
The Edge of Graphicality

Elizabeth Moseman

in collaboration with

Brian Cloteaux, M. Drew LaMar, James Shook

February 5, 2013



Graphical Sequences

A sequence α = (α1, ..., αn) of positive integers is
graphical if there is a graph G = (V , E) with
V = {v1, . . . , vn} and d(vi) = αi .



Graphical Sequences

A sequence α = (α1, ..., αn) of positive integers is
graphical if there is a graph G = (V , E) with
V = {v1, . . . , vn} and d(vi) = αi .

Example: Let α = (2, 4, 3, 4, 3).



Graphical Sequences

A sequence α = (α1, ..., αn) of positive integers is
graphical if there is a graph G = (V , E) with
V = {v1, . . . , vn} and d(vi) = αi .

Example: Let α = (2, 4, 3, 4, 3).

v1

v2 v3

v4 v5



Directed Graphs

A sequence α =
(

(α+

1 , α
−

1 ), . . . , (α+
n , α

−

n )
)

of positive
integer pairs is digraphical if there is a digraph
G = (V , E) with V = {v1, . . . , vn} and d+(vi) = α

+

i ,
d−(vi) = α

−

i .



Directed Graphs

A sequence α =
(

(α+

1 , α
−

1 ), . . . , (α+
n , α

−

n )
)

of positive
integer pairs is digraphical if there is a digraph
G = (V , E) with V = {v1, . . . , vn} and d+(vi) = α

+

i ,
d−(vi) = α

−

i .

Example: Let α =
(

(1, 1), (3, 2), (2, 1), (1, 1), (1, 3)
)



Directed Graphs

A sequence α =
(
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integer pairs is digraphical if there is a digraph
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Sequence Order

◮ There is no order to the vertices of a graph, but
all our sequences have order. We define
canonical orders.

◮ For an undirected graph, the usual order is
non-increasing.

◮ An integer pair sequence α is in positive
lexicographical order if α

+

i ≥ α
+

i+1 with
α
−

i ≥ α
−

i+1 when α
+

i = α
+

i+1

◮ In this order, our example
α =

(

(1, 1), (3, 2), (2, 1), (1, 1), (1, 3)
)

becomes
(

(3, 2), (2, 1), (1, 3), (1, 1)
)

.



When is a sequence realizable?

Theorem (Erdős, Gallai (1960))
A non-increasing non-negative integer sequence
(d1, ..., dn) is graphic if and only if the sum is even
and the sequence satisfies

k
∑

i=1

di ≤ k(k − 1) +
n

∑

i=k+1

min{k , di} for 1 ≤ k ≤ n.

(1)



When is a sequence realizable?

Theorem (Fulkerson (1960), Chen (1966))
Let α =

(
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)

be a non-negative
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Unique labeled Realizations

Theorem (Collected Results)
Let α be a graphical sequence and G a realization of
α. The following are equivalent:

◮ G is the unique labeled realization of α.
◮ There are no alternating four cycles in G.
◮ G can be formed from a one vertex graph by

adding a sequence of vertices, where each
added vertex is either empty or dominating.

◮ α satisfies the Erdős–Gallai conditions with
equality.

The degree sequences and graphs satisfying any of
the above are called threshold graphs.
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ail = ajk = 0
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Unique realizations of Digraphs

Forbidden Configurations

Theorem (Rao, Jana and Bandyopadhyayl
(1996))
A digraph G is the unique realization of its degree
sequence if and only if it has neither a two-switch nor
an induced directed three-cycle.
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A two-switch and an induced directed three-cycle.
Solid arcs must appear in the digraph and dashed
arcs must not appear in the digraph. If an arc is not
listed, then it may or may not be present.
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A two-switch and an induced directed three-cycle.
Distinct integers i , j , k , l so that aik = ajl = 1 and
ail = ajk = 0 form a two-switch.



Unique realizations of Digraphs

Forbidden Configurations

Theorem (Rao, Jana and Bandyopadhyayl
(1996))
A digraph G is the unique realization of its degree
sequence if and only if it has neither a two-switch nor
an induced directed three-cycle.
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A two-switch and an induced directed three-cycle.
Distinct integer i , j , k so that aij = ajk = aki = 1 and
aik = akj = aji = 0 form an induced directed three
cycle.
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Characterization

Theorem (2012)
Let G be a digraph, A its adjacency matrix, and α the
degree sequence in positive lexicographical order.
The following are equivalent:

1. G is the unique labeled realization of the degree
sequence α.

2. There are no 2-switches or induced directed
3-cycles in G.

3. For every triple of distinct indices i, j and k with
i < j , if ajk = 1, then aik = 1.

4. The Fulkerson-Chen inequalities are satisfied
with equality. In other words, for 1 ≤ k ≤ n,

k
∑

i=1

min(α−

i , k − 1) +
n

∑

i=k+1

min(α−

i , k) =
k

∑

i=1

α
+
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◮ Let α− = (α−

1 , . . . , α
−

n ) be a sequence of
integers from {0, . . . , n − 1}.

◮ Form a matrix by placing α
−
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diagonal.

◮ This matrix is the adjacency matrix of a
threshold digraph.
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