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Outline

* The graph visualization problem

* Algorithms & challenges for visualizing large
graphs

* Visualizing cluster relationships as maps



The graph visualization problem

 Given some relational data

{Farid—Aadil, Latif—Aadil, Farid—Latif,
Carol—Andre, Carol—Fernando, Carol—Diane, Andre
—Diane, Farid—Izdihar, Andre—Fernando, Izdihar—
Mawsil, Andre—Beverly, Jane—Farid, Fernando—
Diane, Fernando—Garth,Fernando—Heather, Diane—
Beverly, Diane—Garth, Diane—Ed, Beverly—Garth,
Beverly—Ed, Garth—Ed, Garth—Heather, Jane—Aadil,
Heather—Jane, Mawsil—Latif}

* |t is not easy to see what's going on!



The graph visualization problem

* But if we visualize it
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The graph visualization problem

* The graph visualization problem: to achieve a
“good” visual representation of a graph using
node-link diagram (points and lines).

* Main criteria for a good visualization: readabillity
and aesthetics.

* Small area, good aspect ratio, few edge cross-
overs, showing symmetry/clusters if exist,
sufficiently large edge-edge, node-node and
node-edge resolution, planar drawing for planar
graph, ...



The graph visualization problem

* Different styles of graph drawing: circular layout

Carol




The graph visualization problem
Cark

Andre

* Different styles of graph |
drawing: hierarchical layout QD




The graph visualization problem

* Other styles: orthogonal, grid drawing, visibility

drawi

ngs.

* This talk concentrates on undirected/straight

edge

drawing of non-planar graphs.

Ed

/

Beverly -

\

/

Andre —

Diane

N\

Garth Aadil ——— Latif -
i ”’f \ / Mawsil
Heather Jane —
A | e Farid /
__ Fernando e

\

/ lzdihar

Carol



Graph drawing algorithms

* Hand layout not feasible (unless small graphs)
* Automated algorithms needed

* Virtual physical models are popular

* Spring model vs spring-electrical model

* Spring model: a spring between every pair of
vertices

* |deal spring length = graph distance



Spring Model (aka Stress Model)

 {1—2,2—3, 1—3, 1—4, 2—4, 3—4, 4—5}
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Spring Model (aka Stress Model)

 {1—2,2—3, 1—3, 1—4, 2—4, 3—4, 4—5}
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Spring Model (aka Stress Model)

* Spring model

stress(x) = Z wij (|| i — ;5 || —dj;) .

17#J,0,J€V

* Kruskal & Seery (1980); Kamada & Kwai (1989)




Spring Model (aka Stress Model)

* Spring model
stress(zx) = Z wij (|| 2 — ;|| —dij) ?

i#5,i,j€V
Ly —I,
* Solution method: . . 2j#i Wiy (xf' + dij 1, asgll)
i
Lyx := Lgx 2 j#i Wis

L., : weighted (dense) Laplacian

(La) = Y vt =
J71 7’ /
* Stress majorization (de Leeuw, J. , 1977;

Gasner, Koren & North, 2004)




Spring Model (aka Stress Model)

* Stress majorization on a grid graph
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Spring Model (aka Stress Model)

* Stress majorization on a grid graph




Spring Model (aka Stress Model)

* But this model is not scalable
* All-pairs shortest paths: O(|V|*log|V| + |V||E|)
* Memory: O(|V]?)



Spring-electrical Model

* Eades (1984), Fruchterman & Reigold (1991)

* Energy to minimize:
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Spring-electrical Model

* Force directed iterative process:
for every node
calculate the attractive & repulsive forces
move the node along the direction of the force
repeat until converge
* But still not scalable: all-to-all repulsive force
K* XTi— X;

—~ i # O(IV*)

|z — x| [|lzs — ]| o
* Easy to get trapped in a local minima




Reducing the o(v]*) complexity

* Group remote nodes as supernodes

(Barnes-Hut, 1986; Tunkelang, 1999; Quigley
2001)

* Reduce complexity to O(|V]log(|V]))



Reducing the o(v]*) complexity

* Implementation: quadtree/KD-tree.
* Example: 932 — 20 force calculation.
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Reducing the o(v]*) complexity

* Taking one step further: supernode-supernode.
* Burton et al. (1998), particle simulation.




Finding global optimum

* Force directed algorithm: easy to get trapped in
local min z

* The larger the graph, the more likely to get
trapped.

* Also, smooth errors are harder to erase with
iterative scheme



Finding global optimum




Finding global optimum




Global Optimum: Multilevel

* Global optimum more likely with multilevel
approach (Walshaw, 2005)




Spring-electrical: Large Graphs

* Multilevel + fast O(|V|log (|V|)) force
approximation — efficient & good quality graph
layout algorithms (Hachul&Junger 2005; Hu
2005).




Spring-electrical: Large Graphs

* Multilevel + fast O(|V|log (|V|)) force
approximation — efficient & good quality graph
layout algorithm (Hachul&Junger 2005; Hu
2005).




Other graph layout algorithms

* Eigenvector based methods (Hall's algorithm).

min » [|z; — a;]|*, subject to Y ||z =1
i J icV
Lx = Ax, A > 0 and X\ as small as possible

* High dimensional Embedding (Harel & Koren, 2002)
- Find distance from k vertices to all vertices

- Apply PCA to the |V| x k matrix to get the top 2
eigenvectors, use as coordinates

* PivotMDS (Brandes & Pich, 2006)

* All fast, but not good layout for graphs of large
intrinsic dimension/non-rigid graphs



Drawing by some layout algorithms
L f

Eigenvector (Hall's) method High dimensional embédding



Graph visualization: challenges

* Some graphs are difficult to layout
* Size of graphs get larger and larger

* Making complex relational data accessible to the
general public

* Large graphs with predefined distance (can't use
spring model)



Challenges: some graphs are hard

* Multilevel spring-electrical works for a large
number of graphs, but not all!

* When applied to some real world graphs, the
results: not good...

. E_)_lg_a_mple: Gupta1 matrix. 31802 x 31802.




Problem: Multilevel Coarsening

* Alook at the multilevel process on Gupta1

* The problem: usual coarsening schemes do not

work well

level

0

1
2
3

VI

31802
20861
12034
11088

|E|

2132408
2076634
1983352

— Coarsening too
slow, stop!

* Coarsening has to stop to avoid high complexity!



Multilevel Coarsening 1

* A popular coarsening scheme: contraction of a
maximal independent edge set




Multilevel Coarsening 2

* Another popular coarsening scheme: maximal
Independent vertex set filtering

(4] © e {1 9 9




Coarsening Scheme Fails

* The usual coarsening algorithms fails on some
graph structures

* Example: a graph with a few high degree nodes

* Such structure appears qmte often in real world
graphs




Coarsening Scheme Fails

* Maximal independent edge set coarsening: 6
edges out of 378 picked




Coarsening Scheme Fails

* Maximal independent vertex set coarsening: all
but 10 are chosen




Better coarsening

* The solution: recognize such structure and
group similar nodes first, before maximal
iIndependent edge/vertex set based coarsening.

e 0
[ "8 /1

* |nstead of

* We do




Better coarsening

* The result on Gupta1 matrix

TN\







Challenges: size keeps increasing

* Many different types of matrices: a good testing
ground for linear algebra/combinatorical
algorithms

* E.g., testing on this collection revealed the
coarsening issued discussed



matrix dimenslon

Challenges: size keeps increasing
* Size keeps growing!

* Largest matrix: 50 million rows/columns and 2
billion nonzeros
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Challenges: size keeps increasing

* The largest graph: sk-2005, crawl of the .sk
(Slovakian) domain

e 2 bil
* Cha

* Cha

lon edges
enge to layout: need 64 bit version.

enge to rendering: 100 GB postscript.

* Convert to jpg/qgif using ImageMagic: crash.

* Solution: rendering using OpenGL.

* But my desktop only has 12 GB — rendering in
a streaming fashion (does not stores the
edges).



The largest graph in the collection

* The result:

* Challenges: some graphs are hard to visualize
— small world graph like that!



Challenges: hard graphs

* Visualizing small world graphs
* Possible tool: filtering. E.q., via k-core decom.




Challenges: hard graphs

* Visualizing small world graphs
* Possible tool:
- abstraction (icons for cliques)
- hierarchical (multilevel) view
- fish-eye view
* Another possible tool: edge bundling

M M. Ml
S - S>




Challenges: hard graphs
* Fast O(|E| log(|E|) edge bundling (with Gansner)




Challenges: some graphs are hard

* Even drawing trees can be tricky!

* Spring-electrical model suffers from a “warping
effect”.

* A spanning tree from a web graph




Drawing trees

* Proximity stress model (with Koren, 2009)
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An Internet map: Reagan/Dulles




Visualizing graphs as maps

* So far graphs — node-link diagrams
* Not familiar to the general public
* Example



Recommender System Visualization

* AT&T provides digital |

'V (U-verse).

A few hundred channe

S: need a recom. system!

* Recommending TV shows

- If you like X, you will also like Y & Z.
- Based on SVD/KNN: similarity of shows
* Like to visualize to see if model makes sense

* Also provide a way for
landscape.

users to explore the TV



Go Dora
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Recommender System Visualization

* Virtual maps are use frequently
* E.g., "online community”, circa 2007
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Gmap algorithm

* Gmap algorithm (Gansner, Hu & Kobourov,
2010) — available as gvmap from GraphViz.

* Four step process
- embedding
- clustering
- mapping
- coloring



Gmap algorithm

* Embedding + clustering use standard algorithm

* Mapping. Based on Voron0| dlagram
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Gmap algorithm
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Gmap algorithm

* Coloring algorithm: maximize difference between
neighboring countries.

* Solution: solve a graph optimization problem.
* Also know as the anti-bandwidth problem.
* Final result:



Gmap algorithm
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Gmap applied to other areas

of music; map of movies; map of books etc
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Twitter Visualization
What are people talking about wrt the topic "news™?

#pharma news: ACT Announces Second Patient with Dry AMD Treated in U.S. Clinical Trial with RPE Cells Derived from ...
http://t.co/EsqBjL00

Nashville News Home Destroyed, Two Others Damaged By Fire: NASHVILLE, Tenn. A home was destroyed and two neighbo...
http://t.co/dcxUF7nO

Danielle woke me up to the GREATEST news 8Y"

RT @lbaraldo: devo dire che l'app #fineco €' quasi meglio del sito. | grafici immediati di alcune aree sono spettacolari e le news
sono ...

The Affiliate Networks - DE News wurde gerade verAfJffentlicht! http://t.co/RbOt8OtJ 4—, Topthemen heute von @tddepromotions
@affilinet_news

@)jsimoniti | saw it on the news and could tell fairly easily

RT @The1Daily: That feeling when your friends try to tell you 1D news & you're like "l already know. Get on my level, dude.
PROUD Direct ...

Valerio Pellegrini Digital News is out! http://t.co/UZacEO9k a—, Top stories today via @palettod @dr8bit @alldigitalexpo @ggrch
In the news: (Examiner) Fake AT&T bills being used to deliver malware: http://t.co/lWWtfhec

[INEWS PIC] 120416 Kangin's comeback - Happy Kyuhyun :'D http://t.co/X1J1djam

RT @SizzlinStockPix: STOCKGOODIES PLAYS OF THE WEEK: $STKO news just out link below http://t.co/FEYe2TRO
@NatashaSade_ GM homegirl...... We have until tomm to file..... | just seen it on the news lol FYI

My horoscope said don't worry about it.. | just news to find something to do with my time to get my mind off of it

RT @Real_Chichinhu: SM should release news to slap that stupid official from that stupid music site

Ball State Daily News: Speaker informs students about female genital mutilation - http://t.co/FuN5LgKo via http://t.co/rkaZhaCv


file:///Users/yifanhu/CVSED/REPORT/TALKS/DIMACS_2011_10_17/MusicMap/index.html

Twitter Visualization
* Browsing can be tedious

* May even misses the overall picture

* Characteristics of Twitter stream

- very short text (140 char)

- streaming (3,000 tweets per second. 6X 2010)

- considerable cross-copying (RT) and
spontaneity

* What we like to see:
- A "big picture” view
- Clusterred and summarized
- Detail on demand


http://t.co/EsqBjL00

Twitter Visualization

* The approach we propose: a succinct high level
visual clustering, with textual summary, and
details on demand

* We will visualize only tweets relating to a
keyword of interest



Tweet Similarity

* Finding similarity of tweets

- either LDA, which gives distribution of topics
over words, then document over topic. Then
similarity based on topic distribution

- or, treat each tweet as a vector of words,
scaled using tf-idf. Followed by cosine similarity

D

tf-idf(¢, d) = |{t|t € d}| x I
1 (, ) H‘ = HX n‘{d‘tedanddEDH

* We found that for tweets, the simplier tf-idf
based similarity works just as well



Tweet Similarity

C | (O tibesti.research.att.com/twitterscope/news/

pogle .1 = l More = List Candidates: | . pkuvis; Welbe Misuo
-zrﬁ—mﬁnm:rrm—rwnm TOJAT T ATSENE P
Sun Ma.r 18 12 51:25, Mauu RT @fellifallio RT &-YappnpaHPﬂP s.l"u'ldunj Snu ri Mengajari Fanahl«-:rnnrltrTuqun Wiper Dancuﬂrsqun. Dari Lagu ... hitpditeo/kW1sZTR
Sun Mar 18 12:51:25. Lols nf..ﬁlrut guests on @anhgde: @Hal Senatorsessions, Puerlo Rice Gov./R nmnﬂ‘{ supporter @luls_fortuno Fox News Channel - 12pmET
Sun Mar 18 12:51:24, Oprah Winfrey's OWN Network Axes The Rosie Shuw’i Fox News hitp: fILnn.ijtlt‘l’ﬂﬁw via [@fox4

R E:‘.-*iﬂmu]
A W .ﬁ?—?"nﬁn]
| _ QTviZacH
n Mg — = g
¥ ' L) SPORTSE L =
y - m 8 LOCAL® o
" ? Sebring [
% B ~
BE q O Sun,Mar 18 12:51:36. [MiddlelEast Ne
Oxlade ' Bx]?'tﬂ'das in Syrian city of Aleppo http:
& Chamberiain g £ B .
F5 | I paiy g
L Q . a
£ 1 r World B
- o Muamba L Cilen
¥ Singapore $= makes I
geastic] Y o = B M
Video K - - &
&% 78 L - £ lﬂﬂlmba -
d T %rﬂ [} o [ stable 3
Em' 'cui;mmn -
18 march F - 1 fully ™
N g Bo g HEEET . . ...
wotyidadld = Y 5 anth
g A Clsolar N recovers g £ wanna @
India = W Sunlogics GI: - 2 ﬂh‘l'mﬂre W &
PAKISTAN n viarbe B (I 1N 2 B £
clw & e 2] swcey™ B 0O a
= = & 5 B oadestd B W "
B N a4 Plkicked 4 o T

pa Fabrice Fi



Dynamic Stability

* We ensure layout stability by warm start +
Procrustes transformation

unstable \ 0 /L_ﬁ H /
\“\\

/
Time t \

Time t+1



Dynamic Stability

* Component packing stability
- disconnected component
needs repacking stably

>

Repack stably



Dynamic Stability

* Traditional packing algorithm: polyomino based
greedy algorithm

- Place the largest component at the origion

- Place the next component as close to the origin
as possible without overlap

- repeat
* Can pack very tight



Polyomino-based Packing

* Traditional packing algorithm: polyomino based
greedy algorithm. Good/tight packing
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Stable Packing

* Tradition packing pays
no consideration to stability

Normal
Packing alg.

Stable
Packing alg.



Stable Packing

* Use “scaffold” to maintain the relative positions




Stable Packing

* Animate over 10 iterations

literntion |




TwitterScope

* The algorithms are applied to an online
application — TwitterScope

* Monitor keywords
* Push to the browser in a streaming fashion
* ~300 tweets at a time

* For keywords like “news”, most of the tweets
and refreshed. Stability is impossible.

* For keywords like “visualization”, only a few new
tweets per minutes — stability comes into play



Conclusion

* Significant progress in algorithms for drawing
large graphs in the last 10 years

* Challenges remain due to ever increasing size
and complexity of graphs

* Making visualization in familiar metaphor can
make complex data accessible to a larger
audience (e.g., the Map of Music recorded 640K
hits on stumbleupon.com)
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