime,
when there is only a single ligand.

@ What happens when there are multiple reactions on the
suface?



Optical Biosensors

Multiple-Component Reactions




Optical Biosensors

Multiple-Component Reactions




Optical Biosensors

Multiple-Component Reactions in Optical Biosensors

@ Having an accurate mathematical model of this process helps
interpret biosensor data.

@ Biosensor only measure on a weighted average of reacting
species concentrations.



Optical Biosensors

Multiple-Component Reactions in Optical Biosensors

@ Biosensor only measures on a weighted average of reacting
species concentrations

S(t) = Bi(x,t 1+ 2B A 2B (. 0)d
( ) Xmax — Xmin / 1(X7 )+ ( + p1> 12(X7 )+ 01 2(Xa ) X

Xmin

Here B; are reacting species concentrations

Bi(x,t) = [ELi](x, t),
By(x,t) = [EL2](x, t),
Bia(x, t) = [EL1L](x, t)

pi are molecular weights of B;.



Optical Biosensors

Multiple-Component Reactions in Optical Biosensors

@ Can rewrite

1 Xmax
Stzi/ Bi(x,t <1+ >B Xt+ thd
( ) Xmax — Xmin Jxi, 1( ) P1 12( ) P1 2( )
more compactly as:

S(t) = Bu(t )+<1+ )Bl2(t)+ Bs(t),

. 1 Xmax
B = 7/ Bj(x, t) dx.
Xmax — Xmin Jx

min



Multi-Component Model

Mathematical Model

@ Convection-diffusion equations for each of the unbound
ligands Ci(x,y,t) = [Li](x,y,t), Go(x,y,t) = [L2](x,y, t).

@ Coupled to a system of PDE's describing the evolution of the
reacting species concentration B; at the boundary.



Multi-Component Model

Two Compartment

@ High flow rate and slow diffusion results means that diffusion
is only important in a layer near the boundary, e.g. several
time scales and boundary layers.
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Multi-Component Model

Mathematical Model

atc - (DrPe )(6 8X2 + ayz (1 y)ga (1)

IR O, o Te 96,
e, e (6 a2 Tayr) YA (2)

@ t. is the convective time scale.

@ Pe>1, ex 1L

@ D, is the ratio of the diffusivity of the two ligands, order one.
°

Parabolic velocity profile.

pe = 3.71 x 10?, ¢ = 2.0872



Multi-Component Model

Initial and Boundary Data

e Initial conditions: Cj(x,y,0) = 0.

e Inflow condition: C;(0,y,t) = 1.

@ No change in the concentration as it exits the channel
Ly 1) =0.
Ox Ys

@ No flux through the ceiling J(x, 1,t)=0.



Multi-Component Model

Bottom Boundary Condition

@ Diffusive flux conditions:
8C1 851(X, l’c) 8512(X, tc)
D.D 0,t.) =
( c) = Otc + Otc
8C2 8312(X, tc) 332(X, tc)
D—=(x,0,t;) =
gy 0t =g
o D— Diffusion rate from channel to reacting surface

Convective Transport in Channel

D <« 1 = bound state governed by slower diffusive processes.

@ Need another set of equations for B;.



Multi-Component Model

Reaction Kinetics

0By

T 1ka(1 — Bs)C1 + 3kaBiz — 1kaB1 — 3kaB1 Co,
C
0B
8t12 = 3kaB1 Gy + TkaBa Ci — 5ka Bz — $kaBra,
C
0B

W = 2kdB].2 + 2ka(1 — BZ)C2 - %kaBZC]_ - 2kdB27
c
82:814—812—1—32

@ 1 — By empty receptor concentration
e Initially no bound ligand Bi(x,0) = Bi2(x,0) = Bx(x,0) =0,



Multi-Component Model

Reaction Kinetics

oB
5 1 — + — 1kdBl - %kaBlCZ (3)
te
oB
5 12 _ + — YkqBio — 2k B, (4)
te
0B
5 2 — + —2/((182—%1(&82(?1) (5)
te
Bs =Bi+ Bix+ B> (6)
° empty receptor concentration

e Initially no bound ligand Bi(x,0) = Bi2(x,0) = Bx(x,0) =0,



Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Reaction Kinetics

@ Adding these three equations we find

0B
87;: = + —1kaB1 — 2kaB>  (7)

@ The only change in the total ligand concentration is due to
association /dissociation.



Multi-Component Model

Bulk Compartment

@ We can think of Pe™! as a perturbation parameter and use
the fact that D < 1 to arrive at the leading order equations:

oGC; oG
= —y(1—
Gi(0,y,t) =1, (9)
Ci(x,y,0) =0, (10)
aBl 8812
= 11
0 Ot + ot ’ (1)
0— 0B1s 0B (12)

Ot. + ot.



Multi-Component Model

Two Compartment

@ Compartment model
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Multi-Component Model

Diffusive Layers

@ There may be discontinuity between the solution in the bulk
compartment and the solution in the boundary layer.

@ To fix this one would introduce an intermediate (diffusive
layer) to smooth out any discontinuities.

@ But the reaction dynamics do not occur on this time scale, so
we will not concern ourselves with including such layers.



Multi-Component Model

Unstirred Layer on the Reactive Time Scale

@ Diffusion in the vertical direction balances with convection in
the x direction.
D 0*G _ %
oz T Tox
C1(0,77, t) =1.

1/3y is the stretched layer coordinate.

@ Here n = Pe
@ Change completely driven by reaction at the boundary.

@ As we exit the layer, the concentration in the unstirred layer
must match the uniform outer concentration C(x,00,t) =1



Multi-Component Model

Unstirred Layer

o Diffusive flux condition

0G
Dri 5 Uy =D
on (x,0,t) a (

9B, 9B
951 1
ot T ot ) (13)

o Da is the Damkéhler Number, and represents the ratio of
reaction to diffusion.

@ Da <« 1 for most reactions, key perturbation parameter.



Multi-Component Model

Reaction Kinetics

@ Need to get C; in terms of B;.

0B
({“)7t1 =1ka(l1 = Bs)CG + %kd312 —1kaB1 — %kaBl Ca,
0B

8t12 =3k B1 Gy + 2ka B2 C1 — 3kaBra — $kaBia,
0B>

W = %kdBl2 —+ zka(]_ — BX)CQ — %kaB2C1 - 2kdB2'



Multi-Component Model

Unstirred Layer

@ Consider the set of PDE's for (3

02G 0G
R e 14
o~ T ox (14)
6C1 o aBl a812
Drain(X,O, t) = Da (81‘_‘ + ot ) y (15)

@ Introduce a Laplace transform in x in (14) and use (15):

Da (0B 0B dv
C t)=1— t '
1(x,0,t) Df/33ir(§)/o (0t + 5 )(V, )(X_V)2/3




Multi-Component Model

Ligand Depletion

@ Convolution integral represents upstream ligand depletion

Da /0B, 0By dv
=1— (x —v)2/3
CGi(x,0,t) D,2/33§F(§)/0 <8t + ot )(M t)(X—z/)2/3

@ Ligand concentration a perturbation away from the outer
concentration.

@ Defined as R d
JoF(x) = /0 f(u)ﬁ, (16)

one may recognize the integral term in C; as a fractional
integral, with o = 1/3.



Multi-Component Model

Bound State System

@ The bound state system is then:

B
87751 = (1 - Bs)C — 1KyBy — 3KaB1Co + 3KaBio
B

8;2 = 1K,B1Cy — 3KyBia + 3KaBa Ci — 2Ky Bua
9B, 3y g 2K By Cy + 5K, (1 — Bs)G — 2K, B
ot B2 — 1K:B2 G +2K5(1 — Be) G — 2Ky B

with
Da (0B 0B dv
C t)=1-— D en
l(XaOﬂ ) Dr2/33%|—(%) A < ot + ot ) (V7 )(X — V)2/3

_ Da X 0 Bl 0 812 dv
G(x,0,t) =1 < o + ot ) (v, t) PEEE




Multi-Component Model

Perturbation Approximation

@ Da « 1, so we can search for a perturbation expansion of the

form
B = "B + Da'B + O(Da?). (17)
o Leading order:
d°B
E = —AOB+e1 +2K,e3 (18)
°B(t) = (I — e )[A (o1 + 2Kaes)), (19)

e.g. well mixed approximation.

@ The spatial dependence in 'B(x, t) ~ x1/3.



Multi-Component Model

Perturbation Approximation

@ Thus we may write

B(x, t) = (I — e ") [A Y (e1 + 2Ka + x'/3Da' B(t)] + O(Da?).
(20)

tin one

@ Problem: 1B contains a secular term of the form te—*
of its components.

@ A multiple scale expansion would be unweildy, and would have
to be manipulated again to obtain an expression of physical
relavance.



Multi-Component Model

Another Approximation

@ We are really interested in B.

e What if we could derive a set of equations for B, and solve
them numerically using a standard ODE Package?



Multi-Component Model

Averaged Bound State System

@ To do this we would integrate both sides of

0B
5 = (1= B)G —1KeB1 — 2K.BLGo + 2Ky B2
0B
5‘1?12 = ;KaBICZ - %KdBl2 + %KaB2C1 - %KdBl2
0B
37: =1KyBi — 1K:B2 G + 2Ka(1 — Bs) G — 2Ky B>

using

B Da x 881 8512

B Da 0B 0B dv
G(x,0,t) = 1 3§F(§)/o (at ot )(V’t)(X—V)M'




Multi-Component Model

How to Deal With Convolution Integral

@ We may exploit the fact that to leading order B is
independent of space

Da X (0B, OB dv
=1— (x — )2/3
Ci(x,0,t) Df/33ér(§)/o (8t + ot >(V, t)(x—y)2/3

Bi(x, t) = °By(t) + Da'By(x, t) + O(Da?)

@ By substituting our expansion into C; we arrive at

Da *(d°B;  d°Brs dv 2
C =1- D
1(,0,%) 03/33;r(§)/0 <dt rar ) Wn—ups o0




Multi-Component Model

How to Deal With Convolution Integral

@ Since time dependence factors out of the integral, we may
write

0 0
Ci(x,0,t) = 1 — Dah(x) (ddfl + dﬁ”) +0(Da%) (21)

where,

1 X _ 32/3X1/3
0= ez fy O Ty @




Multi-Component Model

ERC Equations

@ Using these manipulations and some algebra we can derive a
set of nonlinear ODE's, Effective Rate Constant Equations ,
for B:

dB

o -+ DaN(B)) }(—AB + e; + 2K,e3) + O(Da?).



Multi-Component Model

ERC Equation Solution

. By . B
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Multi-Component Model

ERC Equation Solution

Sensogram Signal

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

e Da = .01.

@ Reaction rates equal to one.



Multi-Component Model

Numerics

@ Used a finite difference algorithm

OB}

5:+1 =(1-BF, —1KaB}, — 3K.B}, +3KyB2,
881 ,n+1

ot *%KEBIZ,n 2KdBln+1K BZ 2KdB,na
0B 01

é: = 1K4B}2 —iK.B?, +,Ka(1 - BF, —,KaB? .



Multi-Component Model

Multiple-Component Reactions

i




Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Multiple-Component Reactions

-0 O




Multi-Component Model

Multiple-Component Reactions




Multi-Component Model

Singular Convolution Integral

o Difficult to deal with singularity

Da X (OB OB d¢
C,'17,,+1 =1- W /0 (atl(Xi - ga tn+1) + 8;2 (Xi - 6) tn+1)> (V7 t) 5,2/3
r 3

o Use trapezoidal rule to discretize the integral



Multi-Component Model

Convolution Integral

@ Subtract out the singularity

Da .
Clot =1 — o / ( -
e DE/33%[—(%) { 0

0B 83}3&1 d¢ 3 aBr‘l,ZnH
R T =Te) o

+

@ Even when singularity is subtracted out, convergence is only
O(Ax?/3) due to functional form.

o Temporal convergence O(At?), from AB2 time-stepping
scheme.



Multi-Component Model

Results

Figure : Left: B after 1 second. Right: B; after 5 seconds

e Da=2.

@ All reaction rate constants taken to be 1



Multi-Component Model

Results




Multi-Component Model

Error in ERC Equations
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Multi-Component Model

Error in ERC Equations

Abs Error
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Multi-Component Model

ERC Error vs Da

log(err)

Error By,

Error By,
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J
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Multi-Component Model

Wash Phase

@ We have derived similar results for the wash phase.

@ Recall in the wash phase, only the buffer fluid is flowing
through the biosensor.



Multi-Component Model

Wash Phase

@ In this case, we still have the same kinetics system at the
boundary,

98,
ot
0B12

ot

0B
a—tz = %KdBlz - %KaBZCI + 2Ka(1 - BZ)C2 - 2KdB2’

= (1 - Bs)C1 — 1KyB1 — 3KaB1Go + 2Ky Bia,

= 3K,B1Co — AKyBiz 4+ 2K.Ba Gy — 2Ky Bia,

@ Unbound ligand concentration at the surface will be different,
i.e. only trace amounts.



Multi-Component Model

Wash Phase

@ Therefore instead of

Da X 681 8312 dv
YRR PR Sy oy . WL P
1(x ) D3/33%r(%) 0 ot ot (v )(

we have

Da X 881 8812 dv
CL(x,0,) = ——— / ( n ) )
= sy o Vae o)

@ In this case %Bt" <0, and G; = O(Da).




Multi-Component Model

Wash Phase Results

@ ERC equations in this case are

O = (/+DaN(B)) |(-DB) + OD?) ()



Multi-Component Model

Wash Phase Results: FD Solution




Multi-Component Model

Wash Phase Results: FD Solution




Multi-Component Model

Wash Phase Results: ERC Error vs. Da

Error By, Error By,

log(err)
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Recovering Reaction Rates

Recovering Reaction Rates

@ Overall Goal: What are the reaction rates?
e Can we actually find cases where different rate constants
give the same signal?
e Can we develop a curve fitting algorithm?



Recovering Reaction Rates

Recovering Reaction Rates

@ Take Da = 0 and study the linear set of ODE’s

B
%t —_AB+f,  B(0)=0. (24)

@ Use (24) as our data.



Recovering Reaction Rates

Recovering Reaction Rates

@ Here

(14 ,Kg+3iK)  1-31Ky 1
A= —%Ka (%Kd—l-%Kd) —%Ka
2K, Ko — 2Ky (1Ka + Ky +2K,)

and f =e; or f = 7K,e3



Recovering Reaction Rates

Methodology

@ First inject ligand one until the system reaches an equilibrium,
then inject ligand two.

@ Broke the problem up into cases based on the size of
1Ka, 2Ka, 2Ka.



Recovering Reaction Rates

Recovering Reaction Rates




Recovering Reaction Rates

Recovering Reaction Rates

Sensogram Average Bound Complexes
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Recovering Reaction Rates

Recovering Reaction Rates




Recovering Reaction Rates

Recovering Reaction Rates
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Recovering Reaction Rates

Recovering Reaction Rates




Recovering Reaction Rates

Recovering Reaction Rates

Sensogram Average Bound Complexes
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Ambiguous Sensogram

Sensogram Average
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Recovering Reaction Rates

Right:

Bound Complexes
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Recovering Reaction Rates

Ambiguous Sensogram: Case 1




Recovering Reaction Rates

Ambiguous Sensogram: Case 2




Recovering Reaction Rates

Clarified Sensogram

Sensogram Average Bound Complexes
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Single Ligand Analysis

Single Ligand Analysis

@ When studying the single ligand process, there is only one
type of reaction at the boundary.

@ In this case the reacting species concentration obeys they

equation
o8B Da  [*0B dv
a¢ ~ (1~ B) <1 ~3r(2/3) Jo ot y)z/ss) — KB

e Can we find an analytic expression for B or B when
Da = 0(1)?



Single Ligand Analysis

A Homotopy Method

@ Homotopy: a continuous deformation of one curve into
another.

H(t,s) = (1= s)(t) +s7(t),  s€[0,1]

Yo(t)

.
R
.

1 (t)

@ Can we try the same thing with differential operators?



Single Ligand Analysis

A Homotopy of Differential Operators

e Many differential operators A can be composed into a linear
part £, and nonlinear part A/

L(B)+ N (B) = F. (25)
N—————’
A(B)

@ We can draw a homotopy between £ and A

H(B,p) =(1-p)L(B)+pA(B), pel0,1]. (26



Single Ligand Analysis

Nuts and Bolts

@ Therefore we can propose a series solution to

H(B,p) =1
<(1—-p)L(B)+ pA(B) = F, p € [0,1].

of the form

B(X7 t) = BO(X7 t) +pBl(X7 t) +p282(X7 t) e



Single Ligand Analysis

Nuts and Bolts

@ Thus when examing the pt* coefficient of our series in the
equation

&(1-p)L(B)+pAB)=F, pel0,1.  (27)

we will find that the nonlinearity is higher order.

@ That is we will have an equation of the form

L(B)) = -N(Bi,...,Bi1). (28)



Single Ligand Analysis

Single Ligand Analysis

@ The equation governing the bound state in the single ligand
case is

OB Da x OB dv
o~ (1-8) (1 ~ 31/3r(2/3) /o ar t)(x — y)2/3> — KB

o First we obtain an expression for B by averaging each side,
and rearranging some terms:

dB — dv

— 1+ K)B =1
dt +(1+K) +31/3r 2/3 )/ X—I/) (x —v)2/3
—_—

L



Single Ligand Analysis

Series Solution

@ Propose and substitute a series solution.

B(X, t) = Bo(X, t)+pBl(X, t)+p2Blz(X, t)+--- (29)
1(B,p) = 1. (30)

o Get linear ODE's for By(t), Bi(t), Ba(t),...
@ An approximation to B is then given by

B(t) = Bo + Bi(t) + B(t) + -



Single Ligand Analysis

Two Terms

@ Doing this the first two terms are:

Bo(t) = a~ (1 — e )

Dahe™2t%(—1 + et — ef®ta + et¥ta?)
B 2

Bl(t) =

(K+1)
a3

~ 3131(2/3)

a

a

>



Single Ligand Analysis

SIS

@ Convergence of our series.

o When Da = O(1) or Da > 1, what guaruntees that our series
will converge?

@ Secular term of the form te=*

e This is not bad enough make our series converge, but still
throws off the accuracy.



Single Ligand Analysis

Convergence

@ A standard technique is to embed a convergence control
paramter g into our homotopy

(1 p)(L(B) = L(bo)) + gpA(B) =1,  pe€]0,1]. (31)
@ Choose g that minimizes
IA(B) — 1]13 (32)

@ Done numerically in Mathematica.



Single Ligand Analysis

Time Scale

@ We can fix convergence, but the time scale is still off.

BJ; vs Approximation Bl vs Approximation

y
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y
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=== 3 Terms === 3 Terms

@ Da = 3; This is a 3 term approximation with and without the

convergence parameter q



Single Ligand Analysis

Time Scale

@ The propose a strained time scale of the form:
7= (1+ pwy + pPwa + ), (33)

where the w; are choosen to eliminate secular terms.



Single Ligand Analysis

Expansion

@ The first two terms are:

Bo(r) =a"1(1 - e 97),

— Dahe 207 (e — 1
Bi(r:q) = 2 042( )

T=(14ws +wy+--)t,

)

where a = (1 + K), and

w1 = —qDah(1 — o™ 1),
wo = Dahga™%(a — 1)(—Dahq + a — ga + Dahga),
/3

E:m.



Single Ligand Analysis

Two Term Expansion, Da = 1/2

BJ; vs Approximation Absolute Error
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@ Two term expansion, Da =1/2.



Single Ligand Analysis

Three Term Expansion, Da = 2

BJ; vs Approximation Absolute Error
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@ Three term Approximation, Da = 2.



Single Ligand Analysis

Five Term Expansion, Da = 10

BJ; vs Approximation Absolute Error
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=== 5 Terms

o Five term expansion, Da = 10.



Five Term Expansion, Da = 100
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=== 5 Terms

o Five term expansion, Da = 100.
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Single Ligand Analysis

Dissociation Phase

@ The expansion in the dissociation phase is:

— kTt

e
Bo(t) =
o(t) = ——,

Dae2¢" (-1 + e¥7) hq
Bl(t) = — ( 5 )

(6%

T=(1+w+wr+--)t
w1 = —Dahg,

wy = Dahq(—1 + g + Dahq).
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Two Term Expansion, Da = 1/2

- N Absolute Ei
BJ; vs Approximation solute Error
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=== 2 Terms

@ Two term expansion, Da =1/2.
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Three Term Expansion, Da = 2

= - Absolute B
BJ; vs Approximation solute Biror
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@ Three term Approximation, Da = 2.
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Five Term Expansion, Da = 10

= - Absolute B
BJ; vs Approximation solute Biror

ﬂﬂ}uy
y Y
0.6 0.025
0.020
0.4
0.015
0.2 0.010
0.005
40 60 8 100 ! 0 0 4 e s 10 '

_Elv

=== 3 Terms

o Five term expansion, Da = 10.
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Five Term Expansion, Da = 100

= - Absolute B
BJ; vs Approximation solute Biror
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=== 4 Terms

o Five term expansion, Da = 100.
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Matches Up With ERC Approximation

Absolute Error Absolute Error
Yy ¥y
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o Left: Two term approximation vs ERC Approximation. Right:
Five-Term approximation vs ERC Approximation.
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Conclusions

@ Modeling Multiple-Components in Optical Biosensors.
e We must consider transport.
o Full model simplifes to a coupled system of integrodiffential
equations.
e These equations further reduce to a set of nonlinear ODE's.
e Formally holds for Da < 1, numerically everywhere.

@ Sensogram Issues

e Multiple reacting species make interpreting Sensogram data
difficult.
e Can fix this in certain cases by varying of Cj.
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Conclusions

@ Single-Component Reactions

o Strongly nonlinear problem when Da = O(1).
e Can find analytic approximations to B by applying a homotopy
method.

o Must used a strained time scale.
e Matches up with ERC approximations.
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Future Work

@ Tie together multiple-receptor and multiple-ligand model.
@ Nonuniform initial receptor concentration.

@ Helical geometries.
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The End

Thanks for Coming! Questions?



	Optical Biosensors
	Multi-Component Model
	Recovering Reaction Rates
	Single Ligand Analysis

