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Data is multi-modal, multi-relational,
spatio-temporal, multi-media

Entities and relationships are important!




NEED: Data Science for Graphs



Statistical Relational Learning (SRL)

o AIl/DB representations + statistics for multi-relational data
Entities can be of different types
Entities can participate in a variety of relationships

examples: Markov logic networks, relational dependency networks,
Bayesian logic programs, probabilistic relational models, many others.....

o Key ideas
Relational feature construction
Collective reasoning
‘Lifted’ representation, inference and learning

o Related areas

structured prediction, hierarchical models, latent-variable relational
models, multi-relational tensors, representation learning, ...

For more details, see NIPS 2012 Tutorial,
http://lings.cs.umd.edu/projects//Tutorials/nips20 | 2.pdf



Common Graph Data Analysis Patterns

o Joint inference over large networks for:

Collective Classification
Link Prediction

Entity Resolution
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Common Graph Data Analysis Patterns

o Joint inference over large networks for:

Collective Classification — inferring labels of nodes
In graph

Link Prediction — inferring the existence of edges in
graph

Entity Resolution — clustering nodes that refer to the
same underlying entity



What's Needed Next?

o Methods which can perform and interleave these
tasks

o Methods which support:

Graph identification — inferring a graph from noisy
observations

Graph alignment - mapping components in one
graph to another

Graph summarization - clustering the nodes and
edges in a graph
o Desiderata: Flexible, scalable, declarative support
for collective classification, link prediction, entity
resolution and other information alignment and
information fusion problems....



Probabilistic Soft Logic (PSL)
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Probabilistic Soft Logic (PSL)

Declarative language based on logics to express
collective probabilistic inference problems

- Predicate = relationship or property
- Atom = (continuous) random variable

- Rule = capture dependency or constraint
- Set = define aggregates
PSL Program = Rules + Input DB
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Node Labeling




Voter Opinion Modeling




http://psl.umiacs.umd.edu

Voter Opinion Modeling
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Voter Opinion Modeling
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Link Prediction

= Entities Inl .
- People, Emails
= Attributes

- Words in emails w - r
= Relationships = |
- communication, work w -
[ )

relationship

» Goal: Identify work c -
relationships

- Supervisor, subordinate,

colleague * |
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Link Prediction

= People, emails, words,
communication, relations

= Use rules to express 0

_-
evidence w T ‘
- “If email content suggests type X, it - o
_-
°

is of type X” |

- “If A sends deadline emails to B,
then A is the supervisor of B”

- “If Ais the supervisor of B, and A is N m
the supervisor of C, then B and C
are colleagues”
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Link Prediction

= People, emails, words, _ Inl -
communication, relations = || Lcomplete by
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then A is the supervisor of B”
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Link Prediction

= People, emails, words,
communication, relations

= Use rules to express 0

_-
evidence * ] ‘
- “If email content suggests type X, it - o
_-
°

is of type X” T

- “If A sends deadline emails to B,
then A is the supervisor of B”

- “If Ais the supervisor of B, and A is N m
the supervisor of C, then B and C
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Entity Resolution

= Entities

- People References | John Smith | . Smith
name Nname

= Attribut
Name A (8]

= Relationships

- Friendship [C][D][F][G]
= Goal: Identify @

references that denote
the same person =

-~ -
= =
e e = -—
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Entity Resolution

= References, names,

friendships [ John Smith ] [ J. Smith ]
= Use rules to express = S
evidence [’9 [B:]

friend friend

- " If two people have similar names,

they are probably the same’”’
- " If two people have similar friends, [ C ] [ D ] [ F ] [ G ]

they are probably the same’”’ '\ /

- “If A=B and B=C, then A and C must e l H I

also denote the same person’
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Entity Resolutiop

A.name =y, g B.name =>AxB : 0.8

= References, names, e I

friendships [ John Smith ] [ J. Smith ]
= Use rules to express = =
evidence E’Q EB:]

friend friend

- " If two people have similar names,
they are probably the same’”’

- "If two people have similar friends, [ C] [ D] [ F ] [ G]

) 1}

they are probably the same N /

- “If A=B and B=C, then A and C must e l H I

also denote the same person’
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Entity Resolution

= References, names,

friendships [ John Smith ] [ J. Smith ]
= Use rules to express = =
evidence A EB:]

iend friend

- "If two people have similar names, = —
they are probably the same’”’
- " If two people have similar friends{ F_] [_G
they are probably the same’”’ I
’

- “If A=B and B=C, then A and C must
also denote the same person’’

{A.friends} =~ {B.friends} => A=B : 0.6
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Entity Resolution

= References, names,

friendships [ John Smith ] [ J. Smith ]
= Use rules to express = =
evidence E’Q EB:]

friend friend

- " If two people have similar names,

they are probably the same’”’
- “If two people have similar friends, [ C ] [ D ] [ F ] [ G ]
they are probably the same’”’ '\ /

- “If A=B and B=C, then A and C must e l H I

also denote the same person’

= -
e e = -—

Ax=B N BxC =>A=C: o0




Logic Foundation
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[Broecheler, et al., UAI “10]

RUleS Ground Atoms

%

H, V..H < B, AB, A ..B

= Atoms are real valued

- Interpretation I, atom A: I(A) €[0,1]

- We will omit the interpretation and write A €[0,1]
=V, A are combination functions

- T-norms: [0,1]" —[0,1]
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[Broecheler, et al., UAI “10]

Rules

H, V..H < B, AB, A ..B

» Combination functions (Lukasiewicz T-norm)
=AV B=min(1, A+ B)
*AA B=max(0, A+B-1)
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[Broecheler, et al., UAI “10]

Satisfaction

H, V..H < B, AB, A ..B

= Establish Satisfaction

- V (H;,..,Hy) < A (By,..,B)

]

>0.5 H, < B,:0.7 A B,:0.8
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Distance to Satisfaction

H, V..H. < B, AB, A ..

= Distance to Satisfaction

[Broecheler, et al., UAI “10]

Bn

- max( A (B1,..,Bn) -V (H1,..,Hm) , 0)

]

H,:0.7 < B,:0.7 A B,:0.8

H,:0.2 < B,:0.7 A B,:0.8

0.0
0.3
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[Broecheler, et al., UAI “10]

Rule Weights
W:H, V..H_< B, AB, A ..B.

= Weighted Distance to Satisfaction
- d(R,l) =W * max( A (B;,..,B.) - V (H,,..,H ), 0)
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So far....

» Given a data set and a PSL program, we can
construct a set of ground rules.

= Some of the atoms have fixed truth values
and some have unknown truth values.

» For every assignment of truth values to the
unknown atoms, we get a set of weighted
distances from satisfaction.

= How to decide which is best?




Probabilistic Foundation
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Probabilistic Model

Ground rule’s distance to satisfaction
dr (I) — maX{Ir,body — Ir,heada O}

Probability

density over
interpretation /

— Z wy-(dr-(I))P"

. rekR

5 Rule weight
Normalization

constant
Distance

exponent

(in {1, 2})



Hinge-loss MRFs
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Hinge-loss Markov Random Fields

1 ™m
P(Y|X)=—exp |- > w;max{(;(Y,X),0}"

j=1

= Continuous variables in [0,1]

= Potentials are hinge-loss functions

= Subject to arbitrary linear constraints
» Log-concave!

N
S N
oS
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Inference as Convex Optimization
= Maximum Aposteriori Probability (MAP) Objective:

arg max P(Y | X)

= arg min Z w; max{¢;(Y,X),0}"

Y =1

= This is convex!

= Can solve using off-the-shelf convex optimization
packages

= .. Or custom solver
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Consensus Optimization

» |dea: Decompose problem and solve
sub-problems independently (in
parallel), then merge results

- Sub-problems are ground rules

- Auxiliary variables enforce consensus across
sub-problems

= Framework: Alternating direction method of multipliers
(ADMM) [Boyd, 2011]

» Inference with ADMM is fast, scalable, and straightforward
to implement [Bach et al., NIPS 2012, UAI 2013]




[Bach et al., UAI 2013; London et al., 2013]

Speed

Average running time

Cora Citeseer Epinions Activity
Discrete MRF 110.9s 184.3s 2124s 344.2s
HL-MRF 0.4s 0.7s 1.2s 0.6s

» [nference in HL-MRFs is orders of magnitude faster than in
discrete MRFs which use MCMC approximate inference

» |n practice, scales linearly with the number of potentials
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Compiling PSL - HL-MRF

= Ground out first-order rules
- Variables: soft-truth values of atoms

- Hinge-loss potentials: weighted distances to
satisfaction of ground rules

U w:A—B
w:—-AVB
w X (1 —min{l— A+ B,1})
w X max{A — B, 0}

= The effect is assignments that satisfy weighted rules more
are more probable
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Inference Meta-Algorithm

Function: MAP-Inference I
Each ground rule

1.1 Io(y) « all zeros assignment constitutes a linear or
1.2 R < all grounded rules activated by I(x) U Io(y) conic constraint,

1.3 while R has been updated do introducing a rule-

14 1 4— current iteration e e . C

1.5 O + generateConvexProb (R)4/ spe.CIﬁC dlssat]SfaCtlon
. variable that is added to

1.6 I;(y) + optimize (O) the obiective funct

1.7 foreach Proposition y € y do € objective tunction.

1.8 if I; (y) > 6(6 = 0.01) then

1.9 R, < activated rules containingy R < RU R,

1.10 end

1.11 end
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Inference Meta-Algorithm

Function: MAP-Inference

1.1 Ip(y) < all zeros assignment
1.2 R + all grounded rules activated by I(x) U I (y)

1.3 while R has been updated do Find most probable
14 1 < current iteration assignment using
1.5 O + generaf.e'ConvexProb (R) consensus optimization
1.6 bR o (ADMM) subroutine
1.7 foreach Proposition y € y do
1.8 if I; (y) > 6(6 = 0.01) then
1.9 R, < activated rules containingy R < RU R,

1.10 end

1.11 end
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Inference Meta-Algorithm

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

Function: MAP-Inference
Io(y) < all zeros assignment

R + all grounded rules activated by I(x) U Io(y)| Conservative Grounding:

while R has been updated do
1 < current iteration

O < generateConvexProb (R) Save time and space by

I;(y) + optimize (O)

foreach Proposition y € y do / in the first p[ace.
if I; (y) > 6(6 = 0.
R, < activated rules containingy R < RU R,

end
end

Most rules trivially have
satisfaction distance=0.

not grounding them out

01) then

end

Don’t reason about it if you
don’t absolutely have to!




Miao, Liu, Huang, Getoor, IEEE Big Data 2013

Distributed MAP Inference

= ADMM consensus optimization problem can be implemented
naturally in distributed setting

= For k+1 iteration, it consists three steps in which sub problems
can run independently (15t and 2" step):

1. Update Lagrangian multiplier

k+1 K & s Pi(x;)

VY p(x —X; )

2. Update each sub problem -
41 : P & 1 k1 ’ Pl %) '
xXHle—arg min A (x;)+ S |1% -Xj+ /—)_\',- j

p ] 2 II[CI (“‘.m-i-l)]
X e—arg ll}_'ill LICi(x) |+ 5 |1 -Xi + /—))’f” '

3. Update the global variables Lcm ) —

vt_:+l

/ \
Y +1, !
N U

g Glij)=g P




Distributed MAP: MapReduce

Job Bootstrap

Mapper

sub
problem

local
variable

copy

Reducer

update
global

component

V4

load global variable
X as side data

\

-
-
.-

O &%

-
-
-

-

\

-
-

P
-
-
-

read global
variable X
read/write
subproblem
7 m+1 m+l

0

-
-
-

-
-
-
-

Pros:
* Straightforward Design

Cons:

* Job bootstrapping cost
between iterations

* Difficult to schedule
subset of nodes to run.

HDFS or
HBase

GKGPP it

write new

global variable




Distributed MAP: GraphLab Advantages;

* No need to touch disk, no
job bootstrap-ping cost
* Easy to express local

sub global convergence conditions to
problem variable schedule only subset of
node compone nodes.
gather gather
get z get local z,y
apply apply
update y update z
update x
scatter
scatter unless converge
notify z

notify X

update i update i+1




Experimental Results

= Using PSL for knowledge graph cleaning task
- 16M+ vertices, 22M+ edges, for small running instances

- Takes 100 minutes to finish in Java single machine
implementation using 40G+ memory

- Distributed GraphLab implementation takes less than 15
minutes using 4 smaller machines

- Possible to use commodity machines on large models!



Miao, Liu, Huang, Getoor, BigData ’13

Experimental Results

Voter model using commodity machines
Voter Opinion Modeling

h [vote(A,P) /\ friend(B A) > vote( B,P) 0.3 | |Subproblem| | |Consensus| Fitin One | Run tlmc_e (sec)
o, Machine? Im|=8

spovse # — w SNy 3.3M 1.1M 2230
w«end Ad spouse SNy 6.6M 2.1M 12M No 3997
frlenx . = coueague SNy 10M 3.1M 18M No 4395
spo“e w SN 13M 4.2M 24M No 5376

m|vote (A,P) A spouse(B,A) > vote(B,P) : 0.8 Machine: Intel Core2 Quad CPU 2.66GHz machines

with 4GB RAM running Ubuntu 12.04 Linux

5000 - Hyper 4 9000 |- ayper 4
5 4500 F Greedy -~~~ 4 5 Jiono OOy TR
3 " g 8000 - y Sy
3 4000 | - < 7000 | .
e 3500 - . E 5000
= 3000 |- — = : i
£ 2500 - e £ 5000 -
£ 2000 . S 4000
£ 1500 | k - 3000

1000 —

500 L ' L 2000 *

2 4 6 8

Number of Machines (SNyy) Number of machines

Weak scaling with increasing size

Strong scaling with fixed dataset



Weight Learning
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Weight Learning

= Learn from training data
* No need to hand-code rule-weights

= Various methods:

- approximate maximum likelihood
Broecheler et al., UAI 10

- maximum pseudo-likelihood

- large-margin estimation
Bach, et al., UAI 2013
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Weight Learning

= State-of-the-art supervised-learning
performance on

- Collective classification

- Social-trust prediction
- Preference prediction
- Image reconstruction




Example PSL Program
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Collective Activity Detection

=
!
i
I !
ll ! >
2 e
- > -
i . . -
\ " S A
| - . N
A—
: e
™

= Objective: Classify actions of individuals in a video sequence
- Requires tracking the multiple targets, performing ID maintenance

’—



http://psl.umiacs.umd.edu

Incorporate Low-level Detectors

Histogram of Oriented Gradients Action Context Descriptors (ACD)
(HOG) [Dalal & Triggs, CVPR 2005] [Lan et al., NIPS 2010]

(c)

For each action a, define PSL rule:
Doing(X, a) < Detector(X, a)

Wlocal,a .

e.g., Wiocalwalking - POING(X, walking) < Detector(X, walking)
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Easily Encode Intuitions

= Proximity: People that are close (in frame)
are likely doing the same action

: Doing(X, a) < Close(X, Y) A Doing(Y, a)

Wprox,a

- Closeness is measured via a radial basis function

the same action

w

: Doing(Y, a) < Same (X, Y) A Doing(X, a) 5 e

persist,a

- Requires tracking & ID maintenance rule:

w,, : Same(X,Y) < Sequential(X,Y) A Close(X,Y)
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Other Rules

= Action transitions
* Frame/scene consistency
= Priors

= (Partial-)Functional Constraints
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Collective Activity Detection Model

w.,: Same(X, Y) «— Sequential(X, Y) A Close(X, Y)

idprior °

: ~SamePerson(X, Y)

For all actions a:

: Doing(X, a) < Detector(X, a)
: Doing(X, a) < Frame(X, F) A FrameAction(F, a)

Wlocal,a

Wframe,a

w, ... Doing(X, a) < Close(X, Y) A Doing(Y, a)

prox,a *

Woersisea - DOING(Y, @) «— SamePerson(X, Y) A Doing(X, a)

: ~Doing(X, a)

Wprior,a :

[London et al., 2013]
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PSL Code

/¥*¥% MODEL DEFINITION ¥**/
PSLModel m = new PSLModel(this, data);
/* PREDICATES */

// target
m.add predicate: "doing", types: [ArgumentType.UniquelD,ArgumentType.Integer];
m.add predicate: "sameObj", types: [ArgumentType.UniquelD,ArgumentType.UniquellD];

// observed

.add predicate: "inframe", types: [ArgumentType.UniquelD,ArgumentType.Integer,ArgumentType.Integer];
.add predicate: "inSameframe”, types: [ArgumentType.UniquelD,ArgumentType.UniquellD];

.add predicate: "inSeqgframes”, types: [ArgumentType.UniquelD,ArgumentType.UniquellD];

.add predicate: "dims", types: [ArgumentType.UniquelID,ArgumentType.Integer,ArgumentType.Integer];
.add predicate: "detector”, types: [ArgumentType.UniquelID,ArgumentType.Integer];

.add predicate: "frameAction”, types: [ArgumentType.Integer,ArgumentType.Integer];

I3 3 333 3

/* FUNCTIONAL PREDICATES */

m.add function: "close”, implementation: new ClosenessFunction(@, 1le6, 0.1, true);
m.add function: "seqClose”, implementation: new ClosenessFunction(199, 4.9, 0.7, true);
m.add function: "notMoved”, implementation: new ClosenessFunction(19, 1.9, 0.0, false);
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PSL Code

/* TRACKING RULES */

// ID maintenance
m.add rule: ( inSeqFrames(BB1,BB2) & dims(BB1,X1,Y1) & d
& seqClose(X1,X2,Y1,Y2) ) >> someOb](g__ 2), welght 1.9;

// Prior on sameQObj
m.add rule: ~sameObj(BB1,BB2), weight: 9.01;

/* ACTION RULES */

def actions = ["crossing","standing", "queueing","walking","talking"];
for (int a : actions) {

// Local detectors
m.add rule: detector(BB,a) >> doing(BB,a), weight: 1.0;

// Frame consistency
m.add rule: ( inFrame(BB,S,F) & framelLabel(F,a) ) >> doing(BB,a), weight: 9.1;

// Persistence

m.add rule: ( sameObj(BB1,BB2) & doing(BBl,a) ) >> doing(BB2,a), weight: 1.0;

// Proximity
m.add rule: ( 1nSameFrame(BBl BBZ) & doing(BB1
d

) & dims(BB1,X1,Y1) & dim
BB2,a), weight: 0.1;

// Prior on doing

m.add rule: ~doing(BB,a), weight: 9.01;
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PSL Code

/* FUNCTIONAL CONSTRAINTS */

// Functional constraint on doing means that it should sum to 1 for each BB
m.add PredicateConstraint. Functional, on: doing;

// (Inverse) Partial functional constraint on sameObj
m.add PredicateConstraint.PartialFunctional, on: sameObj;
m.add PredicateConstraint.Partiallnversefunctional, on: sameObj;



Foundations Summary
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Foundations Summary

= Design probabilistic models using
declarative language

- Syntax based on first-order logic

" Inference of most-probable explanation
is fast convex optimization (ADMM)

* _earning algorithms for training rule
weights from labeled data




PSL Applications
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Document Classification

= Given a networked collection of documents

= Observe some labels

» Predict remaining labels using

= link direction
= inferred class label

Citeseer Cora
HL-MRF-Q (MLE) 0.729 0.816
HL-MRF-Q (MPLE) 0.729 0.818
HL-MRF-Q (LME) 0.683 0.789
HL-MRF-L (MLE) 0.724 0.802
HL-MRF-L (MPLE) 0.729 0.808
HL-MRF-L (LME) 0.695 0.789
MLN (MLE) 0.686 0.756
MLN (MPLE) 0.715 0.797
MLN (LME) 0.687 0.783

A or B?

A or B?

Accuracy for collective classification. The label accuracy of the highest-scoring
category for various HL-MRFs and MLNs. Scores statistically equivalent to the
best scoring method are typed in bold.

nd[]H

P
«

a
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Computer Vision Applications

» Low-level vision:
- Image reconstruction

* High-level vision:
- activity recognition in videos



[Bach, et al., UAI 2013]

Image Reconstruction

) (g (g e T )
NS ghs wils NS TS

o

HL-MRF-Q (MLE) SPN DBM DBN PCA NN

Caltech-Left 1751 1815 2998 4960 2851 2327
Caltech-Bottom 1863 1924 2656 3447 1944 2575
Olivetti-Left 932 942 1866 2386 1076 1527
Olivetti-Bottom 1202 918 2401 1931 1265 1793

RMSE reconstruction error




[London, et al., CVPR WS 2013]

Activity Recognition in Videos

S e E—— T W e

a b

crossing waiting queueing [ walking talking | I dancing N jogging I




[London, et al., CVPR WS 2013]

Results on Activity Recognition

é\(\% EpE N 4.30% 2.50% 0.50% ]
NP ... R o 10% Recall matrix between
Q2 o o o
\)e\)é\(\% 4.20% 17.70% [LRALY 0.80% 0.50% 0.10% d]fferent act'lv'lty types
\a\\‘;\(\% 0.60% 6.09% 11.79% NE#e Y 090% 3.40%

.\(\% 0.40% 0.30% 1.10% EEADLER 0.10%
o
%?;\(\% 0.10%
\0
(o5 B oo 8 et 5 Activities | 6 Activities
Method Acc. | F1 | Acc. | FI
. HOG 474 | 481 | 596 | .582
Accu racy metrics HL-MRF + HOG | .598 | .603 | .793 | .789
: ACD 675 | 678 | .835 | .835
compared against HL-MRF+ACD | .692 | .693 | .860 | .860

baseline features

’—



Social Trust Prediction

» Competing models from social psychology of
strong ties

- Structural balance [Granovetter ' 73]
- Social status [Cosmides et al., " 92]

= Effects of both models present in online
social networks

- [Leskovec, Huttenlocher, & Kleinberg, 2010]




Structural Balance vs. Social Status

= Structural balance: strong ties are governed
by tendency toward balanced triads

B
. +/’\+ . A +/V’\_ .
= + —hg o - Ao

- e.g., the enemy of my enemy...

= Social status: strong ties indicate
unidirectional respect, “looking up to”,

expertise status _
o+ e . e

A B C

- e.g., patient-nurse-doctor, advisor-advisee




[Huang, et al., SBP ‘13]

Structural Balance in PSL

B

AN

Knows(A, B) A Knows(B, C) A Knows(A, C)
ATrusts(A, B) A Trusts(B, C) = Trusts(A, C),

Tr(A, B
Tr(A, B
—Tr(A, B
—Tr(A, B

ANTr(B,C) = Tr(A C),
A =Tr(B, C) = —Tr(A, C),
ANTr(B,C) = —Tr(A, C),
A=Tr(B, C) = Tr(A, C)

N’ N’ N’ N’



[Huang, et al., SBP ‘13]

Structural Balance in PSL

B B
A /—’}»‘- c A &&o C

Tr(A, B)ATr(B,C) = Tr(A, C), Tr(B,A) ATr(B,C) = Tr(A, C),

Tr(A, B) A —=Tr(B, C) = —Tr(A, C), Tr(B, A) A =Tr(B, C) = —Tr(A, C),
-Tr(A,B)ATr(B,C) = —Tr(A C), —Tr(B,A)ATr(B,C) = —Tr(A C),
—Tr(A, B) A =Tr(B, C) = Tr(A, C), —Tr(B, A) A =Tr(B, C) = Tr(A, C),

Tr(A, B)ATr(C,B) = Tr(A, C), Tr(B,A)ANTr(C,B) = Tr(A, C),

Tr(A, B) A =Tr(C, B) = —Tr(A, C), Tr(B, A) A=Tr(C, B) = —Tr(A, C),
-Tr(A,B)ATr(C,B) = —Tr(A C), —Tr(B,A)ATr(C,B) = —Tr(A, C),
—Tr(A, B) A —lTr(C B) = Tr(A, C), -Tr(B,A) A—=Tr(C, B) = Tr(A, C)

e Ve

’—



[Huang, et al., SBP “13]

Social Status in PSL

-— o
- 5\

TH(X, Y)ATH(Y, Z) = Tr(X, 2)
~Te(X, Y)Y A =Tr(Y, Z) = =Tr(X, Z)




[Huang, et al., SBP “13]

Social Status in PSL

-—— -——
- - - P -~

~— »e Pe ’< ° Do
X Y V4 X Y z
Tr( X, Y)ATH(Y,Z) = Tr(X, 2), Tr(Y, X)AN=Tr(Y, Z2) = —Tr(X, 2),

-Tr( X, Y)A=Tr(Y,Z) = —-Tr(X,Z2), —Tr(Y,X)ATr(Y,Z) = Tr(X, Z),

Tr(X,Y)ATr(Z,Y) = Tr(X, 2), Tr(Y,X)ANTr(Z,Y) = —Tr(X, 2),
-Tr( X, Y)ATr(Z,Y) = -Tr(X,Z2), -Tr(Y,X)A=Tr(Z,Y)= Tr(X, 2)

-——— -————
-

= peoec—2e ’< oc— 2o

X Y Z X Y Y4




[Huang, et al., SBP “13]

Evaluation

= User-user trust ratings from two different
online social networks

= Observe some ratings, predict held-out
» Eight-fold cross validation on two data sets:

- FilmTrust - movie review network,
trust ratings from 1-10

- Epinions - product review network,
trust / distrust ratings {-1, 1}




[Huang, et al., SBP “13]

FilmTrust Experiment

= Normalize [1,10] rating to [0,1]

Prune network to largest connected-component

1,754 users, 2,055 relationships

Compare mean average error, Spearman’s rank coefficient,
and Kendall-tau distance

Method MAE T p MAE* T* p*
Average 0.210 n/a n/a n/a n/a n/a
EigenTrust 0339 —-0.054 —0.074 0.339 —0.054 —0.074
TidalTrust 0.229 0.059 0.078 0.236 0.089 0.117
PSL-Balance 0.207 0.136 0.176 0.193 0.235 0.314
PSL-Balance-Recip | 0.207 0.139 0.188 0.193 0.241 0.318
PSL-Status 0.224 0.112 0.144 0.230 0.205 0.277
PSL-Status-Inv 0.224 0.065 0.085 0.238 0.143 0.189

* measured on only non-default predictions




[Huang, et al., SBP “13]

Epinions Experiment
= Snowball sample of 2,000 users from
Epinions data set
= 8,675 trust scores normalized to {0,1}

= Measure area under precision-recall curve
for distrust edges (rarer class)

Method AUC
Average 0.070
PSL-Balance 0.317
PSL-Balance-Recip  0.343
PSL-Status 0.297
PSL-Status-Inv 0.280
EigenTrust 0.131

Tidal Trust 0.130




[Fakhraei, et al., BioKDD’13]

Drug-Target Interaction Prediction

Therapeutic Development Pipeline

D Di Pre-clinical Clinical Trial FDA ini
. Drug Discovery re-clinica inical Trials Reay  dinic

e ———————————
6.5 years 1.5 years

XVIVO | s

* New drugs take a decade to reach market.
* Development cost reaches 2 billion US dollars.
* Most novel drug candidates never get approved.

H Drug repurposing:
Finding new uses for approved drugs



[Fakhraei, et al., BioKDD’13]

Drug-Target Interaction Prediction

Computational predictions focus biological investigations

N
LS
./)

o

Imilar

S

Interacts -
with éTarget

Data: drug-target (gene product) interaction network
+ drug-drug and target-target similarities

Task: link prediction



[Fakhraei, et al., BioKDD’13]

Drug-Target Interaction Prediction

SimilarTargets (17, 12) A Interacts(D,Ty) — Interacts(D,T})

SimilarDrug, (D1, Dy) A Interacts(Dsy, T) — Interacts(Dy,T)

SimilarDrug,(Dy, Do) A SimilarTargets(Ty,Ts) ¥,
A Interacts(Do, Ty) — Interacts(Dy,Th) ] ]




[Fakhraei, et al., BioKDD’13]

Drug-Target Interaction Prediction

* 315 Drugs, 250 Targets
« 78,750 possible interactions, 1,306 observed interactions
« 5 drug-drug similarities, 3 target-target similarities

Method | ___AUROC

PSL 0.931 £ 0.018 10-fold CV
Perlman, et al. 2011 0.935
Yamanishi, et al. 2008 0.884 with sampling

Bleakley, et al. 2009 0.814

0.6

~=with weight learning

0.5 =—without weight learning

0.4
203
<
o

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

Top N Predictions



[Bach, et al., ICML WS 2013]

Learning Latent Groups

= Can we better understand political discourse in social
media by learning groups of similar people?
= Case study: 2012 Venezuelan Presidential Election

* [Incumbent: Hugo Chavez

= Challenger: Henrique Capriles

Left: This photograph was produced by Agéncia Brasil, a public Brazilian news agency. This file is licensed under the Creative
Commons Attribution 3.0 Brazil license. Right: This photograph was produced by Wilfredor. This file is licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license.




Learning Latent Groups

= South American tweets collected from 48-hour
window around election.
= Selected 20 top users
= Candidates, campaigns, media, and most
retweeted
= 1,678 regular users interacted with at least one
top user and used at least one hashtag in another
tweet
* Those regular users had 8,784 interactions with
non-top users




Learning Latent Groups
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Learning Latent Groups
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[Memory, Kimmig, Getoor, in prep]

Schema Matching

» Correspondences between I brovides_F Organization
source and target schemas Service & | buys
. Protiuc ts Custpmers
» Matching rules ' ____L__.
- “lIf two conc.ep.ts are the same,,t’hey -‘S develop [~ Coml|'3any
should have similar subconcepts i
- “If the domains of two attributes are Portfolios
similar, they may be the same’’ includes
\ PrOdUFtS & | buys Customer
Services

develop(A, B) <= provides(A, B)
Company(A) <= Organization(A)
Products&Services(B) <= Service&Products(B)




[Memory, Kimmig, Getoor, in prep]

Schema Mapping

= Input: Schema matches i brovides_F Organization
= Qutput: S-T query pairs (TGD) SPertjce & | buys [rT
« L t
for exchange or mediation /L _rokuc_s _____ L--.
= Mapping rules | S Company
- “Every matched attribute should (fPortf'olios\ )
participate in some TGD.” ~ = -Frludes
- “The solutions to the queries in TGDs \ Products & | buys
should be similar.” Services | Customer

JPortfolio P, develop(A, P) A
includes(P, B) <= provides(A, B)




Pujara, Miao, Getoor, Cohen, ISWC 2013

Knowledge Graph ldentification

* Problem: Collectively reason about noisy,
inter-related fact extractions

= Task: NELL fact-promotion (web-scale IE)

- Millions of extractions, with entity ambiguity
and confidence scores

- Rich ontology: Domain, Range, Inverse,
Mutex, Subsumption

» Goal: Determine which facts to include in
NELL" s knowledge base




Pujara, Miao, Getoor, Cohen, ISWC 2013

Knowledge Graph ldentification

Problem:

Noisy
extraction
s from the
Web

Knowledge Graph @
Joint reasoning PP ® o
> O
e % o
= O

Solution: Knowledge Graph Identification (KGI)

= Performs graph identification:
- entity resolution
- collective classification
- link prediction
= Enforces ontological constraints
» |ncorporates multiple uncertain sources




Pujara, Miao, Getoor, Cohen, ISWC 2013

Graph ldentification in KGI

Noisy Extractions: .
CR
CanpReLy(Ey, E,,R) == REL(Eq, E,, R)

WCLT
CanpLBL(E,L) — LbBL(E,L)

SameENT(E{, E;) ALBL(E;, L) = LBL(E,, L)
SaMeENT(Eq, E,) A REL(E{,E,R) = REL(E, E,R)
SameENT(E,E,) A REL(E,E{,R) = REL(E,E,,R)

’—



KGI Representation of Ontological Rules
Dom(R,L) A REL(E{,E,,R) = LBL(E{, L)
RnG(R,L) AREL(E{,E5,R) = LBL(E,, L)
Inv(R,S) ANREL(E{,E,,R) = REL(E,, E; R)

Sus(L,P) A LBL(E,L) = LBL(E,P)
RSuB(R,S) AREL(E{,E;,R) = REL(E{ E,,S)

Mut(L{, L) ALBL(E,L;) = =LBL(E,L,)
RMur(R{,R,) AN REL(E{,E,,R) = —=REL(E{,E5, R,)

Adapted from Jiang et al., ICDM 2012 '
V4



lllustration of KGI

Representation as a noisy knowledge graph
Extractions:

SameEnt
Lbl( , bird) Kyrgyzstan Kyrgyz Republic
Lbl( , country) -9 o'
Lbl( , country)
Rel( ) ’
hasCapital)
Ontology

Dom(hasCapital, country)
Mut(country, bird)

(reyideDsey)|d

Entity Resolution

Bishkek
SameEnt(

’ Pt

After Knowledge Graph Identification
Kyrgyzstan

Rel(hasCapital
m Lb| ._Q(M Bishkek

Kyrgyz Republic




Pujara, Miao, Getoor, Cohen, ISWC 2013

Datasets & Results

= Evaluation on NELL dataset from iteration 165:
« 1.7M candidate facts
« 70K ontological constraints

= Predictions on 25K facts from a 2-hop neighborhood
around test data

= Beats other methods, runs in just 10 seconds!

= Also supports lazy inference of complete knowledge
graph (100 minutes)

F1 AUC
Baseline .828 873
NELL 673 .765
MLN (Jiang, 12) .836 .899

KGI-PSL .853 904







http://psl.umiacs.umd.edu

Closing Comments

= Great opportunities to do good work and
do useful things in the current era of big
data, information overload and network
science - ‘entity-oriented data science’

= Statistical relational learning provides
some of the tools, much work still
needed, developing theoretical bounds for
relational learning, scalability, etc.

= Compelling applications abound!




= Probabilistic

Soft

Logic

psl.umiacs.umd.edu
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