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The Problem

• Focus on numerical solution of ill-posed problems.

• In particular, we try to reconstruct a clear image from a blurred one.

• Focus on methods that take advantage of the singular value
decomposition (SVD) of a matrix (spectral methods).
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Goal of our work:

To achieve better solutions than previously obtained from the SVD.

Ingredients:

• Exploiting training data.

• Using Bayesian estimation.

• Designing optimal filters.

Note: I’ll focus in this talk on methods that take advantage of having the
full SVD available, but our methods can exploit the savings of using
iterative methods as well.
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The Problem

We have m observations bi resulting from convolution of a blurring
function with a true image.

We model this as a linear system

b = Axtrue + δ,

where b ∈ Rm is the vector of observed data, xtrue ∈ Rn is an unknown
vector containing values of x(tj), matrix A ∈ Rm×n, m ≥ n, is known,
and δ ∈ Rm represents noise in the data.

Goal: compute an approximation of xtrue, given b and A.

In other words: We need to learn the mapping between blurred images and
true ones.
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Problem characteristics

This is a discretization of an ill-posed inverse problem, meaning that small
perturbations in the data may result in large errors in the solution.
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Example

Suppose we have taken a picture but our lens gives us some Gaussian blur:

a single bright pixel the blurred pixel

We construct the matrix A from the blurred image.

Our problem becomes
min
x
‖b−Ax‖2

2 .
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Can we deblur this image?
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Remedy

We regularize our problem by using extra information we have about the
solution.

For example,

•We may have a bound on ‖x‖1 or ‖x‖2.

•We may know that 0 ≤ x, and we may have upper bounds, too.
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Example, continued

Suppose we replace our problem Ax = b by

min
x
‖b−Ax‖2

2

subject to
‖x‖2 ≤ β.

This formulation is called Tikhonov regularization.

Using a Lagrange multiplier λ, this problem becomes

max
λ

min
x
‖b−Ax‖2

2 + λ(‖x‖2 − β).
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Write the solution to this problem using a spectral decomposition, the SVD
of A:

A = UΣVT ,

where

•Σ =

[
Σ̂
0

]
is diagonal with entries equal to the singular values

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

• The singular vectors ui (i = 1, . . . ,m) and vi (i = 1, . . . , n) are
columns of the matrices U and V respectively.

• The singular vectors are orthonormal, so U TU = Im and V TV = In.

The solution becomes

x = V(ΣTΣ + λI)−1ΣTc ,

where c = U Tb.

Unfortunately, we don’t know λ, so a bit of trial-and-error is necessary.
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Can we deblur this image? (Revisited)
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What makes spectral methods work?

For discretizations of ill-posed problems:

• The singular values σi > 0 have a clusterpoint at 0 as m, n →∞.

• There is no noticeable gap in the singular values, and therefore the
matrix A should be considered to be full-rank.

• The small singular values correspond to oscillatory singular vectors.

We need two further features:

• The discretization is fine enough that to satisfy the discrete Picard
condition: the sequence {|uT

i btrue|} decreases to 0 faster than {σi}.
• The noise components δj, j = 1, . . . ,m, are uncorrelated, zero mean,

and have identical but unknown variance.
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Picard plot: The singular values, represented with a red solid line, exhibit
gradual decay to 0. The coefficients |uT

i b| are represented by blue stars.
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Spectral Filtering

We wrote our Tikhonov solution as

x = V(ΣTΣ + λI)−1ΣTc ,

where c = U Tb.

We can express this as
x = VΦ(λ)Σ†c ,

where the diagonal matrix Φ is

Φ(λ) = (ΣTΣ + λI)−1ΣTΣ.

For Tikhonov, λ is a single parameter.

• Can we do better by using more parameters, resulting in a filter matrix
Φ(α)?

• If so, how can we choose α? We will learn it!
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Learning the Filter: Data to the Rescue

What do we need?

Informally, we need:

• Knowledge of A.

• A universe of possible true images.

• A blurred image corresponding to one of these true images, chosen at
random.

• Knowledge of some characteristics of the noise.

• Some training data.
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More formally, we need:

• Knowledge of A.
We assume we know it exactly.

• A universe of possible true images.
We assume that the true images that resulted in the ones presented to
us are chosen from a known probability distribution Pξ on images in
Ξ ⊂ Rn that has finite second moments.

• A blurred image corresponding to one of these true images, chosen at
random, according to Pξ.

• Knowledge of some characteristics of the noise:
mean zero, finite second moments, known probability distribution Pδ on
noise vectors in ∆ ⊂ Rn.

• Some training data:
pairs consisting of a true image and its resulting blurred image.
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Where does the training data come from?

When an expensive imaging device is powered on, there is often a
calibration procedure.

For example, for an MRI machine, we might use a phantom, made of
material with density similar to that of the brain, and insert a small sphere
with density similar to that of a tumor.

Taking images of the phantom at different positions in the field of view, or
at different well-controlled rotations, gives us pairs of truth and measured
values.
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How do we judge goodness of parameters?

We want to minimize the error in our reconstruction!

We settle for minimizing the expected error in our reconstruction:

Error vector
e(α, ξ, δ) = xfilter(α, ξ, δ)− ξ ,

Measure error as

ERR(α, ξ, δ) =
1

n

n∑
i=1

ρ(ei(α, ξ, δ)) ,

where, for example,

ρ(z) =
1

p
|z|p ,

for p ≥ 1, related to the p-norm of the error vector.
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Choice of ρ

We use 1-norm, 2-norm, p-norm (p = 4, as an approximation to the
∞-norm).

We also use the Huber function to reduce the effects of outliers.

ρ(z) =


|z| − β

2 , if |z| ≥ β,

1
2β z2, if |z| < β,
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Bayes risk minimization

An optimal filter would minimize the expected value of the error:

α̌ = arg minα f (α) = Eδ,ξ{ERR(α, ξ, δ)},

Given our training data, we approximate this problem by minimizing the
empirical Bayes risk

α̂ = arg minα fN(α),

where

fN(α) =
1

nN

N∑
k=1

n∑
i=1

ρ(e
(k)
i (α)),

where the samples ξ(k), and noise realizations, δ(k), for k = 1, ..N,
constitute a training set.

Convergence theorems: Shapiro 2009.
Statistical learning theory: Vapnik 1998.
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Standard choices for the parameters α

Two standard choices:

• Truncated SVD:

φtsvd
i (α) =

{
1, if i ≤ α,
0, else,

with α ∈ Atsvd = {1, . . . , n}.
• Tikhonov filtering:,

φtik
i (α) =

σ2
i

σ2
i + α

.

for α ∈ Atik = R+.

Advantage: 1-parameter optimization problems are easy.

Disadvantage: The filters are quite limited by their form.
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Most general choice of parameters

We let
φerr

i (α) = αi, i = 1, . . . , n

Advantage: The filters are now quite general.

Disadvantage: n-parameter optimization problems are hard and the
resulting filter can be very oscillatory.
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A compromise: smoothing filters

Take an n-parameter optimal filter and apply a smoothing operator to it:

φsmooth = Kφ̂err,

where K denotes a smoothing matrix (e.g., a Gaussian).

Advantage: The filter is now smoother.

Disadvantage: It is no longer optimal.
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A second compromise: spline filters

Constrain the filter function φ(α) to be a cubic spline with m (given)
knots. (We used knots equally spaced on a log scale.)

Advantage: This simplifies the optimization problem to have approx. m
variables and prevents wild oscillations or abrupt changes.

Disadvantage: Knots and boundary conditions need to be specified or
chosen by optimization.
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Typical optimal filters
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(Smooth filter (not shown) follows trend of optimal-error filter.)
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Huber function p-norm, p = 1.5
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p-norm, p = 2 p-norm, p = 4
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Computational considerations

• Computational Issue 1: The Jacobian matrix contains the very
ill-conditioned matrix Σ−1.

Solution: We use a change of variables φ̃err = Σ−1φerr.

• Computational Issue 2: Choosing a minimization algorithm.

Solution:

– Golden section search for Tikhonov; discrete version for TSVD.

– Linear programming interior-point method (IPM) for the 1-norm or
∞-norm.

– A Newton variant for the p-norm with 2 ≤ p < ∞.

– A gradient-based method or Newton for the Huber function.
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• Computational Issue 3: The problem may be very large, with a large
number of parameters or a large training set.

Solution:

– Iterative methods (e.g., conjugate gradient) can be used in the
Newton variants (without forming derivative matrices) and in the
IPM.

– An object-oriented implementation makes this easy.

– If a preconditioner is needed to accelerate convergence, a natural
choice arises from using a subset of the training data.
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Example 1

Test problem:

• Training: 800 images, 256× 256 generated from 8 satellite images, each
with 100 rigid transformations (rotation, translation, magnification).

• Blur: symmetric Gaussian point spread function.

• Blurred images: Blur and add Gaussian random noise, with standard
deviation uniformly sampled from [0.1, 0.15].

• Validation: 800 different satellite images with 100 rigid transformations,
blurred with noise added.
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3 Training and 3 validation images
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Cost of training: p = 2

Macbook Pro with OS-X 10.6 and 8GB memory, running Matlab 7.10.0
(64-bit).

optimal TSVD filter 1 parameter 606 sec.
optimal Tikhonov filter 1 parameter 1787 sec.

optimal spline filter 50 parameters 265 sec.
optimal error filter 2562 parameters 237 sec.
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Performance measures

• Error (ERR):

ERR(α, ξ, δ) =
1

n

n∑
i=1

ρ(ei(α, ξ, δ)).

• Relative Error (REL):
ERR

1
n

∑n
i=1 ρ(ξi)

.

• Signal-to-noise ratio (SNRρ) with respect to ρ:

10 · log10

(
1

REL

)
.

• Standard signal-to-noise ratio (SNR):

10 · log10

(
‖ξ‖2

2

‖xfilter − ξ‖2
2

)
.
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Results: SNR for all validation images
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Results: SNR
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Results: REL for all validation images
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Absolute error images for one validation image
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Confidence

The training images can be used to obtain uncertainty estimates:

• For each computed optimal filter, we reconstruct all of the training
images and evaluate the average error per pixel,

• The expected error in each pixel is approximated by the sample mean

µi =
1

N

N∑
k=1

e
(k)
i , i = 1, . . . , n ,

• This is very close to the average error we see in the training images, as
it should be if our assumptions hold.
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Average (standard deviation) of pixel error

opt- Huber (1.5)-norm 2-norm 4-norm

TSVD
T -2.35e-4 (6e-3) -2.04e-4 (5e-3) -1.79e-4 (5e-3) -1.29e-4 (4e-3)
V -2.54e-4 (6e-3) -2.21e-4 (5e-3) -1.95e-4 (5e-3) -1.43e-4 (5e-3)

Tik
T -1.94e-2 (8e-3) -1.84e-2 (7e-3) -1.77e-2 (7e-3) -1.63e-2 (7e-3)
V -2.32e-2 (1e-2) -2.20e-2 (1e-2) -2.12e-2 (9e-3) -1.96e-2 (9e-3)

spline
T -5.50e-4 (6e-3) -3.64e-4 (5e-3) -2.18e-4 (4e-3) 1.01e-4 (4e-3)
V -6.08e-4 (6e-3) -4.00e-4 (5e-3) -2.34e-4 (5e-3) 1.33e-4 (4e-3)

error
T -5.61e-4 (5e-3) -3.30e-4 (4e-3) -1.42e-4 (4e-3) 2.61e-4 (3e-3)
V -6.34e-4 (5e-3) -3.71e-4 (4e-3) -1.57e-4 (4e-3) 3.25e-4 (3e-3)
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Example 2

Test problem: Suppose our camera is imperfect, having a substantial
number of dead pixels:

We use 40 training images to learn the filter function.
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Results on a validation image

Validation image 2-norm error

Tikhonov-GCV Tikhonov-MSE (not computable)
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View down a single column of the image
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Results even better with noise post-processing.
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Median reconstruction errors vs. number of training images
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Results with unlearned missing pixels
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Conclusions

• Computing regularization parameters for ill-posed problems is generally
difficult.

•We developed an optimal filtering approach for spectral regularization.

• Our formulation uses empirical Bayes risk minimization.

• A variety of error measures and filter representations are considered.

• Optimal filters are computed off-line.

• Reconstructions of test problems are very good.
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