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Overview

What are optical biosensors and surface-volume reactions?
Can we develop an accurate mathematical model for
multiple-component reactions in optical biosensors?
Given a set of data, can we determine the associated reaction
rates?
How does the reacting species behave in the single ligand
case, when there exists a strong nonlinearity in the governing
equation.
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Introduction

Many chemical reactions in biology involve a stream of
chemical reactants (ligand) flowing through a fluid-filled
volume, over a surface to which other reactants (receptors)
are confined.
These surface-volume reactions occur in a number of
biological processes such as blood clotting, drug absorption,
DNA-damage repair.
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Optical Biosensor

Optical biosensors are a popular way to measure such
reactions without disturbing the underlying system.
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Multiple-Component Reactions

This process has been well studied in the reaction limited,
transport dominant (weakly nonlinear) parameter regime,
when there is only a single ligand.
What happens when there are multiple reactions on the
suface?
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Multiple-Component Reactions
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Multiple-Component Reactions
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Multiple-Component Reactions in Optical Biosensors

Having an accurate mathematical model of this process helps
interpret biosensor data.
Biosensor only measure on a weighted average of reacting
species concentrations.
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Multiple-Component Reactions in Optical Biosensors

Biosensor only measures on a weighted average of reacting
species concentrations

S(t) :=
1

xmax − xmin

∫ xmax

xmin

B1(x , t) +

(
1 +

ρ2
ρ1

)
B12(x , t) +

ρ2
ρ1

B2(x , t) dx

Here Bi are reacting species concentrations

B1(x , t) = [EL1](x , t),

B2(x , t) = [EL2](x , t),

B12(x , t) = [EL1L2](x , t)

ρi are molecular weights of Bi .
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Multiple-Component Reactions in Optical Biosensors

Can rewrite

S(t) =
1

xmax − xmin

∫ xmax

xmin

B1(x , t) +

(
1 +

ρ2
ρ1

)
B12(x , t) +

ρ2
ρ1

B2(x , t) dx

more compactly as:

S(t) = B1(t) +

(
1 +

ρ2
ρ1

)
B12(t) +

ρ2
ρ2

B2(t),

B i =
1

xmax − xmin

∫ xmax

xmin

Bi (x , t) dx .
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Mathematical Model

Convection-diffusion equations for each of the unbound
ligands C1(x , y , t) = [L1](x , y , t), C2(x , y , t) = [L2](x , y , t).
Coupled to a system of PDE’s describing the evolution of the
reacting species concentration Bi at the boundary.
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Two Compartment

High flow rate and slow diffusion results means that diffusion
is only important in a layer near the boundary, e.g. several
time scales and boundary layers.
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Mathematical Model

∂C1
∂tc

= (Dr Pe−1)

(
ε2∂

2C1
∂x2 +

∂2C1
∂y2

)
− y(1− y)

∂C1
∂x , (1)

∂C2
∂tc

= Pe−1
(
ε2∂

2C2
∂x2 +

∂C2
∂y2

)
− y(1− y)

∂C2
∂x . (2)

tc is the convective time scale.
Pe� 1, ε� 11.
Dr is the ratio of the diffusivity of the two ligands, order one.
Parabolic velocity profile.

1Pe = 3.71 × 102, ε = 2.08−2
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Initial and Boundary Data

Initial conditions: Cj(x , y , 0) = 0.
Inflow condition: Cj(0, y , t) = 1.
No change in the concentration as it exits the channel
∂Cj
∂x (1, y , t) = 0.

No flux through the ceiling ∂Cj
∂y (x , 1, t) = 0.
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Bottom Boundary Condition

Diffusive flux conditions:

Dr D ∂C1
∂y (x , 0, tc) =

∂B1(x , tc)

∂tc
+
∂B12(x , tc)

∂tc

D ∂C2
∂y (x , 0, tc) =

∂B12(x , tc)

∂tc
+
∂B2(x , tc)

∂tc

D = Diffusion rate from channel to reacting surface
Convective Transport in Channel .

D � 1⇒ bound state governed by slower diffusive processes.
Need another set of equations for Bi .
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Reaction Kinetics

∂B1
∂tc

= 1ka(1− BΣ)C1 + 1
2kdB12 − 1kdB1 − 1

2kaB1C2,

∂B12
∂tc

= 1
2kaB1C2 + 2

1kaB2C1 − 1
2kdB12 − 2

1kdB12,

∂B2
∂tc

= 2
1kdB12 + 2ka(1− BΣ)C2 − 2

1kaB2C1 − 2kdB2,

BΣ = B1 + B12 + B2

1− BΣ empty receptor concentration
Initially no bound ligand B1(x , 0) = B12(x , 0) = B2(x , 0) = 0,
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Reaction Kinetics

∂B1
∂tc

= 1ka(1− BΣ)C1 + 1
2kdB12 − 1kdB1 − 1

2kaB1C2, (3)

∂B12
∂tc

= 1
2kaB1C2 + 2

1kaB2C1 − 1
2kdB12 − 2

1kdB12, (4)

∂B2
∂tc

= 2
1kdB12 + 2ka(1− BΣ)C2 − 2kdB2 − 2

1kaB2C1, (5)

BΣ = B1 + B12 + B2 (6)

1− BΣ empty receptor concentration
Initially no bound ligand B1(x , 0) = B12(x , 0) = B2(x , 0) = 0,
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Multiple-Component Reactions
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Reaction Kinetics

Adding these three equations we find

∂BΣ

∂t = 1ka(1− BΣ) + 2ka(1− BΣ)− 1kdB1 − 2kdB2 (7)

The only change in the total ligand concentration is due to
association/dissociation.
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Bulk Compartment

We can think of Pe−1 as a perturbation parameter and use
the fact that D � 1 to arrive at the leading order equations:

∂Ci
∂tc

= −y(1− y)
∂Ci
∂x , (8)

Ci (0, y , tc) = 1, (9)
Ci (x , y , 0) = 0, (10)

0 =
∂B1
∂tc

+
∂B12
∂tc

, (11)

0 =
∂B12
∂tc

+
∂B2
∂tc

. (12)
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Two Compartment

Compartment model
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Diffusive Layers

There may be discontinuity between the solution in the bulk
compartment and the solution in the boundary layer.
To fix this one would introduce an intermediate (diffusive
layer) to smooth out any discontinuities.
But the reaction dynamics do not occur on this time scale, so
we will not concern ourselves with including such layers.
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Unstirred Layer on the Reactive Time Scale

Diffusion in the vertical direction balances with convection in
the x direction.

Dr
∂2C1
∂η2 = η

∂C1
∂x ,

C1(0, η, t) = 1.

Here η = Pe1/3y is the stretched layer coordinate.
Change completely driven by reaction at the boundary.
As we exit the layer, the concentration in the unstirred layer
must match the uniform outer concentration C(x ,∞, t) = 1
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Unstirred Layer

Diffusive flux condition

Dr
∂C1
∂η

(x , 0, t) = Da
(
∂B1
∂t +

∂B12
∂t

)
(13)

Da is the Damköhler Number, and represents the ratio of
reaction to diffusion.
Da� 1 for most reactions, key perturbation parameter.
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Reaction Kinetics

Need to get Ci in terms of Bj .

∂B1
∂t = 1ka(1− BΣ)C1 + 1

2kdB12 − 1kdB1 − 1
2kaB1C2,

∂B12
∂t = 1

2kaB1C2 + 2
1kaB2C1 − 1

2kdB12 − 2
1kdB12,

∂B2
∂t = 2

1kdB12 + 2ka(1− BΣ)C2 − 2
1kaB2C1 − 2kdB2.
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Unstirred Layer

Consider the set of PDE’s for C1

Dr
∂2C1
∂η2 = η

∂C1
∂x (14)

Dr
∂C1
∂η

(x , 0, t) = Da
(
∂B1
∂t +

∂B12
∂t

)
, (15)

Introduce a Laplace transform in x in (14) and use (15):

C1(x , 0, t) = 1− Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3 .
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Ligand Depletion

Convolution integral represents upstream ligand depletion

C1(x , 0, t) = 1− Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3

Ligand concentration a perturbation away from the outer
concentration.
Defined as

Jαf (x) =

∫ x

0
f (ν)

dν
(x − ν)1−α , (16)

one may recognize the integral term in C1 as a fractional
integral, with α = 1/3.
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Bound State System

The bound state system is then:

∂B1
∂t = (1− BΣ)C1 − 1Kd B1 − 1

2KaB1C2 + 1
2Kd B12

∂B12
∂t = 1

2KaB1C2 − 1
2Kd B12 + 2

1KaB2C1 − 2
1Kd B12

∂B2
∂t = 2

1Kd B12 − 2
1KaB2C1 + 2Ka(1− BΣ)C2 − 2Kd B2

with

C1(x , 0, t) = 1− Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3

C2(x , 0, t) = 1− Da
3 1

3 Γ( 2
3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3
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Perturbation Approximation

Da� 1, so we can search for a perturbation expansion of the
form

B = 0B + Da1B + O(Da2). (17)

Leading order:

d0B
dt = −A0B + e1 + 2Kae3 (18)

0B(t) = (I − e−At)[A−1(e1 + 2Kae3)], (19)

e.g. well mixed approximation.
The spatial dependence in 1B(x , t) ∼ x1/3.
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Perturbation Approximation

Thus we may write

B(x , t) = (I − e−At)[A−1(e1 + 2Ka + x1/3Da1B(t)] + O(Da2).
(20)

Problem: 1B contains a secular term of the form te−λt in one
of its components.
A multiple scale expansion would be unweildy, and would have
to be manipulated again to obtain an expression of physical
relavance.
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Another Approximation

We are really interested in B.
What if we could derive a set of equations for B, and solve
them numerically using a standard ODE Package?



Optical Biosensors Multi-Component Model Recovering Reaction Rates Single Ligand Analysis

Averaged Bound State System

To do this we would integrate both sides of

∂B1

∂t = (1 − BΣ)C1 − 1KdB1 − 1
2KaB1C2 + 1

2KdB12

∂B12

∂t = 1
2KaB1C2 − 1

2KdB12 + 2
1KaB2C1 − 2

1KdB12

∂B2

∂t = 2
1KdB12 − 2

1KaB2C1 + 2Ka(1 − BΣ)C2 − 2KdB2

using

C1(x , 0, t) = 1 − Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1

∂t +
∂ B12

∂t

)
(ν, t)

dν
(x − ν)2/3 ,

C2(x , 0, t) = 1 − Da
3 1

3 Γ( 2
3 )

∫ x

0

(
∂ B1

∂t +
∂ B12

∂t

)
(ν, t)

dν
(x − ν)2/3 .
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How to Deal With Convolution Integral

We may exploit the fact that to leading order B is
independent of space

C1(x , 0, t) = 1− Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3

B1(x , t) = 0B1(t) + Da1B1(x , t) + O(Da2)

By substituting our expansion into C1 we arrive at

C1(x , 0, t) = 1 − Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
d0B1

dt +
d0B12

dt

)
(t)

dν
(x − ν)2/3 + O(Da2)
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How to Deal With Convolution Integral

Since time dependence factors out of the integral, we may
write

C1(x , 0, t) = 1− Dah(x)

(
d0B1
dt +

d0B12
dt

)
+ O(Da2) (21)

where,

h(x) =
1

31/3Γ(2/3)

∫ x

0
(x − ν)−2/3 dν =

32/3x1/3

Γ(2/3)
. (22)
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ERC Equations

Using these manipulations and some algebra we can derive a
set of nonlinear ODE’s, Effective Rate Constant Equations ,
for B:

dB
dt = (I + DaN(B))−1(−AB + e1 + 2Kae3) +O(Da2).
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ERC Equation Solution
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Da = .45
Reaction rates equal to one
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ERC Equation Solution
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Da = .01.
Reaction rates equal to one.
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Numerics

Used a finite difference algorithm

∂B1
i,n+1
∂t = (1− BΣ

i,n)C 1
i,n+1 − 1Kd B1

i,n −
1
2KaB1

i,nC 2
i,n+1 + 1

2Kd B12
i,n,

∂B12
i,n+1
∂t = 1

2KaB2
i,nC 2

i,n+1 −
1
2Kd B12

i,n + 2
1KaB2

i,nC 1
i,n+1 −

2
1Kd B12

i,n,

∂B2
i,n+1
∂t = 2

1Kd B12
i,n −

2
1KaB2

i,nC 1
i,n+1 + 2Ka(1− BΣ

i,n)C 2
i,n+1 − 2Kd B2

i,n.
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Multiple-Component Reactions

i

n
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Singular Convolution Integral

Difficult to deal with singularity

C1
i,n+1 = 1 − Da

D2/3
r 3 1

3 Γ( 2
3 )

∫ xi

0

(
∂B1

∂t (xi − ξ, tn+1) +
∂B12

∂t (xi − ξ, tn+1)

)
(ν, t)

dξ
ξ−2/3

Use trapezoidal rule to discretize the integral
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Convolution Integral

Subtract out the singularity

C1
i,n+1 = 1− Da

D2/3
r 3 1

3 Γ( 2
3 )

[∫ xi

0

(
∂B1

∂t (xi − ξ, tn+1) −
∂B1

i,n+1

∂t

+
∂B12

∂t (xi − ξ, tn+1) −
∂B12

i,n+1

∂t
dξ
ξ−2/3

)
+ 3x

1
3

i

(
∂B1

i,n+1

∂t +
∂B12

i,n+1

∂t

)]

Even when singularity is subtracted out, convergence is only
O(∆x2/3) due to functional form.
Temporal convergence O(∆t2), from AB2 time-stepping
scheme.
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Results
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Figure : Left: B1 after 1 second. Right: B1 after 5 seconds

Da = 2 .
All reaction rate constants taken to be 1
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Results

Running until equilibrium
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Error in ERC Equations
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Figure :

Here Da = .45
Rate constants all equal to one.
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Error in ERC Equations
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Figure :

Here Da = .45
Rate constants:
1Kd = 1/2, 2Ka = 1, 2Kd = 1, 2

1Ka = 1, 2
1Kd = 2, 2

1Ka = 2, and
1
2Kd = 1/2
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ERC Error vs Da
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Same rate constants as before
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Wash Phase

We have derived similar results for the wash phase.
Recall in the wash phase, only the buffer fluid is flowing
through the biosensor.
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Wash Phase

In this case, we still have the same kinetics system at the
boundary,

∂B1
∂t = (1− BΣ)C1 − 1Kd B1 − 1

2KaB1C2 + 1
2Kd B12,

∂B12
∂t = 1

2KaB1C2 − 1
2Kd B12 + 2

1KaB2C1 − 2
1Kd B12,

∂B2
∂t = 2

1Kd B12 − 2
1KaB2C1 + 2Ka(1− BΣ)C2 − 2Kd B2.

Unbound ligand concentration at the surface will be different,
i.e. only trace amounts.
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Wash Phase

Therefore instead of

C1(x , 0, t) = 1− Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3 ,

we have

C1(x , 0, t) = − Da
D2/3

r 3 1
3 Γ( 2

3 )

∫ x

0

(
∂ B1
∂t +

∂ B12
∂t

)
(ν, t)

dν
(x − ν)2/3 ,

In this case ∂Bi
∂t < 0, and C1 = O(Da).
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Wash Phase Results

ERC equations in this case are

dB
dt = (I + DaN(B))−1(−DB) + O(Da2) (23)
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Wash Phase Results: FD Solution
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Wash Phase Results: FD Solution
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Wash Phase Results: ERC Error vs. Da
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Recovering Reaction Rates

Overall Goal: What are the reaction rates?
Can we actually find cases where different rate constants
give the same signal?
Can we develop a curve fitting algorithm?
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Recovering Reaction Rates

Take Da = 0 and study the linear set of ODE’s

dB
dt = −AB + f, B(0) = 0. (24)

Use (24) as our data.
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Recovering Reaction Rates

Here

A =

(1 + 1Kd + 1
2Ka) 1− 1

2Kd 1
− 1

2Ka (1
2Kd + 2

1Kd ) − 2
1Ka

2Ka 2Ka − 2
1Kd (2Ka + 2Kd + 2

1Ka)


and f = e1 or f = 2Kae3
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Methodology

First inject ligand one until the system reaches an equilibrium,
then inject ligand two.
Broke the problem up into cases based on the size of
1Kd, 2Ka, 2Kd.
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Recovering Reaction Rates
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Recovering Reaction Rates

1Kd = 100
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Recovering Reaction Rates
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Recovering Reaction Rates

1Kd = 100, 2Kd = 1
100
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Recovering Reaction Rates
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Recovering Reaction Rates
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Ambiguous Sensogram

Left: 2Kd = 100, 1
2Ka = 1

100 . Right: 2Ka = 100. Both: C1 = 1.
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Ambiguous Sensogram: Case 1
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Ambiguous Sensogram: Case 2
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Clarified Sensogram

Left: 2Kd = 1
100 ,

1
2Ka = 100. Right: 2Ka = 100. Both: C1 = .1.
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Single Ligand Analysis

When studying the single ligand process, there is only one
type of reaction at the boundary.
In this case the reacting species concentration obeys they
equation

∂B
∂t = (1− B)

(
1− Da

31/3Γ(2/3)

∫ x

0

∂B
∂t (ν, t)

dν
(x − ν)2/3

)
− KB

Can we find an analytic expression for B or B when
Da = O(1)?
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A Homotopy Method

Homotopy : a continuous deformation of one curve into
another.

H(t, s) = (1− s)γ0(t) + sγ1(t), s ∈ [0, 1]

Can we try the same thing with differential operators?
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A Homotopy of Differential Operators

Many differential operators A can be composed into a linear
part L, and nonlinear part N

L(B) +N (B)︸ ︷︷ ︸
A(B)

= F . (25)

We can draw a homotopy between L and A

H(B, p) = (1− p)L(B) + pA(B), p ∈ [0, 1]. (26)
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Nuts and Bolts

Therefore we can propose a series solution to

H(B, p) = 1
⇔(1− p)L(B) + pA(B) = F , p ∈ [0, 1].

of the form

B(x , t) = B0(x , t) + pB1(x , t) + p2B2(x , t) + · · · .
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Nuts and Bolts

Thus when examing the pth coefficient of our series in the
equation

⇔(1− p)L(B) + pA(B) = F , p ∈ [0, 1]. (27)

we will find that the nonlinearity is higher order.
That is we will have an equation of the form

L(Bi ) = −N (B1, . . . ,Bi−1). (28)
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Single Ligand Analysis

The equation governing the bound state in the single ligand
case is

∂B
∂t = (1− B)

(
1− Da

31/3Γ(2/3)

∫ x

0

∂B
∂t (ν, t)

dν
(x − ν)2/3

)
− KB

First we obtain an expression for B by averaging each side,
and rearranging some terms:

dB
dt + (1 + K )B︸ ︷︷ ︸

L

+
Da

31/3Γ(2/3)
(B − 1)

∫ x

0

∂B
∂t (ν, t)

dν
(x − ν)−2/3︸ ︷︷ ︸

N

= 1
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Series Solution

Propose and substitute a series solution.

B(x , t) = B0(x , t) + pB1(x , t) + p2B12(x , t) + · · · (29)
H(B, p) = 1. (30)

Get linear ODE’s for B0(t), B1(t), B2(t), . . .

An approximation to B is then given by

B(t) = B0 + B1(t) + B(t) + · · ·
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Two Terms

Doing this the first two terms are:

B0(t) = α−1(1− e−αt)

B1(t) = −Dahe−2tα(−1 + etα − etαtα + etαtα2)

α2

α = (K + 1)

h =
x1/3

31/3Γ(2/3)
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Issues

Convergence of our series.
When Da = O(1) or Da� 1, what guaruntees that our series
will converge?

Secular term of the form te−αt

This is not bad enough make our series converge, but still
throws off the accuracy.
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Convergence

A standard technique is to embed a convergence control
paramter q into our homotopy

(1− p)(L(B)− L(b0)) + qpA(B) = 1, p ∈ [0, 1]. (31)

Choose q that minimizes

||A(B)− 1||22 (32)

Done numerically in Mathematica.
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Time Scale

We can fix convergence, but the time scale is still off.
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Da = 3; This is a 3 term approximation with and without the
convergence parameter q
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Time Scale

The propose a strained time scale of the form:

τ = (1 + pω1 + p2ω2 + · · ·)t, (33)

where the ωi are choosen to eliminate secular terms.
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Expansion

The first two terms are:

B0(τ) = α−1(1− e−ατ ),

B1(τ ; q) =
qDahe−2ατ (eατ − 1)

α2 ,

τ = (1 + ω1 + ω2 + · · ·)t,

where α = (1 + K ), and

ω1 = −qDah(1− α−1),

ω2 = Dahqα−2(α− 1)(−Dahq + α− qα + Dahqα),

h =
x1/3

31/3Γ(2/3)
.
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Two Term Expansion, Da = 1/2
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Three Term Expansion, Da = 2
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Five Term Expansion, Da = 10
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Five Term Expansion, Da = 100
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Dissociation Phase

The expansion in the dissociation phase is:

B0(t) =
e−kτ

α
,

B1(t) = −
Dae−2kτ

(
−1 + ekτ

)
hq

α2

τ = (1 + ω1 + ω2 + · · ·)t
ω1 = −Dahq,
ω2 = Dahq(−1 + q + Dahq).
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Two Term Expansion, Da = 1/2
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Three Term Expansion, Da = 2
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Five Term Expansion, Da = 10
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Five Term Expansion, Da = 100
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Matches Up With ERC Approximation
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Left: Two term approximation vs ERC Approximation. Right:
Five-Term approximation vs ERC Approximation.
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Conclusions

Modeling Multiple-Components in Optical Biosensors.
We must consider transport.
Full model simplifes to a coupled system of integrodiffential
equations.
These equations further reduce to a set of nonlinear ODE’s.
Formally holds for Da� 1, numerically everywhere.

Sensogram Issues
Multiple reacting species make interpreting Sensogram data
difficult.
Can fix this in certain cases by varying of C1.
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Conclusions

Single-Component Reactions
Strongly nonlinear problem when Da = O(1).
Can find analytic approximations to B by applying a homotopy
method.
Must used a strained time scale.
Matches up with ERC approximations.
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Future Work

Tie together multiple-receptor and multiple-ligand model.
Nonuniform initial receptor concentration.
Helical geometries.
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The End

Thanks for Coming! Questions?
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