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Software LattE integrale was developed with help by several
smart students. Most notably
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Our Wishes

Given P be a d-dimensional rational polytope inside Rn and let
f ∈ Q[x1, . . . , xn] be a polynomial with rational coefficients.

Compute the EXACT value of the integral
∫

P
f dm?
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Example

If we integrate the monomial x17y111z13 over the three-dimensional
standard simplex ∆. Then

∫
∆ x17y111z23dxdydz equals exactly

1

317666399137306017655882907073489948282706281567360000
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Why compute integrals over polytopes?

Integration over polyhedra is useful!!

Physical simulation: Realistic animation and geometric
design must both pay attention to the physics implied by the
first moments, the volume, center of mass, and inertia frame
of the objects they manipulate.

Tomography and Inverse problems: The X-rays of a
polytope can be used to estimate the moments of the
underlying mass distribution. One can reconstruct of any
convex polytope, from knowledge of its moments.

Probability and Statistics: marginal likelihood integrals in
model selection.

But, why EXACT integration? Numeric Integration is
successful, right? My point:Exact integration useful for
calibration!!!!
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VOLUMES: a few reasons to compute them

(for algebraic geometers) If P is an integral d-dimensional
polytope, then d! times the volume of P is the degree of the
toric variety associated to P.

(for computational algebraic geometers) Let f1, . . . , fn be
polynomials in C[x1, . . . , xn]. Let New(fj) denote the Newton
polytope of fj , If f1, . . . , fn are generic, then the number of
solutions of the polynomial system of equations
f1 = 0, . . . , fn = 0 with no x i = 0 is equal to the normalized
mixed volume n!MV (New(f1), . . . ,New(fn)).
(for Combinatorialists ) Volumes count things!
CRm = {(aij) :

∑
i aij = 1,

∑
j aij = 1, with aij ≥ 0 but aij =

0 when j > i + 1 }, then
NV (CRm) = product of first (m − 2) Cat alan numbers. (D.
Zeilberger).
Many Other applications...
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A running example

Suppose we wish to integrate
∫
pentagon f (x , y)dxdy

(0,0) (2,0)

(3,1)

(1,3)

(0,2)

We teach undergraduates to decompose the integral into boxes:

∫ 1

0

∫ x+2

0
f (x , y)dydx+

∫ 2

1

∫ −x+4

0
f (x , y)dydx+

∫ 3

2

∫ −x+4

x−2
f (x , y)dydx
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Hey! I took calculus already!!

M. Schechter, American Mathematical Monthly 105 (1998), 246–251.

For f (x) = f (x1, . . . , xd) a polynomial function calculus books say
THINK BOXES, ITERATION!!!

For a full-dimensional polytope P = {Ax ≤ b } ⊆ Rd

∫
P

f (x)dx =
∑
boxes

∫ b1

a1

∫ b2(x1)

a2(x1)

∫ b3(x1,x2)

a3(x1,x2)
. . .

∫ bd (x1,...,xd−1)

ad (x1,...,xd−1)
f (x)dx

To handle the parametric limits of integration: Need
Fourier–Motzkin projection – exponential time
BAD even for simplices
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Context and Prior work: mostly bad news...

It is #P-hard to compute the volume of a vertex presented
polytopes (Dyer and Frieze 1988, Khachiyan 1989).

It is #P-hard to compute the volume of a d-dimensional
polytope P represented by its facets. (Brightwell and Winkler
1992) Hard to compute the volume of zonotopes (Dyer,
Gritzmann 1998).

Number of digits necessary to write the volume of a rational
polytope P cannot always be bounded by a polynomial on the
input size. (J. Lawrence 1991).

Even deterministic is already hard, but randomized
approximation can be done efficiently ( Barany, Dyer, Elekes,
Furedi, Frieze, Kannan, Lovász, Rademacher, Simonovits,
Vempala, others)
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WHAT WE ARE GOING TO DO NOW?? SHALL WE CRY??

STRATEGY: Focus on integration over SIMPLICES.

A simplex is any polytope of dimension d with d + 1 vertices.

3 simplex0 simplex 1 simplex 2 simplex

A d-simplex has exactly
(d+1

i+1

)
faces of dimension i ,

(i = −1, 0, . . . , d), which are themselves i-simplices.
IMPORTANT: Every polytope can be decomposed as a union
of simplices.

To compute the integral of a polytope: divide it as a disjoint
union of simplices, calculate integral for each simplex and
then add them up!

Remark: Computing volume and centroids of simplices can
be done efficiently! We generalize these facts.
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TECHNICAL REMARKS: What is the input?

The input polynomial: requires that one specifies concrete
data structures for reading the input polynomial and to carry
on the calculations. Three main possibilities:

1 dense representation: polynomials are given by a list of the
coefficients of all monomials up to a given total degree M.

2 sparse representation: Polynomials are specified by a list of
exponent vectors of monomials with non-zero coefficients,
together with their coefficients.

3 Straight-line program too!.

The input polyhedron P: Given by integer or rational
inequalities and equalities. It is OK to calculate integrals of
non-full-dimensional polytopes!!
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TECHNICAL REMARKS: Non-full-dimensional OK!

For calculations we work with the integral Lebesgue measure dm:

When the polytope P is of full dimension n, in Rn dm is the
standard Lebesgue measure, which gives volume 1 to the
fundamental domain of the lattice Zn.

When polytope P spans L, a rational linear subspace of
dimension d ≤ n, we normalize the Lebesgue measure on L,
so that the volume of the fundamental domain of the
intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define dm by translation.

For this dm, every integral of a polynomial function with
rational coefficients will be a rational number. Example: the
diagonal of the unit square has length 1 instead of

√
2.



What is the problem? Why should I care?
Results

HOW? Our Methods

TECHNICAL REMARKS: Non-full-dimensional OK!

For calculations we work with the integral Lebesgue measure dm:

When the polytope P is of full dimension n, in Rn dm is the
standard Lebesgue measure, which gives volume 1 to the
fundamental domain of the lattice Zn.

When polytope P spans L, a rational linear subspace of
dimension d ≤ n, we normalize the Lebesgue measure on L,
so that the volume of the fundamental domain of the
intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define dm by translation.

For this dm, every integral of a polynomial function with
rational coefficients will be a rational number. Example: the
diagonal of the unit square has length 1 instead of

√
2.



What is the problem? Why should I care?
Results

HOW? Our Methods

TECHNICAL REMARKS: Non-full-dimensional OK!

For calculations we work with the integral Lebesgue measure dm:

When the polytope P is of full dimension n, in Rn dm is the
standard Lebesgue measure, which gives volume 1 to the
fundamental domain of the lattice Zn.

When polytope P spans L, a rational linear subspace of
dimension d ≤ n, we normalize the Lebesgue measure on L,
so that the volume of the fundamental domain of the
intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define dm by translation.

For this dm, every integral of a polynomial function with
rational coefficients will be a rational number.

Example: the
diagonal of the unit square has length 1 instead of

√
2.



What is the problem? Why should I care?
Results

HOW? Our Methods

TECHNICAL REMARKS: Non-full-dimensional OK!

For calculations we work with the integral Lebesgue measure dm:

When the polytope P is of full dimension n, in Rn dm is the
standard Lebesgue measure, which gives volume 1 to the
fundamental domain of the lattice Zn.

When polytope P spans L, a rational linear subspace of
dimension d ≤ n, we normalize the Lebesgue measure on L,
so that the volume of the fundamental domain of the
intersected lattice L ∩ Zn is 1. Then for any affine subspace
L + a parallel to L, we define dm by translation.

For this dm, every integral of a polynomial function with
rational coefficients will be a rational number. Example: the
diagonal of the unit square has length 1 instead of

√
2.



What is the problem? Why should I care?
Results

HOW? Our Methods

BAD news: Integration of arbitrary polynomials over
simplices is NP-hard

The clique problem (does G contain a clique of size ≥ n) is
NP-complete. (Karp 1972).

Theorem [Motzkin-Straus 1965]
G a graph with clique number ω(G ).
QG (x) := 1

2

∑
(i ,j)∈E(G) xixj . Function on standard simplex in

R|V (G)|.
Then ‖QG‖∞ = 1

2 (1− 1
ω(G) ).

Lemma Let G a graph with d vertices. The clique number
ω(G ) is equal to

⌈
1

1−2‖QG‖p

⌉
. (Lp-norm, Holder inequality) as

long as p ≥ 4(e − 1)d3 ln(32d2), the
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GOOD News: Fast Integration for powers of linear forms

Theorem: There exists a polynomial-time algorithm that given an
integer M, a linear form 〈`, x〉, and a simplex ∆ with vertices
s1, . . . , sd+1 ∈ Qd computes the integral∫

∆
〈`, x〉Mdm

.
When ` is regular, w.r.t. ∆, i.e., 〈`, si 〉 6= 〈`, sj〉 for any pair i 6= j .
Then answer has a short sum of rational functions on `i .
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COOL formula for the integral of power of linear forms

Theorem Let ∆ be a simplex. Let ` be a linear form which is
regular w.r.t. ∆, i.e., 〈`, si 〉 6= 〈`, sj〉 for any pair i 6= j . Then

∫
∆
< `, x >M dm = d! vol(∆, dm)

M!

(M + d)!

( d+1∑
i=1

〈`, si 〉M+d∏
j 6=i 〈`, si − sj〉

)
.



What is the problem? Why should I care?
Results

HOW? Our Methods

Two beautiful formulas (for fixed degree M):

Theorem Let ∆ be the simplex that is the convex hull of
s1, s2, . . . , sd+1 in Rn, and let ` be an arbitrary linear form on Rn.
Then∫

∆
`Mdm = d! vol(∆, dm)

M!

(M + d)!

∑
k∈Nd+1,|k|=M

〈`, s1〉k1 · · · 〈`, sd+1〉kd+1 .

(1)
where |k| =

∑d+1
j=1 kj .

If H is a symmetric multilinear form defined on (Rd)M . Then one
has∫

∆
H(x, x, . . . , x)dx =

vol(∆)(M+d
M

) ∑
1≤i1≤i2≤···iM≤d+1

H(si1 , si2 , . . . , siM ).

(2)
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We can apply this to ALL polynomials!!

We can compute integrals of arbitrary polynomials too!

Lemma: Write any monomial of degree M as a sum of
powers of linear forms ( at most 2M terms):

xm1
1 xm2

2 · · · x
md
d =

1
|m|!
∑

0≤pi≤mi
(−1)|m|−|p|

(m1
p1

)
· · ·
(md

pd

)
(p1x1 + · · ·+ pdxd)|m|.

Example:
7x2 + y2 + 5z2 + 2xy + 9yz =

1

8
(12(2x)2 − 9(2y)2 + (2z)22 + 8(x + y)2 + 36(y + z)2)
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More good news: Polynomials of fixed degree

Corollary: For each fixed number M ∈ N, there exists a
polynomial-time algorithm for the problem: Input:

numbers d , n ∈ N
affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in
binary encoding,

a polynomial f ∈ Q[x1, . . . , xn] of degree at most M,

Output: in binary encoding: the rational number
∫

∆ f (x)dm,
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Running Example CONTINUES

Integrate
∫
pentagon(c1x + c2y)Mdxdy

(0,0) (2,0)

(3,1)

(1,3)

(0,2)

The answer is a rational function:
M!

(M+2)!

(
(2 c1)M+2

c1(−c1−c2) + 4 (3 c1+c2)M+2

(c1+c2)(2 c1−2 c2) + 4 (c1+3 c2)M+2

(c1+c2)(−2 c1+2 c2) + (2 c2)M+2

(−c1−c2)c2

)
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When M = 0 we are computing the AREA of the pentagon:
The rational function simplifies to a number!! Indeed area is 6
because:
12 = 4 c1

−c1−c2
+ 4 (3 c1+c2)2

(c1+c2)(2 c1−2 c2) + 4 (c1+3 c2)2

(c1+c2)(−2 c1+2 c2) + 4 c2

−c1−c2

For any M when (c1, c2) is not perpendicular to any of the
edge directions we simply plug in numbers.
For instance for M = 100 and (c1 = 3, c2 = 5):
2272763693868996638935888674032202338331678429593822654741945853115019517044815807828554973991981183769557979672803164125396992

1717

Else we have to compute some complex residues, because
there are resolvable singularities (this is true for only a few
linear forms in the universe!).

We have implemented TWO different algorithms in LattE
Integrale!
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Our Methods:
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A classical notion: Valuations

A valuation on polyhedra is a linear map from the vector
space of characteristic functions χ(pi ) of polyhedra into a
field.

Thus if polyhedra pi satisfy a linear relation
∑

i riχ(pi ) = 0,
then ∑

i

riS(pi ) = 0,

Example:

χ(p1 ∪ p2) + χ(p1 ∩ p2)− χ(p1)− χ(p2) = 0,
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An exponential integral valuation for polyhedra

p (convex) rational polyhedron. Define

I (p)(ξ) :=

∫
p
e〈ξ,x〉 dm

when the integral converges.

Lemma If p contains a line, then set I (p) := 0.
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Valuations for simplicial cones

Theorem: s + c affine cone with vertex s and integral generators
v1, . . . , vd ∈ lattice Λ. Thus c = R+v1 + . . .R+vd .
The exponential integral valuation takes the form:

I (s + c)(ξ) = | det
Λ

(vj)|
∏
j

−e〈ξ,s〉

〈ξ, vj〉

where b =
∑

j [0, 1[vj , semi-closed cell.
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EXAMPLE: I (p) in dimension one

For the line segment [a, b] we have:

χ([a, b]) = χ([−∞, b]) + χ([a,+∞])− χ(R)

Apply exponential integral valuation to this identity.

I ([a, b]) = I ([−∞, b]) + I ([a,+∞])− I (R)

By the properties we discussed yields the desired answer eb − ea.
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Polyhedron ≡ sum of its supporting cones at vertices

Theorem(Brion-Lawrence-Varchenko)
p convex polyhedron, s + cs supporting cone at vertex s.

S(p) =
∑

s∈ vertices

S(s + cs), I (p) =
∑

s

I (s + cs)

Corollary: Let ∆ be a simplex. Let ` be a linear form which is
regular w.r.t. ∆, i.e., 〈`, si 〉 6= 〈`, sj〉 for any pair i 6= j . Then

∫
∆

e<`,x>dm = d! vol(∆, dm)
d+1∑
i=1

e〈`,si 〉∏
j 6=i 〈`, si − sj〉

.
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From Exponentials to Powers of Linear Forms

To compute LM(P)(`) =
∫
P 〈`, x〉

Mdm for linear form ` such
that the integral exists over a polytope P we use valuation
property and do it for cones:∫

s+C
e〈t`,x〉dm = vol(ΠC )e〈t`,s〉

d∏
i=1

1

〈−t`, ui 〉
. (3)

The value of this integral is an analytic function of t.

We wish to recover the value of the integral of 〈`, x〉M over
the cone. This is the coefficient of tM in the Taylor expansion
in the left side.

We equate it to the Laurent series expansion around t = 0
of the right-hand-side expression, which is a meromorphic
function of t.
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vol(ΠC )e〈t`,s〉
d∏

i=1

1

〈−t`ui 〉
=
∞∑

n=0

tn−d 〈`, s〉n

n!
· vol(ΠC )

d∏
i=1

1

〈−`, ui 〉
,

thus we can conclude the following.

Corollary

For a regular linear form `, a simplicial cone C generated by rays
u1, u2, . . . ud with vertex s∫

s+C
〈`, x〉Mdm =

M!

(M + d)!
vol(ΠC )

(〈`, s〉)M+d∏d
i=1〈−`, ui 〉

. (4)
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Corollary

If 〈−`, ui 〉 = 0 for some ui , then∫
s+C
〈`, x〉Mdm =

M!

(M + d)!
vol(ΠC ) Resε=0

(〈`+ ε̂, s〉)M+d

ε
∏d

i=1〈−ˆ̀− ε̂, ui 〉
,

where ε̂ is a vector in terms of ε such that 〈−`− ε̂, ui 〉 6= 0 for all
ui ,

Corollary

For any triangulation Ds of the feasible cone Cs at each of the
vertices s of the polytope P we have∫

P
〈`, x〉Mdm =

∑
s∈V (P)

∑
C∈Ds

∫
s+Cs

〈`, x〉M
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TWO MAIN OPTIONS

Triangulate the polytope and integrate simplex-by-simplex OR
iintegrate cone-by-cone
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CONCLUSIONS

Our work generalizes prior work by Jim Lawrence on volume
computation and it gives algorithmic versions of results by
Brion, Barvinok, Lasserre, Varchenko, and others.

Integration of arbitrary powers of linear forms can be done
efficiently over simplices. Obtain explicit FORMULAS!!!

Theorem: Integration of power of linear forms over simple
polytopes with polynomially many vertices OR simplicial
polytopes with polynomially many facets can be done in
polynomial time.

Integration of polynomials of fixed degree is efficient too, but
integration of arbitrary powers of quadratic forms is NP-hard.

Algorithms run nicely in practice!!! Download the new
LattE integrale!
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Quick history of LattE

Figure: The new LattE
includes integration.

2001 (De Loera et al.): LattE was
developed as a software tool to
count l attice points in integer
polytopes through generating
functions as its data structures.

2007 (Köppe): LattE macchiato
(new algorithms and improved
implementation)

2011: LattE integrale now
includes volume computation and
integration of polynomials over
polytopes.

The current team includes JDL, B.
Dutra, and M. Köppe.
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Experiments

Table: Average and standard deviation of integration time in seconds of a
random monomial of prescribed degree by decomposition into linear
forms over a d-simplex (average over 50 random forms)

Degree
d 1 2 5 10 20 30 40 50 100 200 300
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 3.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.7
3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 2.3 38.7 162.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.4 24.2 130.7
4 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 22.1 – –

0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 16.7 – –
5 0.0 0.0 0.0 0.0 0.1 0.3 1.6 4.4 – – –

0.0 0.0 0.0 0.0 0.0 0.2 1.3 3.5 – – –
6 0.0 0.0 0.0 0.0 0.1 1.1 4.7 15.6 – – –

0.0 0.0 0.0 0.0 0.1 1.0 4.3 14.2 – – –
7 0.0 0.0 0.0 0.0 0.2 2.2 12.3 63.2 – – –

0.0 0.0 0.0 0.0 0.2 1.7 12.6 66.9 – – –
8 0.0 0.0 0.0 0.0 0.4 4.2 30.6 141.4 – – –

0.0 0.0 0.0 0.0 0.3 3.0 31.8 127.6 – – –
10 0.0 0.0 0.0 0.0 1.3 19.6 – – – – –

0.0 0.0 0.0 0.0 1.4 19.4 – – – – –
15 0.0 0.0 0.0 0.1 5.7 – – – – – –

0.0 0.0 0.0 0.0 3.6 – – – – – –
20 0.0 0.0 0.0 0.2 23.3 – – – – – –

0.0 0.0 0.0 1.3 164.8 – – – – – –
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Comparing the triangulation and cone-decomposition
methods

Shown: Relative time difference between over random polytopes in
dimension 6.
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Thank you!
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